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CHAPTER 18
Amino Acid Oxidation and the
Production of Urea

Learning goals:

* How proteins are digested in animals
* How amino acids are oxidized for energy in animals
* How urea is made and excreted
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About 90% of energy needs of carnivores can be met
by amino acids immediately after a meal.

Microorganisms scavenge amino acids from their
environment for fuel when needed.

Only a small fraction of energy needs of herbivores
are met by amino acids.

Plants do not use amino acids as a fuel source but
can degrade amino acids to form other metabolites.
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Metabolic Circumstances
of Amino Acid Oxidation

e |Leftover amino acids from normal protein turnover
(e.g., proteolysis and regeneration of proteins)

e Dietary amino acids that exceed body’s protein
synthesis needs

e Proteins in the body can be broken down to supply
amino acids for energy when carbohydrates are scarce

(starvation, diabetes mellitus).
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Dietary Proteins Are Enzymatically
Hydrolyzed into Amino Acids

e Pepsin cuts protein into peptides in the stomach.

e Trypsin and chymotrypsin cut proteins and larger
peptides into smaller peptides in the small intestine.

e Aminopeptidase and carboxypeptidases A and B
degrade peptides into amino acids in the small

intestine.
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Dietary Protein Is Enzymatically Degraded
Through the Digestive Tract

(a) Gastric glands in stomach lining

Parietal cells
(secrete HCI)

Chief cells
(secrete
pepsinogen)

Gastric mucosa
(secretes gastrin)

Zymogen
Pancreatic ' Collecting duct granules

duct

Villus

Intestinal mucosa
(absorbs amino
acids)

NI N

Figure 18-3
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Overview of Amino Acid Catabolism

Once broken down to amino acid, all types of protein
are treated the same way dependent on the
organism’s energy needs:

1. Recycled into new proteins
2. Oxidized for energy

— removal of amino group (urea cycle)

— entry into central metabolism (glycolysis, citric acid cycle)
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Overview of Amino Acid Catabolism

Intracellular protein
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protein acids
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Biosynthesis b skeletons
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Carbamoyl a-Keto
phosphate acids
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succinate acid CO,+H,0
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cycle
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(synthesized in gluconeogenesis)

Figure 18-1
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e Plants conserve almost all the nitrogen.

e Many aquatic vertebrates release ammonia to their
environment.
— passive diffusion from epithelial cells
— active transport via gills

e Many terrestrial vertebrates and sharks excrete nitrogen in
the form of urea.
— Urea is far less toxic that ammonia.
— Urea has very high solubility.

e Some animals such as birds and reptiles excrete nitrogen as
uric acid.
— Uric acid is rather insoluble.
— Excretion as paste allows the animals to conserve water.

e Humans and great apes excrete both urea (from amino acids)
and uric acid (from purines).
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Excretory Forms of Nitrogen

H,N—C—NH,
NH3 I
Ammonia (as 0
ammonium ion) Urea
Ammonotelic animals: Ureotelic animals:
most aquatic vertebrates, many terrestrial

such as bony fishes and

vertebrates; also sharks

the larvae of amphibia

Uric acid

Uricotelic animals:
birds, reptiles

Figure 18-2b
Lehninger Principles of Biochemistry, Seventh Edition

© 2017 W. H. Freeman and Company
STUDENTS-HUB.com


https://students-hub.com
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Figure 18-2a
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Alanine

Glutamine
from
muscle
and

other
tissues

e Release of free
ammonia is toxic.

e Ammonia is captured by
a series of
transaminations.

e Transaminations allow
transfer of an amine to
a common metabolite
(e.g., aa-ketoglutarate)
and generate a
traffickable amino acid
(e.g., glutamate).
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e Catalyzed by aminotransferases
e Uses the pyridoxal phosphate cofactor

e Typically, a-ketoglutarate accepts amino groups.
— Transfer of one amine to a-ketoglutarate results in
synthesis of glutamate (e.g., transamination).
— Transfer of a second amine results in synthesis of
glutamine (e.g., glutamine synthetase).

e L-Glutamine acts as a temporary storage of nitrogen.
e L-Glutamine can donate the amino group when
needed for amino acid biosynthesis.
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Enzymatic Transamination to Glutamate

(qololy (ololy
I o |
C=0 H3N—C—H
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a-Ketoglutarate L-Glutamate
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+ | I
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R R

L-Amino acid a-Keto acid

Figure 18-4
Lehninger Principles of Biochemistry, Seventh Edition
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Ammonia Is Safely Transported in the
Bloodstream as Glutamine

Excess glutamine is processed
in the intestines, kidneys, and
liver.

