LANGUOSTYLE 1 1 Chapter 8 **Chapter 8** - Risk & Return - Returns - Divalence - Appre Cialion of slock pice \$3 - \$ 3.5 - The company should not give divedence when stees at lost of his be shell outsmatically face higher costs with no revenues. - Risk Portven Ces : Selin 1. Risk overse Lo Refiortel in electisions, whit even Risk they take they went Return for it. & Return & Risk. 2 Risk ruliel to investors choose the investment with higher return regardless of its Risk, I went this much of Return & the wents to Reach it 3% st- from. government, individuals.... ete 3. Risk seekers "lovens" to investors purfus investing with greater Nisk even if the expected Return is low. cd: investing in 2 country that has were up - Risk is always uncertain, nothing is stable Risk = un Certanity.

LANGUOSTYLE Risk & Return Lo Port folio - To Reelvce Rish Was to we should do " Diversification" (Egint - Returns for strayle asset $= ruv p - old p = (P_{+} - P_{l-1}) + C_{l}$ $old p \qquad \qquad P_{+1} = 3$ C+ - is Divedence Cash flow. - when they don't give divedence that means Cr = zero Exemples :-Ercl Dive clence Bey rote 3-411.23 532.17 5.30 Apo le new is End old is Bay 60.33 68.23 1.59 wolmert Returns for apple = 532.17 - 411.23 + 5.30 41. 23 = 30% Peturns for welmert = 68.23 - 60.33 + 1.59 - 15.7%

1 1 LANGUDSTYLE 1) Rarcy "Risk" = pessemestre out come - optimis Irc out come Asset A. Asset B' Initial investment \$10,000 10,000 CF Anneral Return 7% 4 Persimusfic 131 Lo most likely 15% 15% Lo optimistic 23% 171. Reny = oppkmestic - pessimestic Asset "A" 13% 171. -41. Ξ Asset .B. Reny = opplemestic - pessemestic 231. - 71. 161. 2) probability Distribution 3) Standard division شرح عبها لقدام 4) Bet? -STUDENTS-HUB.com Uploaded By: anonymous Scanned by CamScanner

3) Standurd druistion - rf for a period $G_{i} = \sqrt{\frac{2}{2}(X - \overline{X})^{2}}$ - if for a probability 6: = √ E (X; - X) * Probebility X: - Return Asset X -> Expected Return X: -> Return For Single asset. "Step one " Cnew - old) + CF, $X_{i} = R_{i} =$ n - Period $\overline{X}_n = \underline{\xi} \underline{X}_i$ "Step two " Xp = Exi + Probability RP = ER: * Pro bebility

Uploaded By canonymous

		LANGUOSI	YLE		/ /
Example 8-					
Asset "A"			R,	= ER:	· Probability
	Return	Probability	expected for		J
pessemestrc	13+	0.25	131- + 0.25	;	3.25%
most likely	151.	D. 50	151 + 0.50		7.50%
app timestic	17%	0.25	171. + 0.2	25	4.25%
			٤	- 15	1.
Asset "B"				_	
	Peturn	Arobebil: ty	expected	Return	
Peasemen Hic	71.	0.25	71. + 0.	25	= 1.75%
nost likely	151.	0.50	151. + 0	50	= 7.50%
opp times fre	231.	0.25	23% # 0	25	= 5.751
			٤١	51.	
D. H. anort	0 Daluns	200 15%		51. of m	them m
Both expection	eel Returns	ere 15%. "A or B	So il doc		them m
Both expection	eel Returns 1 Provent,	ere 15%. "A or B	So il doc		them m
wich essel	i invest.	"A or B	80_1 _lbc. 		
wich essel	i invest.	ere 15%. "A or B)² # Probebile	80_1 _lbc. 	k; XA	
oich essel 6A =√ ₹	i invest. CXA - X	"A or B) ² # Probebile	So il cloc. " " " Uo	k; XA X	- Return
oich essel 6A =√≦ XA	i invest. CXA - X X	"A or B) ² # Probabile X _A - X	Bo il cloc. " " " Uo (XA-X) ²	k ; XA X <u>Prob</u>	→ Return → E expecto
uich essel 6A = √ E XA 131	; invest. CXA - X X 1. 151	"A or B) ² # Probabile X _A - X -21.	Bo_il_clock " " Up (XA-X) ² (41.	k; XA X <u>Piob</u> 0.25	→ Return → E expecto (XA-X) ² a 1 1+
0:ch essel 6A = √ ₹ XA 131 151	i invest. CXA - X X I. 151. 151.	"A or B) ² # Probabile <u>X_A - X</u> -21. 01.	So $1 \ cbc$ " $(X_A - \overline{X})^2$ (1)	nt m k; XA <u>Fiob</u> 0.25 0.50	→ Return → E expecto (XA - X) ² 4 1+ 0%
uich essel 6A = √ E XA 131	i invest. CXA - X X I. 151. 151.	"A or B) ² # Probabile X _A - X -21.	Bo_il_clock " " Up (XA-X) ² (41.	nt m k; XA <u>Fiob</u> 0.25 0.50	 → Return → E expected (XA - X)² a 1% 1% 1%
0:ch essel 6A = √ ₹ XA 131 151	i invest. CXA - X I. 151. I. 151.	"A or B) ² # Probabile X _A - X -21. 01. 21.	So $1 \ cbc$ " $(X_A - \overline{X})^2$ (1)	nt m k; XA <u>Fiob</u> 0.25 0.50	→ Return → E expecte (XA - X) ² & 1 1+ 0%

