Elements of Seventh Edition Thomas M. Smith Robert Leo Smith STUDENTS-HUB.com

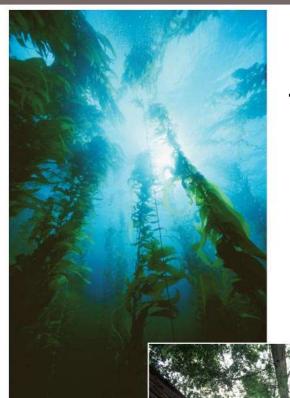
Chapter 4

The Terrestrial Environment

Lecture prepared by Aimee C. Wyrick

Chapter 4: The Terrestrial Environment

 The physical and chemical features of terrestrial environments set the constraints for life.


4.1 Life on Land Imposes Unique Constraints

Constraints include:

- 1) <u>Dessication</u>, or the loss of water, is probably the greatest constraint imposed by terrestrial environments.
 - Water evaporates from cell and body surfaces via the process of diffusion.
 - Organisms must maintain a water balance and minimize water lost.
 - Waxy cuticle of plants prevent water loss.

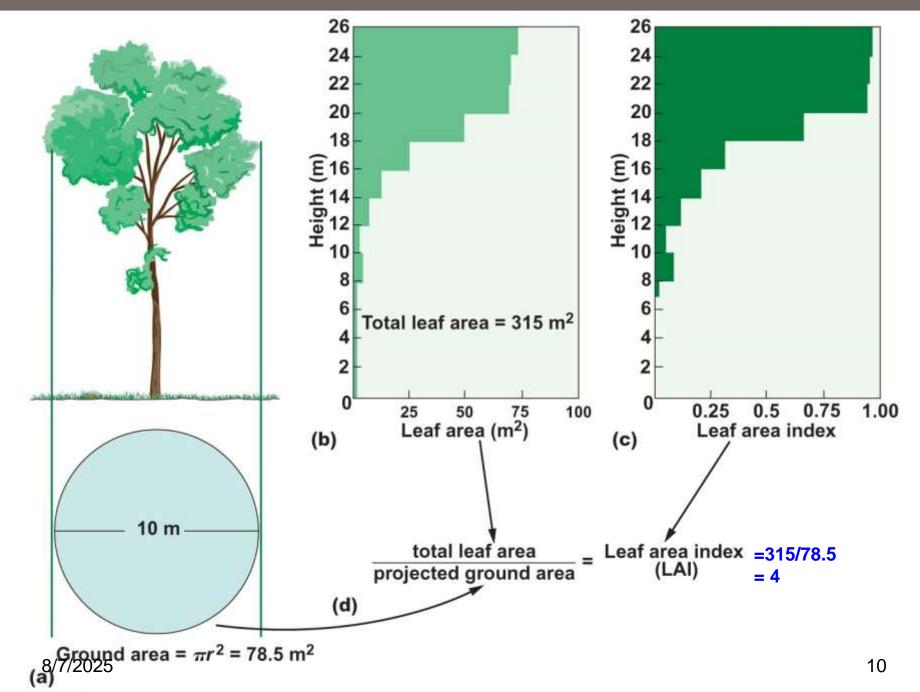
- Any water lost from the organism must be replaced to maintain water balance:
 - Terrestrial animals acquire water by drinking and eating
 - -Vascular tissues transport water and nutrients throughout the bodies of terrestrial plants.

- 2) Gravitational forces are much greater for terrestrial organisms, which have to invest in structural materials to remain erect:
 - Skeletons for animals
 - Cellulose for plants
 - An aquatic organism would be unable to support its body if brought onto land.

