
LEGENDRE POLYNOMIALS AND APPLICATIONS

We construct Legendre polynomials and apply them to solve Dirichlet problems
in spherical coordinates.

1. Legendre equation: series solutions

The Legendre equation is the second order differential equation

(1) (1− x2)y′′ − 2xy′ + λy = 0

which can also be written in self-adjoint form as

(2)
[
(1− x2)y′

]′
+ λy = 0 .

This equation has regular singular points at x = −1 and at x = 1 while x = 0 is an
ordinary point. We can find power series solutions centered at x = 0 (the radius of
convergence will be at least 1). Now we construct such series solutions.

Assume that

y =
∞∑
j=0

cjx
j

be a solution of (1). By substituting such a series in (1), we get

(1− x2)
∞∑
j=2

j(j − 1)cjx
j−2 − 2x

∞∑
j=1

jcjx
j−1 + λ

∞∑
j=0

cjx
j = 0

∞∑
j=2

j(j − 1)cjx
j−2 −

∞∑
j=2

j(j − 1)cjx
j −

∞∑
j=1

2jcjx
j + λ

∞∑
j=0

cjx
j = 0

After re-indexing the first series and grouping the other series, we get
∞∑
j=0

(j + 2)(j + 1)cj+2x
j −

∞∑
j=0

(j2 + j − λ)cjx
j = 0

and then
∞∑
j=0

[
(j + 2)(j + 1)cj+2 − (j2 + j − λ)cj

]
xj = 0 .

By equating each coefficient to 0, we obtain the recurrence relations

cj+2 =
(j + 1)j − λ

(j + 2)(j + 1)
cj , j = 0, 1, 2, · · ·

We can obtain two independent solutions as follows. For the first solution we
make c0 ̸= 0 and c1 = 0. In this case the recurrence relation gives

c3 =
2− λ

6
c1 = 0, c5 =

12− λ

20
c3 = 0, · · · , codd = 0 .

The coefficients with even index can be written in terms of c0:

c2 =
−λ

2
c0, c4 =

(2 · 3− λ)

4 · 3
c2 =

(2 · 3− λ)(−λ)

4!
c0
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2 LEGENDRE POLYNOMIALS AND APPLICATIONS

we prove by induction that

c2k =
[(2k − 1)(2k − 2)− λ][(2k − 3)(2k − 4)− λ] · · · [3 · 2− λ][−λ]

(2k)!
c0

We can write this in compact form as

c2k =
c0

(2k)!

(
k−1∏
i=1

[(2i+ 1)(2i)− λ]

)
This give a solution

y1(x) = c0

∞∑
k=0

(
k−1∏
i=0

[(2i+ 1)(2i)− λ]

)
x2k

(2k)!

A second series solution (independent from the first) can be obtained by making
c0 = 0 and c1 ̸= 0. In this case ceven = 0 and

c2k+1 =
c1

(2k + 1)!

(
k∏

i=1

[2i(2i− 1)− λ]

)
The corresponding solution is

y2(x) = c1

∞∑
k=0

(
k∏

i=1

[(2i)(2i− 1)− λ]

)
x2k+1

(2k + 1)!

Remark 1. It can be proved by using the ratio test that the series defining y1 and
y2 converge on the interval (−1, 1) (check this as an exercise).
2. It is also proved that for every λ either y1 or y2 is unbounded on (−1, 1). That
is, as x → 1 or as x → −1, one of the following holds, either |y1(x)| → ∞ or
|y2(x)| → ∞.
3. The only case in which Legendre equation has a bounded solution on [−1, 1] is
when the parameter λ has the form λ = n(n + 1) with n = 0 or n ∈ Z+. In this
case either y1 or y2 is a polynomial (the series terminates). This case is considered
below.

2. Legendre polynomials

Consider the following problem
Problem. Find the parameters λ ∈ R so that the Legendre equation

(3)
[
(1− x2)y′

]′
+ λy = 0, −1 ≤ x ≤ 1 .

has a bounded solution.
This is a singular Sturm-Liouville problem. It is singular because the function

(1− x2) equals 0 when x = ±1. For such a problem, we don’t need boundary con-
ditions. The boundary conditions are replaced by the boundedness of the solution.
As was pointed out in the above remark, the only values of λ for which we have
bounded solutions are λ = n(n + 1) with n = 0, 1, 2, · · · . These values of λ are
the eigenvalues of the SL-problem.