NH
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+
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+
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Structure of Pyridoxal Phosphate and
Pyridoxamine Phosphate

e Intermediate, enzyme-bound carrier of amino groups
e Aldehyde form can react reversibly with amino groups.
e Aminated form can react reversibly with carbonyl groups.

Pyridoxal phosphate
(PLP)
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?_
-0—P=0
I

I

CH,

H
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<

OH CHs3

Pyridoxamine
phosphate
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Pyridoxal Phosphate Is Covalently Linked to
the Enzyme in the Resting Enzyme

. . 0—p=0
e By an internal aldimine A
. &,
o=t Vi
e The linkage is made via a k\ms
nucleophilic attack of Ca
the amino group of an Ho/i
active-site lysine. .
-0—p=0
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Internal Aldimine in Aminotransferases

(d)

Figure 18-5de
Lehninger Principles of Biochemistry, Seventh Edition
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PLP Also Catalyzes

Racemization of Amino Acids

Deamination

0 Formation
Il% of external
H—c—coo~- aldimine with
*NH, substrate
L-Amino
acid
+ S
Ly( N\CH o
HO
Enz I N
+
HsC n
Pyridoxal phosphate
(internal aldimine
form, on enzyme)
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PLP Also Catalyzes
Decarboxylation of Amino Acids

Deamination
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Figure 18-6
Lehninger Principles of Biochemistry, Seventh Edition
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Ammonia Collected in Glutamate Is
Removed by Glutamate Dehydrogenase

* Oxidative deamination occurs __ §oo-
eiq - . . . H;N—C—H NAD(P)*
within mitochondrial matrix. ]
in NAD(P)H
* Can use either NAD* or NADP* e
C00~ B COO~
as electron acceptor Glutamate |
N —
|
* Ammonia is processed into (Ha
. CH
urea for excretion. coo- [
c|_ L COO0~
* Pathway for ammonia (::Hz Mo
excretion; transdeamination = CHa NH}
transamination + oxidative 00"

a-Ketoglutarate

L] L]
deamination b
Lehninger Principles of Biochemistry, Seventh Edition
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The Glucose-Alanine Cycle

Muscle
protein

}

Amino acids

Muscle t

NH;

Glucose ———> Pyruvate l

A

\ glycolysis Glutamate
alanine
aminotransferase

a-Ketoglutarate

Alanine
Blood
Blood alanine
glucose S I—
A y -
Liver Alanine

Glucose «——— Pyruvate

|

Figure 18-9

Lehninger Principles of Biochemistry, Seventh Edition

STUDENTF #1500, H.

a-Ketoglutarate
alanine
aminotransferase
Glutama

gluconeogenesis

Vigorously working
muscles operate nearly
anaerobically and rely on
glycolysis for energy.
Glycolysis yields
pyruvate.

— If not eliminated, lactic acid
will build up.

This pyruvate can be
converted to alanine for
transport into the liver.

urea cycle
/ wea Alanine is a carrier of ammonia and the carbon

Freeman and Company

skeleton of pyruvate from skeletal muscle to liver.


https://students-hub.com

STUDENTS-HUB.com

Excess Glutamate Is Metabolized in the
Mitochondria of Hepatocytes

+ +
NH; NH;
R—CH—COO0™ CH;—CH—COO™
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Figure 18-10
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Ammonia Is Recaptured via
Synthesis of Carbamoyl Phosphate

e The first nitrogen-acquiring reaction of the urea cycle

Q?/\ (") ADP (I? (“) P; (“) ATP ADP (") (“)
“"0—P=0 "0—C—OH __Ly _O—P—S\—S;OH / H,N—C—0" N j s HzN—C—O—lp—O_
o~ Bicarbonate e (I)— os Carbamate (3] o=

ATP Bicarb bt Ammonia b
icarbonate Carbamate
is phosphory- Carbonic-phosphoric displaces is phosphorylated C;rban':ozl
lated by ATP.  acid anhydride  phosphoryl toyield carbamoyl PPt
g:::fatt: phosphate.
carbamate.