Uploaded By anonymous

11111111111 68 - 7 2 (XB - 7) + Probability (16-7)" + Frob (Xa - 7) Xô X X8 - X Avob. 641. 161. 21. 151 - 81 -0.12 6% 151. 01. 01. 01. 0.50 81. 161. 641 15% 234 0.25 \$ 32% = 5.6.7. = Risk 68 = 1 32 % Cofficent of Veriation = 6 - <u>5.51</u> - 0.525 ≈ 0.53 in the question she scale if the Risk is 0.75 a less shill take it . the Risk is 0.53 so she will make the decision of investing. * Jok 6 - is Risk Examples of Return "A" coffeend variable $A^{"} = \frac{6}{R} = \frac{1.411}{150}$ Return Risk A 15% 1.411. = 0.094 B 201. 5.61. collected verience B' = E = 5.61. وحدة الناس بن اعشار = 0.26

Uploaded By canonymous

	TYLE	1 /
Example & Year Boyp Enlp Diversince		
2013 \$ 35 \$36.5 \$ 3.50 2014 \$ 36.5 \$ 34.5 \$ 3.50		
2015 \$ 34.5 \$ 35 \$ 4		
		V TO V
Relurn = (36.5 - = 35) + 3.50	= 14.3	$4 = \frac{14}{3} = \frac{14}$
35		= 10.43%
	4%	
Return 2 = (34.5 - 36.5) + 3.50	2	X = Single R
36.5		
Returns = (35 - 34.5) + 4	- 13%]
Return g = (35 - 34.51 14 34.5	0	
24.0		
X X X X-X	$(X-\overline{X})^2$	
Year 1 1/2.1 29.1	15.21%	
2013, 19.37 10.18.1 6 112.1		
6192 91. 10. 12:1 2 57.1		
2015, 13%. 10.43% 2.24%		
	E=63. 11 %	
C:of	e its period	
[n-1] = 3-1 = 2 Since		
	5.62	1.
$\sqrt{\frac{2(x-x)}{n-1}} = \sqrt{\frac{63.11}{2}}$	- P.U.	/-
n-1 2		
		7

