6.1 Volumes Using Cross-Sections

(109

* The volume of cylindrical solid is
$$V = base area x height = Ah$$

* To Find Volume of a solid :
1 - Craph the solid
2 - Deformine a cross-section of the solid
2 - Deformine a cross-section of the solid
4 - Deformine a cross-section of the solid
1 - Deformine a cross-section of the solid
2 - Deformine a cross-section of the solid
4 - Deformine a cross-section of the solid
1 - Deformine a cross-section of the solid
2 - Deformine a cross-sectional is perpendicular
1 - Deformine a cross-section of the volume is
 $V = \int A(y) dy$
0 - Deformine is
 $V = \int A(y) dy$
0 - Deformine is
 $V = \int A(y) dy$
0 - Deformine is
 $V = \int A(y) dy$
 $V = \int \mu(x) dx = \int T [R(x)]^{dx}$
 $= V = \int \pi (x)^{2} dx = \pi \frac{1}{2} \int \frac{1}{2} = 8T$
STUDENTS-HUB.com
 $V = \int \pi (x)^{2} dx = \pi \int x dx = \pi \frac{1}{2} \int \frac{1}{2} = 8T$
 $V = \int \pi (x)^{2} dx = \pi \int x dx = \pi \frac{1}{2} \int \frac{1}{2} = 8T$
 $V = \int \pi (x)^{2} dx = \pi \int (x - x^{2} x) dx$
 $V = \int \pi (x - x)^{2} x = \pi \int (x - x^{2} x) dx$
 $V = \int \pi (x - x)^{2} x = \pi \int (x - x^{2} x) dx$
 $V = \int \pi (x - x)^{2} x = \pi \int (x - x^{2} x) dx$
 $V = \int \pi (x - x)^{2} x = \pi \int (x - x^{2} x) dx$
 $V = \int \pi (x - x)^{2} x = \pi \int (x - x^{2} x) dx$
 $V = \int \pi (x - x)^{2} x = \pi \int (x - x^{2} x) dx$
 $V = \int \pi (x - x)^{2} x + x \int_{1}^{2} = \frac{\pi}{6}$

Dik XHH (d) • If the cross-sectional is perpendicular to the y-axis
results by rotation about y-axis, then

$$V = \int P(y) dy = \int \pi [R(y)]^2 dy$$

 $V = \int P(y) dy = \int \pi [R(y)]^2 dy$
 $V = \int P(y) dy = \int \pi [R(y)]^2 dy$
 $V = \int \pi [x]^2 dy = \pi \int \frac{y}{y} dy = y\pi \frac{y}{y} \Big|_{y}^{y} = 3\pi$
 $1 \le y \le 4$ about the y-axis and the curve $x = \frac{3}{2}$,
 $1 \le y \le 4$ about the y-axis
 $udow y = 1 \implies X = 2$
 $V = \int \pi (\frac{3}{2})^2 dy = \pi \int \frac{y}{y} dy = y\pi \frac{y}{y} \Big|_{y}^{y} = 3\pi$
 $\sum rample : Find the volume of the solid generated by revolving
the region between $x = 3^2 + 1$ and the line $x = 3$ about the
He line $x = 3$.
 $V = \int \pi [2 - y^2 - 1]^2 dy = \pi \int (2 - y)^2 dy$
 $= \pi \int (4 - xy^2 + y)^2 dy = 6 \sqrt{\pi 1} \sqrt{2}$
 $\sqrt{2}$
 $\sqrt{2}$
 $V = \int \pi [R(x) - r(x)] dx$
Student Held (e) • If the cross-sectional is perpendicular to x-axis results
b line region about x-axis with outer radius R(x) and
 $V = \int R(x) dx = \int \pi [R(x) - r(x)] dx$
Students: Hub. Stample : Find the volume of the solid generated by revolving
 $V = \pi \int (2 - \sqrt{2})^2 dx = \pi \int (y - yx) dx$
 $z = \pi [(1 - x) dx = \pi \pi [x - x^2]]^1$
 $z = 2\pi$
 $z = \pi V$$

Use the second is perpendicular to y-axis (1)
results by rotation about y-axis with outer radius K(y)
and inner radius r(y), then
$$V = \int f(y) dy = \int \Pi \left[R^{2}(y) - r^{2}(y) \right] dy$$

Example: Find the volume of the solid generated by revolving
the region bounded by $y = x^{2}$, x-axis, and $x = 2$ about the
gradient
 $R(y) = 2$, $r(y) = \sqrt{3}$
$$V = \pi \int \left[2^{2} - (\sqrt{3})^{2} \right] dy$$

 $= \pi \int ((y-y)) dy = \pi \left[4y - \frac{y^{2}}{2} \right] \int = 8 \Pi$
 $y = \frac{y^{2}}{(y,0)}$
 $x = 2$ x
STUDENTS-HUB.com

k Obaid