Figure 18-11a
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company
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Nitrogen From

Carbamoyl Phosphate "« Em%f::oj
Enters the Urea Cycle t . U " gt
e The majority of reactions g —
within the urea cycle occur i
within the cytosol.

e In order to move to the S ~
cytosol, carbamoyl phosphate \g
must condense with ornithine
to create citrullene. This I (S S,
reaction releases the b & <f3
phosphate of carbamoyl o o it |

a
ke o : Aspartate NH;
NH, +NH3 argininosuccina te P

phosphate into the s (@ ES—

Arginine AMP

mitochondrial matrix. Bl

~00C—CHy;—CH—NH—C—NH— (CH,); —CH—CO0~
Fumarate

[ ]
Citrullene can then be Figure 1810
Lehninger Principles of Biochemistry, Seventh Edition
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Argininosuccinate
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The Reactions in the Urea Cycle
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Carbamoyl I | =
phosphate e o T 2
P. o
Mitochondrial o :
o i pk
matrix NH3 <“) NH3
+ =
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Figure 18-10 part 2
Lehninger Principles of Biochemistry, Sixth Edition

© 2013 W. H. Freeman and Company
STUDENTS-HUB.com


https://students-hub.com

Entry of Aspartate into the Urea Cycle

This is the second nitrogen-acquiring reaction.

In the cytosol, citrullene reacts with ATP to produce

citrullyl-AMP.

AMP acts as a good leaving group, as aspartate attracts

the imide carbon to produce argininosuccinate.

G o
f\ or
- 0=C [AMP |—-0—C H,N—C—H
R | PP, I AMP
cl NH NH CH, )

Y

o . | A , |
(CH,); €00~ )

obo ° .
I H—C—NH H—C—Hii; “Aoparase S
o | 3 Rearrangement leads to 3 Aspartate addition is
| Coo~ addition of AMP, Co0~ facilitated by
“0—P=0 Citrulline activating the carbonyl Citrullvl-AMP displacement of AMP.
‘l)_ oxygen of citrulline. y

ATP
Figure 18-11b
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company
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Release of Urea
and
Regeneration of
Ornithine

e Argininosuccinase cleaves
fumarate from
argininosuccinate, resulting
in arginine.

e Arginine can also enter the
urea cycle at this point.

e Arginase cleaves both
nitrogens added in the urea
cycle from arginine,
resulting in free urea.

e Ornithine is able to serve as
a substrate for the next
round of the cycle.

STUDENTS-HUB.com

k y—————a-Keto-————— Aspartate ﬁ
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+
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Figure 18-10
Lehninger Principles of Biochemistry, Seventh Edition
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Aspartate—Arginosuccinate Shunt Links
Urea Cycle and Citric Acid Cycle

Arginine
Cytosol
Urea
Urea

The “Krebs bicycle”

Aspartate-arginino-
succinate shunt of

citric acid cycle
Oxaloacetate Ar
ginino- Ornithi
succinate cycle T
NADH Glutamate
NAD™ a-Ketoglutarate T \
Malate Aspartate Cltrulllne
Malate-aspartate
shuttle
Malate Aspartate Cltrulline Ornithine
a- Ketoglutarate
Glutamate Carbamoyl
Oxaloacetate phosphate
NADH
NAD™*
Mitochondrial
Citric matrix
Malate acid
cycle
Fumarate

Figure 18-12
Lehninger Principles of Biochemistry, Seventh Edition
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Regulation of the Urea Cycle

e Carbamoyl phosphate synthase | is activated by
N-acetylglutamate.

e Formed by N-acetylglutamate synthase
— when glutatmate and acetyl-CoA concentrations are high
— activated by arginine

e Expression of urea cycle enzymes increases when
needed.
— high-protein diet

— starvation, when protein is being broken down for energy
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Regulation of the Urea Cycle

o Co0o-
V4 + |
CH;—C + HzN—C—H
N I
Acetyl-CoA | Glutamate
%
N igl coor
-acetylglutamate L.
synthase @ Arginine
CoA-SH
P, 1
CH3—C—NH—C|—H
g
CH
N-Acetylglutamate | 2
N (o [0
I
1
I