Uploaded By: anonymous Scanned by CamScanner

1

1

1 LANBUDSTYLE Portfolio - P Return Lo Risk Repullatio = Z(w: + R:) - us: - wey the propation - R; - Return of each single esset. Exemples :-100 Stures from welmert - \$ \$55 / Per sture = \$ 5,500 100 Sheres from Cisco system \$25 / pushine = \$2,500 Totel pulfilio = 8000 5.500 - 68.75% U?; 8000 2, 500 31.25% W: 8000 -given in question "0.50" Pupe 374 Expected R R portfolio Asset x, Asety. Year (0.50 * 8%) + (0.50 * 16%) 12% 16% 8% 2014 (0.50 x 10+) + (0.50 x 14+) 121. = 141. 10% 2015 (0.50 g 12%) + (0.50 x 12%) 121. 12:1. 12% 2016 (0.50 A 141.) + (0.50 × 10) = 121. 10% 141. 2018 (0.50 # 16%) + (0.50+ 81.) = 12% 61. 8% 2018 $\overline{R_{P}} = \underbrace{\epsilon R_{P}}_{\Pi} = 12! + 12! + 12! + 12! + 12! + 12! = 60! = 5$ = × 12 0.1 = T (12%-12%) + --- 5 times = 7 5-1 60 - V E(X:-X)2 STUDENTS-HUB.com Uploaded By: anonymous Scanned by CamScanner

LANGUOSIYLE Ry R. RpalBlip + 4 Yeer - 81. (0.50 + 8+) + (0.50 + 8+) 8% 81. 2014 - lot. (0.50 + 10%) + (0.50 +10%) 10% 101. 2015 (0.50 + 12×) + (0.50 + 12×) 121 -12% 12% 2016 - 141. (0.50 + 14x) + (0.50 + 14x) 14% 14.1. 2017 (0.50 + 16x) + (0.50 × 16x) = 16% 61. 16% 2018 = 81. + 10% + 12% + 14% + 16% = 12% Rp 6rp -7 (8-12)2 + (10-12)2 + (12-12)2 + (4-12)2+(16-12)2 5-1 = 3.16.22 ≈ 3.2% 6-0 - V 10 % p post live Correlation - Some direction -> Carcletion to ellegitive Correlation -> opposite direction - Correlation Cofficient - Perfectly Positrvely Correlation -> +1 - perfectly weychildy Correlition -> Lo un Correlation = Leno There's Risk 4

LANGUNSTYLE 1 1 Exemple 8-Year Roop R pilki R pulice R bop, pelkl RoleH, Palico 1 4.1. 51 61. 191. 5.3% 6% 2 4% 741. 6.64 6.11. 3 71. 41. 2.1 5.21. 3.4% 4 10% 61. 1% 7.6% 4.5% P. - Bop "bunk of filestine" 40% Lo Pellal 60% P. - Pullel - For. Lo pulico - 30%. R. - 9.6% R. = 4.825%. 6. - V (191-9.61)2+ (6.61-9.61)2+ (5.21-9.61)2+ (7.61-9.61) 4 -1 $6_1 = \sqrt{85.36 + 9 + 19.36 + 4} = 6.341$ $6_{2} = \sqrt{(5.3 + -4.825)^{2} + (6.1 + -\frac{4}{8.825})^{2} + (3.4 + -4.825)^{2} + (4.5 + -4.825)^{2}} + (4.5 + -4.825)^{2} + (4.5 + -4.8$ 4 -1 = V 0. 225 + 1.62 + 2.03 + 0.105 = V 3.98 = 1.15× $-Cv_1 - \frac{6}{R} - \frac{6.3 \ 4^{1/2}}{9.6^{1/2}} = 0.66 - Cu_2 = \frac{6}{R} = \frac{1.15!}{9.825!} = 0.238$ Second porthelio is the best chorce because it has come on & Cu. So - lower Risk. Uploaded By canonymous Scanned by CamScanner STUDENTS-HUB.com

1 1

Risk & Return - Corpital asset pricony method. -CAPM Rs = Return of the asset " slock " Bok : (Rm-RE) IS Colled Rs = Rr + Bets = (Rm - Rr) Lo market Risk premium. - Rs - Return of the asset - RE - Risk Free - tressing bills. Tressing band - in in loss - Grower mut bound. - Rm -> The market index - Al-Duch melea - Betz - Risk Total Risk = Diversifiable Nisk + Donducisifiable Risk = Nonsystematic Pisk + Systematic Risk = Specific Risk + market Risk + Bets only measures the Sondiversifiette Risk فية sta 2 - 2 بتراوح بت sta -2 -> Return USs the merket +2 -> Return some direction of the market Bets for the merket = 1 r will go up by B = 1.5 - if the market increase by 1 1.5 B=-1.5 - if the mulat in cresse by 1. i will go down by 1.5 STUDENTS-HUB.com Uploaded By camprovers