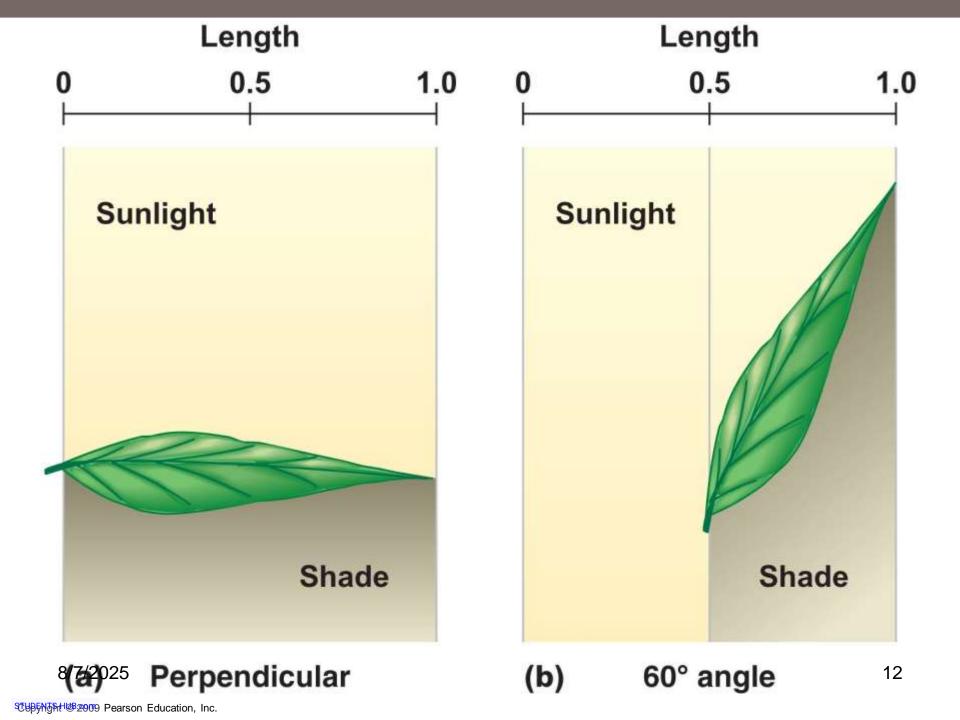
(b)

The giant kelp, a marine algae that grows 30 m without supporting tissues.

(a)


Redwood trees of the same height allocates 80% of its total mass to supportive tissue.

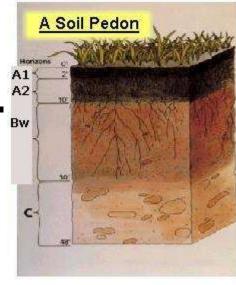
3)Terrestrial environments experience a high degree of variability:


- -Temperature variations are much greater
- The timing and quantity of precipitation constrain the availability of water.

4.2 Plant Cover Influences the Vertical Distribution of Light

- The vertical gradient and quality of light in terrestrial environments are determined by the absorption and reflection of solar radiation by plants.
- Number, size, and shape of leaves:
 - Leaf area (of flat leaves) = surface area of one or both sides.
 - Leaf area index (LAI) = the area of leaves per unit ground area.
 - [LAI of 3 means: 3m² leaf area over 1m² ground area]
- Cumulative leaf area and LAI increase as you move from the top of the forest canopy to the ground.

- Orientation of leaves or angle at which the leaf is held on the plant influences the attenuation of light through the canopy:
 - A leaf <u>perpendicular</u> to the Sun absorbs 1.0 unit of light energy.
 - A leaf displayed at a 60° will absorb 0.5 unit of light energy


 Sunflecks can account for 70 to 80 percent of the solar energy reaching the ground in forest environments.

- Seasonal changes strongly influence leaf area:
 - Deciduous plants shed their leaves during the winter months (LAI decreases).
 - There is increased light availability during dry conditions in regions with distinct wet and dry seasons (LAI decreases).

4.3 Soil is the Foundation upon Which All Terrestrial Life Depends

- Soil is the medium for plant growth and habitat to a diversity of animal life.
- Soil is difficult to define:
 - One definition says that: soil is a natural product formed & synthesized by the weathering of rocks and the action of living organisms.
 - Another definition states that: soil is a collection of natural bodies of earth, composed of mineral and organic matter and capable of supporting plant growth.

- Soil is a three-dimensional unit having length, depth and width.
- Soil is teeming with life and includes interactions between biotic and abiotic processes.