2ATP . 2ADP + P (") (")
HCO3 + NH} SO H,N—C—0—P—0"
carbamoyl phosphate

synthetase | 0"
Carbamoyl phosphate

Figure 18-13
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company
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Essential vs. Nonessential and
Conditionally Essential Amino Acids

e Essential amino acids
m LI St b e O bta | n e d a S TABLE 18-1 Nonessential and Essential Amino Acids for Humans and

the Albino Rat

d Ieta ry p rOtEI n . Nonessential Conditionally essential® Essential
Alanine Arginine Histidine
) Nonesse ntial a mino Asparagine Cysteine Isoleucine
Aspartate Glutamine Leucine
aCidS are eaS| Iy made Glutamate Glycine Lysine
Serine Proline Methionine
fro M Ccén tral Tyrosine Phenylalanine
. Threonine
metabolites. Tryplophan
Valine
. aRequired to some degree in young, growing animals and/or sometimes during
e Consumption of a liness.

variety of foods
supplies all the
essential amino acids.
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End Products of Amino Acid Degradation

e |[ntermediates of the central metabolic pathway
e Some amino acids result in more than one intermediate.
* Ketogenic amino acids can be converted to ketone bodies.

Seven to Acetyl-CoA Leu, lle, Thr, Lys, Phe, Tyr, Trp

e Glucogenic amino acids can be converted to glucose.

Six to pyruvate Ala, Cys, Gly, Ser, Thr, Trp Lotentially
ketogenic

Five to a-ketoglutarate Arg, Glu, GIn, His, Pro

Four to succinyl-CoA lle, Met, Thr, Val

Two to fumarate Phe, Tyr

Two to oxaloacetate Asp, Asn

SSSSSSSSSSSSS
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Summary of Amino Acid Catabolism

Leucine Arginine
Lysine Glutamine
Phenylalanine  Ketone Glutamate Histidine
Tryptophan bodies Proline
Tyrosine A
Isocitrate a-Ketoglutarate
Acetoacetyl-CoA -j Citric \ Isoleucine
Citrate acid Succinyl-CoA |€«— .l:.llheri:::;\'::e
cycle ; Valine
Acetyl-CoA Succinate
A A "4
Oxaloacetate Fumarate Phenylalanine
A Tyrosine
==|=| Malate
Cco,
; Pyruvate
T Glucose
Alanine
Cysteine
Isoleucine Glycine
Leucine Serine [ Glucogenic
Threonine Threonine Asparagine :
Tryptophan Tryptophan  Aspartate [ Ketogenic

Figure 18-15
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company
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Degradation of Ketogenic Amino Acids

+
NH,
CH,—CH—CO00"~ £ RiH,
7 / N\ -
| ] C C—CH,—CH—COO0
Cy C~ \\c _c/
¢ : Tryptophan Phenylalanine
NH,
+
i H3;N—CH,—CH,—CH,—CH,—CH—C00™
CH;—CH—CO0™ 9 steps e
Alanine 4steps Va _c\ 3
HO—C C—CH,—CH—CO00™
l 2c0, N 2
_ I ,
Il B 00C—CH,—CH,—CH,—C—C00 .
;=C—C00 a-Ketoadipate Hlc] NH;
Pyruvate 5 steps —CH,—CH—COO™
CoRSH ~ NAD* _ H3ld]
/ ~00C—CH=CH—CO00™ CoA-SH
/k’ Fumarate -
co, NADH N
6 steps co,
ﬁ o I~ CO,
~00C—CH,—CHy—CH,—C—S-CoA ek, —{cH-{dH,—coo- «——
Glutaryl-CoA Acetoacetate
4 steps \»C
0, |~ CoA-sH
[o] (o]
g I I ) fate of blue
CH3;—C—CH,—C—S-CoA carbons
Acetoacetyl-CoA
kCoA-SH
+ :
'i‘Hs 2CoA-SH CO, ﬁ J
CH3;—CH,—CH—CH—CO00™ CH3;—C—S-CoA
cIH3 Acetyl-CoA

0

[
CHB—CHZ.—C—S-CoA “Isteps . Succinyl-CoA
Propionyl-CoA
Figure 18-21

Lehninger Principles of Biochemistry, Seventh Edition
©2017 W.H. Freeman and Company
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Degradation Intermediates of Tryptophan
Are to Synthesize Other Molecules