111200057111

1

1

Exemples Bel Estel muestment ung tel 50,000 Amezon 0.82 251. 40,000 211. 6. beg 0.87 0.99 that 20.000 10% Microsoft 60,000 301. 1.18 151. Yehoo_ 0.89 80,0000 € 200.000 Bete Partilio = E (w: + Beta) - 0.965 · 20,000 = 10%. wrighter = . 50.000 = 25% 200,000 = 30%. · 40,000 . 60.00> - 20-1-100,000 30,000 = 15%. 100.007 STUDENTS-HUB.com Uploaded By canonymous Scanned by CamScanner

LANGUBSTYLE

Example portestro V Puge 355 Por Palis 0 Asset Poportion Bets Populian Bete 010 1.65 0.10 0.80 1 0.10 1.00 0.30 1.00 2 0.65 0.20 1.30 0.20 3 0.10 2.75 4 0.20 1.10 0.20 1.25 0.50 18.05 5 Exemple 3. Rz = Rr + Beta (Rm - Rr) Betz = 1.5 = 71. + 1.5 (111. -76) RF = 71. Rm = 111. = 13% R1 = 12 R1= 13% SML security market line Del. 1.15 151. Puze 387 1/10 71 او جزح 15 12 1.5 0.5 1 A Rusk Free -"Actual" Nominal Rik = Real rate + Expected rafletion

LANGUOSTYLE Example page - 80%. Problems Solution. P8-4 Runye = optimistic - Penemustre - 161. - 241. 8% - 10% 301. Renyes = 251. B) project A is len Risky because the range is town Range A < Ranges C) Pigicet A. Since its less Risky Q) No Rements the Seme. PX-7 $A) - CU_A = \frac{6}{10} = \frac{71}{201} = 0.35.$ - CUB = 6 = 9.5% = 0.475 - Cue = 6 = 6% = 0.316 $-C_{A} = \frac{6}{F} = \frac{5.61}{161} = 0.344$ B) Alkinstrue C becupe it has less coefficient of verilion.

Uploaded By canonymous

LANGUDSTYLE 1 1 P8-9 cu blow 0.9 R12 = (21.55 - 14.36)+0 = 50% d) R13 = (64.78 - 21.55) +0 = 2001. 21.55 RIN = (72.38 - 64.78)+0 - 11.73% 64.78 Ris - (91.8 - 72.38) +0 = 26.8% 72.38 B) R.P Yeer Return Probibility 12.5% 0.25 50% 2/2 50% 0.25 2013 100% 293% 11.75% 2014 D.25 6.71-2012 26.8% 0.25 E = 72.13:1. - expected Return C) R = E(X, -X) = A Prob n-150% + 200% + 11.73% + 26.8% = 72.13% R = (R: -R)-4 R: - R 2.49 2012 22.061. 1.635 1.289% 2013 2.365 2014 -6.1. 0.2 2015 -45.3%

LANGUOSTYLE -7 2.69 - 0.95 6.44+1.635+ 2.365 + 0.2 $CV = \frac{c}{R} = 0.95 = 1.3$ Q) E) coefficient of vuiction is greater then o.g So it is nots key. (A)p 8-21 (b) - الب + + · · ال B Asset 01. 9 -0.09 \$ 0.9 0.044 1 w - 0.06 \$ 0.064 -2.6 0.18 9 -D. 186 1.8 Y 0.23 4 - 2.230 23 Z 1 world Arefer esset (X) beeness it is maring C) opposite the nurket so the return will increase. 0) I would prefer asset (Z) because it will be increaded the most Uploaded By canonymous Scanned by CamScanner STUDENTS-HUB.com

