Chapter 7.1, Problem 26E

Problem

Observe that *mod* and *div* can be defined as functions from Znonneg × Z+ to Z. For each ordered pair (*n*, *d*) consisting of a nonnegative integer *n* and a positive integer *d*, let $mod(n, d) = n \mod d$ (the nonnegative remainder obtained when *n* is divided by *d*). $div(n, d) = n \dim d$ (the integer quotient obtained when *n* is divided by *d*). Find each of the following: a. mod (67, 10) and div (67, 10) b. mod (59, 8) and div (59, 8) c. mod (30, 5) and div (30, 5)

Step-by-step solution

Step 1 of 4
We define the functions from $Z^+ \cup \{0\} XZ^+ \to Z$ $mod(n,d) = n \mod d$ and $div(n,d) = n \operatorname{div} d \ \forall (n,d) \in Z^+ \cup \{0\} XZ^+$
Step 2 of 4
(a) $mod(67,10) = 67 mod 10 = 7$ div(67,10) = 67 div 10 = 6
Step 3 of 4 (b) $mod(59,8) = 59 \mod 8 = 3$ div(59,8) = 50 div8 = 7
Step 4 of 4 (c) $mod(30,5) = 30 \mod 5 = 0$ div(30,5) = 30 div5 = 6

STUDENTS-HUB.com

Uploaded By: anonymous