 The regolith is the unconsolidated debris overlaying hard, unweathered rocks.

4.4 The Formation of Soil Begins with Weathering

- Weathering is the destruction of rock materials into smaller particles. <u>2 types:</u>
 - Mechanical weathering: results from the action of water, wind, temperature, and organisms (especially plant roots)
 - Chemical weathering: occurs when particles are chemically altered (in presence of: water, oxygen, acids) and are further broken down.

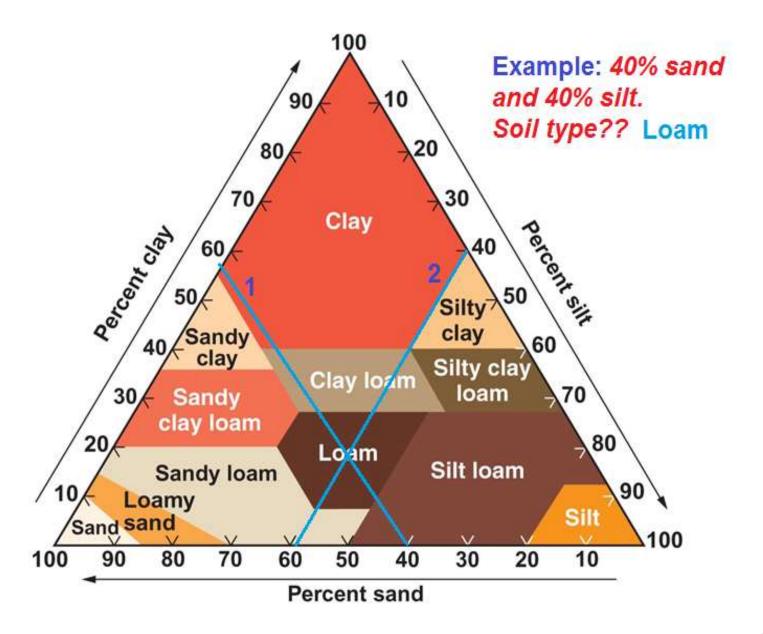
4.5 Soil Formation Involves Five Interrelated Factors

1) Parent material is the material from which soil develops:

 Soil properties are primarily determined by the original characteristics of the parent material.

2) Biotic factors contribute to soil formation:

- Plant roots hasten the process of weathering and pump nutrients from the soil depths up to the surface.
- Through <u>photosynthesis</u>, plants return some of the Sun's energy to the soil in the form of organic carbon.
- Through <u>decomposition</u>, dead plants and animals become organic matter incorporated into the soil.


- 3) The climate (temperature, precipitation, winds) affects physical/chemical breakdown of parent material:
 - Leaching is the movement of solutes through the soil.
 - Temperature influences the rates of biochemical reactions.
- 4) Topography (contour of the land) affects erosion, deposition and water infiltration into soil.

- **5) Time:** Considerable time is required for soil to form.
- Well-developed soil may require 2000 to 20,000 years to form!

4.6 Soils Have Certain Distinguishing Physical Characteristics

- Soil color is an easily defined and useful characteristic of soil (it has little influence on soil function):
 - Organic matter (humus) is dark or black
 - Iron oxides are yellowish-brown to red
 - Manganese oxides are purplish to black
 - Quartz, kaolin, gypsum, and carbonates are whitish and grayish

- Soil texture is the proportion of different-sized soil particles:
 - Gravel > 2.0 mm in diameter
 - Sand = 0.05 to 2.0 mm
 - Silt=0.002-0.05 mm
 - Clay < 0.002 mm
- Soil texture <u>affects pore space</u> and the <u>movement of air and water</u> in and through the soil.
- Soil texture is determined using soil texture triangle:

- Soil depth varies and depends on many factors:
 - Slope
 - Weathering
 - Parent material
 - Vegetation
- Shallow soils: under forests and on steep slopes.
- <u>Deep soils</u>: under grasslands and bottom of slopes.