Chapter 6 LANGUOSTYLE Infrest Rates & bond Uslustion Chapter 6 . Dibt security - Money mulat securitity Debt sec 11 81 21 obligation " short term security" * Treeservy bills "T bills" - Risk b IM issure is the government then * Neystichle Certithial of Pupasit - Rika one you issuan is Rupsih on insitutions * Commer and piper issuer: high quality capactions role = its an unscewitry promissory. - Cupitel market scontres lory krm" A Bonds - Treesing band rssurer :- goverment - MUNICIPAL - LUNI bonel rssuer: local your ment - corporate bond Kover-> Corporctions

LANGUOSTYLE principal (\$) plrest (%) nulurity (n) - Intrest Rete علهن نفن المعنى - Coupon Rite - Orscount Rete - Yeile to metersty => Womenal intrest Rate = Real intrest Rate + expected inflation Enople s ABC bonce principal "Pace velue" _B1000 intrest - 6% This is for the one with hisk free miturity = 3 years Tressury bounds & Treesury bills Sominal intrestrate = Real intrust Rule + expected in Relient 21. 41. = 21. + continue intrestrictes Rul intrest + capacital inflation + Risk premum 61. 21- + 21. + 21. Uploaded By: anonymous Scanned by CamScanner STUDENTS-HUB.com

LANGUOSTYLE to Term structure of the intrest Rate. yeld to A - invertel feitel curve 1981 netvates Flat Yeid Wive 1989 - normal yeld curve 3 Youry From Years Time - invertal - reitel ane 9 Patrest in short term 7 intrest in long term / down weid intrest in short term < intrest in long term lop word - normal -> intrust in short term = intrust in long term 112 -0 * why to have normal yield any - Expectation Theory. - Ciquichity perfrance Theory. - Market seymentation Theory. + Expectation Theory 1 Lo investor think about Returns intrest Rike in Later will increase whit do i do now? I invest in the shart term now until they intrest Rete increase

Uploaded By canonymous

LANGUOSTYLE 1 240 if in an assure cost thicks about cost i much my the long term right away & iquidity prefrence theory حديث بقر الاحل احل الري وامولها الكاش بن ال Risk عليه & Market sey mentation thony term - insurance y - bray - Dunsion - Bunking inclusing y -o styoit term security ف فظامات مشمر فين بس term دف قطامات ب Shult term. Land Laborer in Kind STUDENTS-HUB.com Uploaded By: anonymous Scanned by CamScanner

LANGUUSTYLE * Debault Risk " Credit" مؤ احف لية وكور ال معان Crealiter عبر قابل لا رجاي العال الله و ال intrest sover to quis beck the \$ & ratrest. * maturity Risk :-ا حتمالية التعرف ل Risk في فنرة الأستحدات + Contrectual provision Risksissue inicial elan بحفوا شروط لا معالي 1- Cost of Oubl < cost of equity - Corporate band + ArinGipal "face volue" + Coupon intrust Rete * Heturity - stanetuch debt provisions. to Restrictor Covenents

1 1 Common slock 137 Hodders R evenues - Cost of goods sold GIOSS PHOREF - open-shing Expenses EBIT > Tax deelectible 111 - In liest Expense Bond holder a levelad EBT - Tax 2 Will 1 Eenings offer tax Preflerel Dr Prekland stock 121 holders. Esnings available for Common Stock. of Tuske Bond Holder 11225 Eli ulalor Land بفن حقوت الطرفين STUDENTS-HUB.com Uploaded By anonymous Scanned by CamScanner

............. + cut of bound of the course الماتر الفزة - واح معير تعيمات المترويزين الضغ علي - الزاد الماله 1. 2. Impact of othering size حبم المعارب الي المشرر المشرمها "اوخذما" 2 Impact of Issues Risk يعقد على وضع المادعب العداني -، كل ما كانه الموقع احس عل ما نقل ال xisk 4. Impact of Ost of Money لا intest Rite اعب بحضيا بد دنها عد النوص خطاف النرف اي معكن بحديها + 17.1 Conversion Reture stocks - boods I juge and Equity a oblightion is get soco-shp auners 4- creditors is it is I pop Quelence Retter then intrest v Equity + Oubt is jet 2 Cell feature ارجع السرناعي الب في السوت Losus 4 1. Cell pirce المارعي الي بو فقم عشاء ارم ال Bond م 2 Cell prevery - Call Price Starvalue II - init اليع ف المحج بغواء (احتجاب المعند).