To understand why this is so, we go back to the construction of the series solu-
tions and look again at the recurrence relations giving the coefficients

cj+2 =
(j + 1)j − λ

(j + 2)(j + 1)
cj , j = 0, 1, 2, · · ·
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LEGENDRE POLYNOMIALS AND APPLICATIONS 3

If λ = n(n+ 1), then

cn+2 =
(n+ 1)n− λ

(n+ 2)(n+ 1)
cn = 0.

By repeating the argument, we get cn+4 = 0 and in general cn+2k = 0 for k ≥ 1.
This means

• if n = 2p (even), the series for y1 terminates at c2p and y1 is a polynomial
of degree 2p. The series for y2 is infinite and has radius of convergence
equal to 1 and y2 is unbounded.

• If n = 2p + 1 (odd), then the series for y2 terminates at c2p+1 and y2 is a
polynomial of degree 2p+ 1 while the solution y1 is unbounded.

For λ = n(n+1), we can rewrite the recurrence relation for a polynomial solution
in terms of cn. We have,

cj =
(j + 2)(j + 1)

j(j + 1)− n(n+ 1)
cj+2 = − (j + 2)(j + 1)

(n− j)(n+ j + 1)
cj+2,

for j = n− 2, n− 4, · · · 1 or 0. Equivalently,

cn−2k = − (n− 2k + 2)(n− 2k + 1)

(2k)(2n− 2k + 1)
cn−2k+2, k = 1, 2, · · · , [n/2].

I will leave it as an exercise to verify the following formula for cn−2k in terms of cn:

cn−2k =
(−1)k

2k k!

n(n− 1) · · · (n− 2k + 1)

(2n− 1)(2n− 3) · · · (2n− 2k + 1)
cn .

The polynomial solution is therefore

y(x) =

[n/2]∑
k=0

(−1)k

2k k!

n(n− 1) · · · (n− 2k + 1)

(2n− 1)(2n− 3) · · · (2n− 2k + 1)
cnx

n−2k

where cn is an arbitrary constant. The n-th Legendre polynomial Pn(x) is the above
polynomial of degree n for the particular value of cn

cn =
(2n)!

2n(n!)2
.

This particular value of cn is chosen to make Pn(1) = 1. We have then (after
simplification)

Pn(x) =
1

2n

[n/2]∑
k=0

(−1)k(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k .

Note that if n is even (resp. odd), then the only powers of x involved in Pn are
even (resp. odd) and so Pn is an even (resp. odd).

The first six Legendre polynomials are.

P0(x) = 1 P1(x) = x

P2(x) =
1

2
(3x2 − 1) P3(x) =

1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3) P5(x) =

1

8
(63x5 − 70x3 + 15x)

We have the following proposition.
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Proposition. If y(x) is a bounded solution on the interval (−1, 1) of the Legendre
equation (1) with λ = n(n+ 1), then there exists a constant K such that

y(x) = KPn(x)

where Pn is the n-th Legendre polynomial.

Remark. When λ = n(n + 1) a second solution of the Legendre equation, inde-
pendent from Pn, can be found in the form

Qn(x) =
1

2
Pn(x) ln

1 + x

1− x
+Rn(x)

where Rn is a polynomial of degree n− 1. The construction of Qn can be achieved
by the method of reduction of order. Note that |Qn(x)| → ∞ as x → ±1. The
general solution of the Legendre equation is then

y(x) = APn(x) +BnQn(x)

and such a function is bounded on the interval (−1, 1) if and only if B = 0.

3. Rodrigues’ formula

The Legendre polynomials can be expressed in a more compact form.

Theorem 1. (Rodrigues’ Formula) The n-th Legendre polynomial Pn is given by
the following

(4) Pn(x) =
1

2n n!

dn

dxn

[
(x2 − 1)n

]
(thus expression (4) gives a solution of (3) with λ = n(n+ 1)).