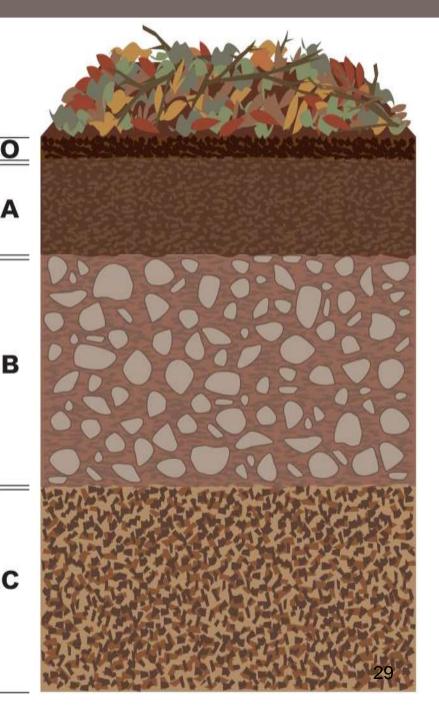
4.7 The Soil Body Has Horizontal Layers, or Horizons

- A soil profile is a sequence of horizontal layering.
- Soil horizons are horizontal layers of soil material

Soil horizons

- A general soil profile consists of four horizons:
 - The O horizon is dominated by organic material
 - 2) The A horizon (topsoil) is composed of mineral soil and organic material leached from above accumulation:
 - The **E horizon** is the zone of maximum leaching (eluviation) and is found in the A horizon

- 3) <u>The B horizon (subsoil)</u> accumulates mineral particles and contains less organic matter than layers above.
 - Minerals leached from above are deposited in a process called illuviation.
- 4) The C horizon is the unconsolidated material that lies under the subsoil.
- The bedrock lies below the C horizon.

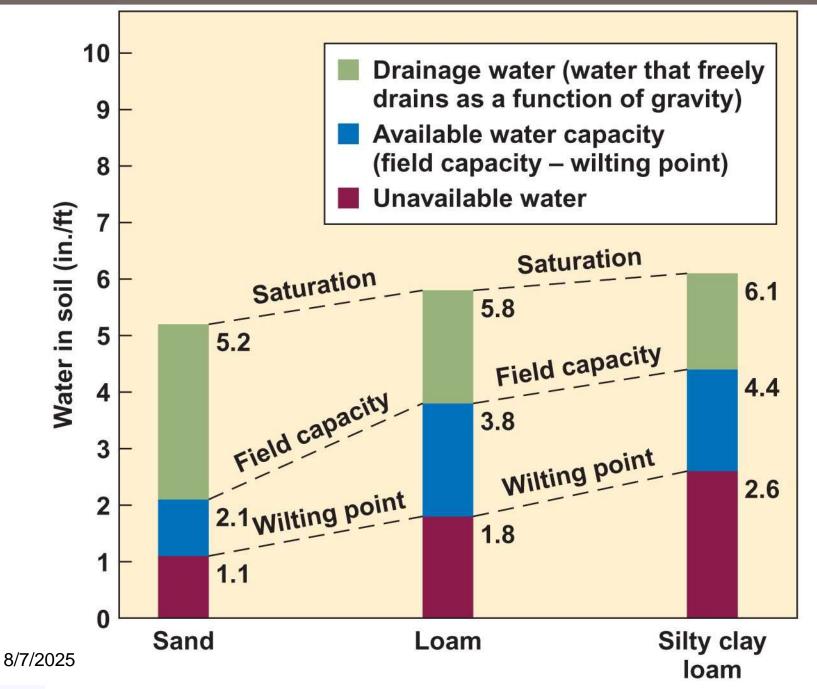

Organic layer: dominated by organic material, consisting of undecomposed or partially decomposed plant materials, such as dead leaves

Topsoil: largely mineral soil developed from parent material; organic matter leached from above gives this horizon a distinctive dark color

Subsoil: accumulation of mineral particles, such as clay and salts leached from topsoil; distinguished based on color, structure, and kind of material accumulated from leaching

Unconsolidated material derived from the original parent material from which the soil developed