LANGUOSIYLE 11 & Current Vield = <u>Annual</u> intrust payment current = price "nvestor" - Yield to meturity = cost of Debt "issuer" - Cell Vield & Exemple: Face value - \$ 1000 y - Annual intrest puyment Coupon ralvest = 8% Winent price = \$970 - Current Yield Current Vield = (face value & Coupon intreat) Current price = (\$ 1000 + 0.08) = 8.25% \$ 970

LANGUDSTYLE + Types of bands :-/ / to un scowered bonch Lo secured bonch - un securel bands - Debatures - ZErill Que and a بيند جاد الدين بعدما يندنع الأواد م ح debritures - Subadirited debritures -بلاكسية حسب دخل الترعة - alano مالاكسية - secured bond مرجونة بأرجن أوجنى (إ مانندفت بنبيج الأرجن محتايز نريغ - morleye bonel - مرجونة بأرجن أوجنى (إ مانندفت بنبيج الأرجن محتايز نريغ - colletral trust bonel - يذكونه صرتيفة في الليف عان - colletral trust bonel - Equipment trust Certificates - Equipment trust Certificates port - Zero Carpon bonel فش فيه Risk - Junk bond ale Risk del - Floating Rek bonel -حب سعر اللا شرة في الموت · High yield band = junk bond. the second second * Evorue bond -بصرف عملت انا دبن طالاح الأادا في قوالي تغنع ذلك * Forgine bond -0 بعد ف عولت الدلق اناراع علما THE PLE

Uploaded By anonymous

LANGUOSTYLE * Bond Voluelion & Aresont Velue. Discanted of Libre Cash flew Aiscounted present velu envity present volue Single smount - Return is Single emount Bond \$ 1000 * pro Cipel " Pace volu 1.4 * Coupon intrest Rite * Meturity 4 Years * Bond price · Bond Ville" = 2 (PVIFA) + Pur ville (PVIF) I - Coupon intrest pyment = (Coupon intrest & Face value) (PVIFA) - present volu intrest factor of envity K - Yield to maturity 1 - Ariocl "meturity" Per Velve - Foce Velve, principal (PVIF) - Present Vilu intrest factor => PV = FV (1+K)" Stren(PVA) = EFV (I+K)n 11 when we have - PMT / I - 1 K(k+1)" Some pypet

LANGUOSTYLE 1 1 O Example : 3 Exemples with pin ville = \$ 1000 Coupon ratinat = 10% Maturity . 10 % cours $(p_{VA}) = p_{mT} \left[\frac{L}{K} - \frac{1}{K(1+K)^{m}} \right]$ $= \log \left[\frac{1}{107} - \frac{1}{10(1+0.10)} \right] = 614.46$ $p_{\mu} udl = \frac{fv}{(1+k)^{\pi}} = \frac{1000}{(1+1)^{10}} = 385.5$ Band Pirle = 385.5 + 614.46 999.9 ×\$ 1000 D Exmoles-Caupon intrest = 10% Yeld of meturity = 12.1. $\mathcal{E}(PVIFA) = Pmf \left[\frac{1}{K} - \frac{1}{K(1+K^n)} \right]$ $= 100 \int \frac{1}{0.12} - \frac{1}{(0.12 + 1)^{10}} = 565$ - 322 Pur Ville = = <u>1000</u> [[.12]'° Fr $(1+k)^{n}$ STUDENTS-HUB.com

Band Price = 565 + 322 \$887 Qiscount 13 Coupon intrest , lot. Vielel to meterity = 81. $PV = Pmt \left[\frac{1}{K} - \frac{1}{K(1+K)^{n}} \right]$ $= 100 \left[\frac{1}{008} - \frac{1}{00$ PVIF = 1000 = \$463.2 (1+0.08)10 Bond price = 671 + 463.2 1134.2 -> Primum. + Yield to meturity = Coupon intrest Bp "Boul price" = per velie "face velie" · Vield to meturity 7 caupon intrest Bp "bond price = Qiscount Bond price 2 FV Yield to moturity < Coupon intrest Bp "bond price" = premium Face Ville 11 - cije Bond. Pite 7 .FV .