+
1
2 ClH »—CH—COO0 H
C
HCZ c— \ HC” Sc—co0~
I | >l I
N
H H
Tryptophan Nicotinate (niacin),
a precursor of NAD and NADP
+
CH,CH,NH; CH,COO ™
HO \ \
N N
H H
Serotonin, Indoleacetate,

a neurotransmitter

Figure 18-22

Lehninger Principles of Biochemistry, Seventh Edition

© 2017 W. H. Freeman and Company
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a plant growth
factor
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Genetic Defects in Many Steps of Phe
Degradation Lead to Disease

NH3 OH

ﬂ— —CH—COO_ C—CH,—C00~
c=C \ ¢

- C Homogentisate
Phenylalanine HO
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NADH + H* o
phenylalanine . 2
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~00C —C=C—C—CH,—C—CH,—C00~
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NH 5
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\ H,0
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H

Tyrosinemia p-hydroxyphenylpyruvate O Acetoacetate
~— 8 ) : Fumarate
m dioxygenase Succinyl-CoA
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transferase Succinate
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\ 7

Homogentisate Acetoacetyl-CoA

Figure 18-23
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Phenylketonuria Is Caused by a Defect in
the First Step of Phe Degradation

=
NH;

e A buildup of phenylalanine QCHZ_AH_COO—
and phenylpyruvate Phenylalanine
e |mpairs neurological Mg
dEVE|Opment Ieading tO aminotransferase [ PLP Fjiate
intellectual deficits \ v,
. . CH;—CH—COO0~
e Controlled by limiting " Alanine
. . .
dietary intake of Phe T -
Phenylpyruvate

o NADH +H*
NAD*
|
CH,—C00™ CH,—CH—CO00"~

Phenylacetate Phenyllactate

inger Princi j istry,
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Degradation of Amino Acids to Pyruvate

"
NH;
CH;—CH—CH—C00™~

o [Toreonine]

threonine NAD™
dehydrogenase \s NADH

+
NH,
CH;—C—CH—C00"~

O 2-Amino-3-ketobutyrate
2-amino- |- CoA
3-ketobutyrate

CoA ligase Acetyl-CoA
+ NAD* NADH
NH
T i i S A
CH,—C00™
N5,N'°-methylene -
H, folate glycine
serine H,0 cleavage
hydroxymethyl- || pLp enzyme
transferase
H, folate
+
NHs IilH_-,
—CH—COO_ HO—CH,—CH—C00~
Tryptophan
@ PLP
serine H;0
dehydratase |- H,0
4 steps NH+
4
N +
NH; alanine aminotransferase o SH NH;
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CH;—CH—C00~ m”’\, CH;—CH—C00~ CH,—CH—C00"~
a-Ketoglutarate  Glutamate  Pyruvate
Figure 18-19
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e Pathway #1: hydroxylation to serine = pyruvate

e Pathway #2: glycine cleavage enzyme
— apparently major pathway in mammals
— separation of three central atoms
— releases CO, and NH;
— methylene group is transferred to THF

e Pathway #3: b-amino oxidase O
— relatively minor pathway H \\ "
— ultimately oxidized to oxalate C—C —CH3
— major component of kidney stones /
O

Unnumbered 18 p696
Lehninger Principles of Biochemistry, Seventh Edition
©2017 W. H. Freeman and Company
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Degradation of Amino Acids to
a-Ketoglutarate

H,C——CH,
HaC_, CH—C00

uz . . . . . .
i Proline, arginine, histidine,

(uncatalyzed) oOxidase H,0

|
e Ak v and glutamine are all
s, o converted to glutamate.
Ornithine Glutamate A'-Pyrroline-

y-semialdehyde 5-carboxylate G I u ta m a t e i S d e a m i n a t e d

glutamate |~ NAD(P)*

T to a-ketoglutarate.

coo™ N5-Formimino coo™ coo”