8/7/2025

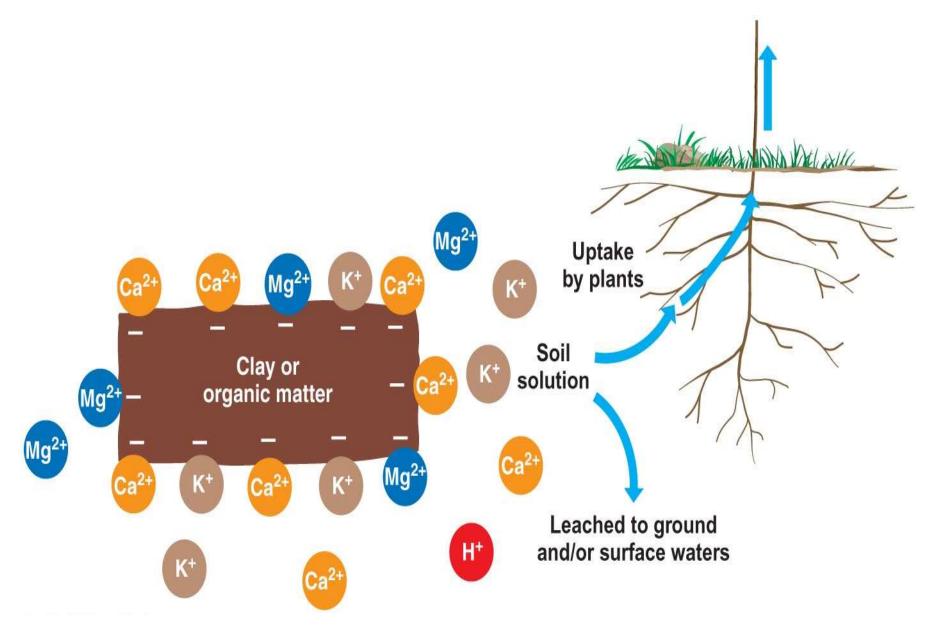


4.8 Moisture-Holding Capacity Is an Essential Feature of Soils

- As rain falls on the surface, it moves into the soil by <u>infiltration</u>.
- The soil is saturated when there is more water than the pore space can hold and excess water drains from the soil
- The soil is at field capacity when water fills all of the pore spaces and is held by capillary forces
- Water held between soil particles by capillary forces is capillary water

- The wilting point is reached when plants can no longer extract water from the soil.
- The amount of water retained between field capacity (FC) and wilting point (WP) is the available water capacity (AWC)
 - This is the water available to plants for uptake

- The <u>field capacity (FC)</u> and <u>wilting</u>
 <u>point (WP)</u> of soil are <u>influenced by soil</u>
 <u>texture:</u>
 - Coarse texture: low FC and low WP
 - Fine texture: high FC and high WP


4.9 Ion Exchange Capacity Is Important to Soil Fertility

- Chemicals within the soil dissolve into the soil water to form <u>a solution</u>
- An ion is a charged particle
 - A cation is a positively charged ion (Ca²⁺, Mg²⁺, NH₄+)
 - -An anion is a negatively charged ion (NO_3^-, SO_4^{2-})

- The ability of ions to bind to soil particles
 <u>depends on</u> the <u>total number of</u>
 <u>positively or negatively charged sites (ion exchange capacity)</u>
- <u>Cation exchange</u> is more prevalent in temperate soils because of negatively charged soil particles (**colloids**):
 - The cation exchange capacity (CEC) is the total number of negatively charged sites.
 - The CEC is a basic measure of soil quality.

- Soil-bound cations are in <u>dynamic</u> <u>equilibrium</u> with cations in the soil solution and are continuously being exchanged.
- The smaller and more positive an ion, the more tightly it is held to the soil particle:

$$-AI^{3+} > H^+ > Ca^{2+} > Mg^{2+} > K^+ = NH_4^+ > Na^+$$

- As hydrogen ions (H+) are added to a soil, other cations are displaced and the soil becomes increasingly acidic
- As soil acidity increases (pH decreases), the proportion of aluminum (Al³⁺) in soil solution increases.
 - High [Al³⁺] in the soil can be toxic to plants and damages the plant roots.

End of Thapter