LANGUOSTYLE / / السعر ف الدف اذا إدل من السعسلومل تلف بتري إذا إعلى ما ستيمي Ade . Pebleors $\frac{100}{15} = 4 \text{ Shirls}$ $\beta pr = \frac{Fv}{(1+K)^2} = 100 = \frac{Fv}{(1+0.09)^2} = $109 - Fv$ () $PV = \frac{FV}{(1+K)^n} = 25 = \frac{FV}{(1+0.05)} = FV = 26.25 with the end of the gen weheve $\frac{109}{24.25} = 4.15$ Purcentize = 4:15-4 = 0.038 3.8% more shirts E) Reel Rete + rafletion Rete = Nominal Rete Real + 5% = 9%. Real - 4%

LANGUUSIO 1 1 P6 - 8 A) Rok of Puluin = Real rate + inflation rate = Reel parts + 2% 41. Real Mate 21. = Risk Annium + mflation Rike = Dominal Reel Rite Security B) 41. 61. 2% = 12% A 5%. 5.5% = 12.5% ß 2% 5% 21. = 9% C 2.1. . 9.8% 4.8.1. 31. 2% D 61. Ľ 2% 61. ~ 141. C) Because the making security have lithient maturity.

Chopk- 7 Chapter 7 Stock Valuation · comman stock stock - Equity Is prefland slock " Dune Ship - Rithin Care between Equity & Debl Equity - "swneuship", Retain - "Divulens, Applik han of slock price " , no maturity. Claim on internal & Aset. Tax treatment Debt - Obligation", Return - caupon pmT, maturity, clim on income & Assels, Tex tredment. A Common slock & Prefferel stock - Common Stock 1. provately owned 4 owned by private investors. Not publicly tracked. 2. publicly second (slock) 4 awned by public investors, publicly tredeel. اعب بد و تعلق متل احل الناس وسنرط stock 3. Clasely swneed (stock) Lo individual or small group of mucstors, privatly auned. 4. widly owned (stock) La mony unrelited meliciduals or institutional investors.

Uploaded By camprovers

LANGUOSTYLE * premplive Rights + لاالدعب اترل السيم جديدة الادلدية واك الرم حت ستتروحن م اي حاطف الا ميم المالية . · ablin of samership . Euring pu stores a Riverbul & Eis puters un prosto al الواع المهم الشركة بتطرمم 1. Authorizal Sheres :- 4 That 4 strenes of common slock that rem ellewed to issue. 2. But shorting stores :is issued stores of common slock held by ravertors. it includes both private & public investors. 3. THORANY Slock :-La issuel Stores of Common stock held by the firm Repurchused strucs by the firm. 4. Issoel shoes: Le struct at common stock that are put rate Circulation the sum & outstanding stares to Treesung slock.

Uploaded By anonymous

+ Are flund Stock

1. No where Rights

- 2 Dividencels - + of Por veter - Answel \$1 / shure.
- 3 Comulation - Comulative prefand stock . = Non comulative prettend stock.
- 4. other fectures - Celleble to Retire strives no e specific period alette a specific Price.
 - Conversion Charge each strene rate a stalled nember of strenes of common stock.

- Issuen G فررت تصر المهم ف الاكتاب العام - Quect ABC company stocks investors La Could be includer or instubans. - Indirect - prolets win - tomet - tomet

STUDENTS-HUB.com

LANGUOSTYLE 1 1 Investment benkirry fim I stress ABC ABC company stocks Investment banking stocks Investors film money Money الأتفافة السمها uneler rithing - syree ment. بنساعد الثركة ع ال 10 Lo Initial public offering + Zeno growth model Esimple: Ps = \$3 = \$20 Ps - Qu Ps - Plice of the slack + Quederd - Required rek of Reburn. STUDENTS-HUB.com