HyN—C—H NHY H,0  Ho  Hafolate gy goiare HN—C—H  NHy H0 HN_C H

\ N L

/Cl\ 0 e 9 e c:Hz glutaminase CIHZ
A coo- =0
N=CH ,Imz
N G Arginine degradation is
o part of the urea cycle.
C|=O

a-Ketoglutarate

Figure 18-26
Lehninger Principles of Biochemistry, Seventh Edition
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Degradation of Branched-Chain
Amino Acids Does Not Occur in the Liver

e lLeucine, isoleucine, and valine are oxidized for fuel.
— In muscle, adipose tissue, the kidneys, and the brain

foo” ‘f°°_ \ 5-Con
H3N C—
CHs—CH CH3—CH CH3—CH
CH3
Valine CoA-SH 0>
- - NAD
COO COO S CoA
H3N C—
CH3—CH CH3—CH » CH3—CH
CHz
CH3 branched-chain branched chain
Isoleucine aminotransferase a-keto acid
COO' Co0~ dehydrogenase S CoA
| complex
HsN— c— cI =0
7" i e
CH3—CH CHs—CIH CH3—?H
I
CH3 CH3 CH3
Leucine a-Keto acids Maple syrup Acyl-CoA
urine disease derivatives

Figure 18-28
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Degradation of Branched-Chain
Amino Acids Does Not Occur in the Liver

"
NH,

H3C—S—CH,—CH,—CH—C00~

3 stepsl

Branched-chain amino

acids are degraded to
succinyl-CoA, an
important citric acid
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~“00C—CH—C—S-CoA
Methylmalonyl-CoA

methylmalonyl-
CoA mutase

coenzyme B,,

I
~00C—CH,—CH,—C—S-CoA
Succinyl-CoA

Figure 18-27
Lehninger Principles of Biochemistry, Seventh Edition
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The case of wrong diagnosis:
Patricia Stallings

e https://www.youtube.com/watch?v=5IL0gJglOQE
e Box 18-2
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Degradation of Asn and Asp to
Oxaloacetate

NH
3
N _
/C —CH,—CH—COO
H,N A .
sparagine
H,0
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NHZ
NH
3
N _
/C —CH,—CH—CO0O0
—0

Aspartate
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g
Glutamate

Y
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aminotransferase

(0]

o\ I
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_ 0/

Oxaloacetate

Figure 18-29
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TABLE 18-2

Some Human Genetic Disorders Affecting Amino Acid Catabolism

Medical condition

Approximate
incidence (per
100,000 births)

Defective process

Defective enzyme

Symptoms and effects

Albinism

<3

Melanin synthesis from
tyrosine

Tyrosine 3-
monooxygenase
(tyrosinase)

Lack of pigmentation;
white hair, pink skin

phenylalanine to
tyrosine

hydroxylase

Alkaptonuria <0.4 Tyrosine degradation Homogentisate 1,2- Dark pigment in urine;
dioxygenase late-developing arthritis
Argininemia <0.5 Urea synthesis Arginase Mental retardation
Argininosuccinic acidemia <1.5 Urea synthesis Argininosuccinase Vomiting; convulsions
Carbamoyl phosphate synthetase | <0.5 Urea synthesis Carbamoyl phosphate Lethargy; convulsions;
deficiency synthetase | early death
Homocystinuria <0.5 Methionine degradation  Cystathionine (- Faulty bone
synthase development; mental
retardation
Maple syrup urine disease <0.4 Isoleucine, leucine, and  Branched-chain a-keto Vomiting; convulsions;
(branchedchain ketoaciduria) valine degradation acid dehydrogenase mental retardation; early
complex death
Methylmalonic acidemia <0.5 Conversion of Methylmalonyl-CoA Vomiting; convulsions;
propionyl-CoA to mutase mental retardation; early
succinyl-CoA death
Phenylketonuria <8 Conversion of Phenylalanine Neonatal vomiting;

mental retardation
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In this chapter, we learned that:

amino acids from protein are an important energy source in
carnivorous animals

the first step of AA catabolism is transfer of the NH, via PLP-
dependent aminotransferase usually to a-ketoglutarate to yield |-
glutamate

in most mammals, toxic ammonia is quickly recaptured into
carbamoyl phosphate and passed into the urea cycle

amino acids are degraded to pyruvate, acetyl-CoA, a-ketoglutarate,
succinyl-CoA, and/or oxaloacetate

amino acids yielding acetyl-CoA are ketogenic

amino acids yielding other end products are glucogenic

genetic defects in amino degradation pathways result in a number
of human diseases
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