* Constand - Growthe marke Que deals for shore Year \$ 1.40 20 \$ 1.29 214 \$ 1.20 2013 \$ 112 2012 \$ 1.05 2011 2010 1 1 +B = D. B = 9 Ps - Pice of the stock R. - Direlends of He next for A = Q. (1+g)" Pr - Diveduch of the Concert your 2 -> Growth of Queelus Rs -+ Required Rete of Fetum 2 - growth of developh. 2 Stock Pi: 0. Q2015 = Den, (1+9)5 1 - s1 (1+g)5 Po = \$ 1.40 (1+0.07) 0.10 - 0.07 \$1.40 = (1+4)5 Ps = \$ 18,75 / Shares. G = 7%

# Variable	grauth ou	dle.	22			1
Bare	·			# 5	the one.	
÷.	End of your	Power	(1-3Y	D,	40 mm + \$150	
1	2016	11.5	(11 = 30)	32 1162	J. = 10%.	1 shane
2	2017		(1+ 010)2		Ind at 2017	Lett. An. Ler
,	2015 8	1.50	(1 0.10)	= \$4	J ~	51
					Rs + 151.	
					P = Peus	??
f.,	-					
1v - 1	£.)"					
- (1+ R,)"			Sand Greek	L		
÷ (1 +0.15)	A		Films			
+ (1+ 0.15)	• \$ 1.150		1.45			
- (1+ 0.15)5	= \$ 1.325		1.57			
- (110,5)	\$ 1.521	3	1.32			
0		13	4.12	#-sta	P2	
Q24 .	Rong (1+9)°				
- 5	2 (1+0	0.05)				
- 9	2.10			Tohne	+ Joseth 1	.Le
			G	continue p	acen- Runnel	P.L. al P.L.
Plate - De	- 1	Q 2014		PV	ixen-fugared	NOC OF ISSU
	,	0.15-0.9	5			
P 618 = \$	2.10	= # 2	,			
	0.10	4 -	-1			
Ping - Prot	9					
$P_{inp} = \frac{P_{int}}{(1+s)}$	15)"	110.1515	= \$	3.81	+ \$ 4.12	= \$ 17.13
		~7				
••						

Uploaded By anonymous

LANGUDSIYLE

 $J_1 = J_1$

- Free Cesh Flew vitertion mostel fort FCF. (1 raper" _PV FCF. 2016 \$400.00 - = (1+0.09) \$ 366.972 217 \$450.000 - (1+0091' \$ 578.785 218 \$ 520.000 - (1+ 0.09) \$ 401. 530 219 \$560.000 - (11 0.09) \$ 396 718 2020 \$600.000 - (1+0.091° \$ 7.084.252 + In. Seeres Step#3 +1 = 10,900,000 VC 2 48,628.232 - G. 34 Roymoul Rike at Rehm . 91. 4 - matet value of all Ocht = 5,100 000 - Market value of pretting stark = 800,000 - + of strues GS = 300000 · VS = VC -VA -VP common stack cepi flaw a cett - current proff Skp +1 FCF FCF (1 + 0.03) Vs /struce 0.09 - 0.03 = \$4.728.232 - E00000 (1+ 0.03)' = \$ 10,300.000 300, 200 0.09 - 0.03 Skp #2 = \$ 15.76 FCF = \$ 600.000 + \$ 10.300.000 = \$10.900.000 Skp4# VS = VC - Vd - VP VS = \$ 8.628232 - 2100,000 - 800,000 Vs. \$4,728.232.

STUDENTS-HUB.com

102,002 = \$ 10 pr shu dition velue for shue = \$ 5,252,002 - \$ 4,502,002 100.002 = \$ 7.5	- K Iller Pro Striller - 1	
= \$ 10 pr shu detion velue for stare = \$ 5,250,000 - \$ 4,500,000 100.000 = \$ 7.5	ook Vilue pu skuler = 6,000.000 - 4,500,000	
dition volu fu stare = \$ 5,250,000 - \$ 4,500,000 100.007 = \$7.5	100,000	
dition volu fu stare = \$ 5,250,000 - \$ 4,500,000 100.007 = \$7.5	= \$ 15 Ru shu	
= \$7.5 8		00,000
= \$7.5 8	100.007	
8		
	<u>A</u>	
	8	