Proof. Let y = (x2 − 1)n. We have following

Claim. The k-th derivative y(k)(x) of y satisfies the following:

(5) (1− x2)
d2y(k)

dx2
+ 2(n− k − 1)x

dy(k)

dx
+ (2n− k)(k + 1)y(k) = 0.

Proof of the Claim. By induction. For k = 0, y = y(0). We have

y′ = 2nx(x2 − 1)n−1 ⇒ (1− x2)y′ + 2nxy = 0

and after differentiation, we get

(1− x2)y′′ + 2(n− 1)xy′ + 2ny = 0
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LEGENDRE POLYNOMIALS AND APPLICATIONS 5

So formula (5) holds when k = 0. By induction suppose the (5) holds up to order
k − 1. We can rewrite (5) for k − 1 as

(1− x2)
dy(k)

dx
+ 2(n− k)xy(k) + (2n− k + 1)ky(k−1) = 0.

We differentiate to obtain

(1− x2)
d2y(k)

dx2
+ [2(n− k)− 2]x

dy(k)

dx
+ [2(n− k) + k(2n− k + 1)]y(k) = 0.

which is precisely (5).

Now if we let k = n in (5), we obtain

(1− x2)
d2y(n)

dx2
− 2x

dy(n)

dx
+ n(n+ 1)y(k) = 0.

Hence y(n) solves the Legendre equation with λ = n(n+1). Since y(n) is a polyno-
mial of degree 2n, then by Proposition 1, it is a multiple of Pn. There is a constant
K such that Pn(x) = Ky(n)(x). To complete the proof, we need to find K. For
this notice that the coefficient of xn in Pn is (2n)!/(2n (n!)2). The coefficient of xn

in y(n) is that of

dn(x2n)

dxn
= (2n)(2n− 1) · · · (2n− n+ 1)xn =

(2n)!

n!
xn

Hence

K
(2n)!

n!
=

(2n)!

2n (n!)2
⇒ K =

1

2n n!
.

This completes the proof of the Rodrigues’ formula.

A consequence of this formula is the following property between three consecutive
Legendre polynomials.

Proposition. The Legendre polynomials satisfy the following

(6) (2n+ 1)Pn(x) = P ′
n+1(x)− P ′

n−1(x)

Proof. From Rodrigues’ formula we have

P ′
k(x) =

d

dx

(
1

2k k!

dk

dxk
[(x2 − 1)k]

)
=

2k

2k k!

dk

dxk
[x(x2 − 1)k−1]

=
1

2k−1 (k − 1)!

dk−1

dxk−1

[
((2k − 1)x2 − 1)(x2 − 1)k−2

]
For k = n+ 1, we get

P ′
n+1(x) =

1

2n n!

dn

dxn

[
((2n+ 1)x2 − 1)(x2 − 1)n−1

]
From Rodrigues’ formula at n− 1, we get

P ′
n−1(x) =

d

dx

(
1

2n−1(n− 1)!

dn−1

dxn−1
[(x2 − 1)n−1]

)
=

2n

2n n!

dn

dxn
[(x2 − 1)n−1]

As a consequence, we have

P ′
n+1(x)− P ′

n−1(x) =
2n+ 1

2n n!

dn

dxn
[(x2 − 1)n] = (2n+ 1)Pn(x) .
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6 LEGENDRE POLYNOMIALS AND APPLICATIONS

Generating function. It can be shown that the Legendre polynomials are gener-
ated by the function

g(x, t) =
1√

1− 2xt+ t2
.

More precisely, if we extend g(x, t) as a Taylor series in t, then the coefficient of tn

is the polynomial Pn(x):

(7)
1√

1− 2xt+ t2
=

∞∑
n=0

Pn(x)t
n .

A consequence of (7) is the following relation between three consecutive Legendre
polynomials.

Proposition. The Legendre polynomials satisfy the following

(8) (2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x)

Proof. We differentiate (7) with respect to t:

(x− t)
√
1− 2xt+ t2

3 =
∞∑

n=1

nPn(x)t
n−1 .

We multiply by 1− 2xt+ t2 and use (7)

∞∑
n=0

(x− t)Pn(x)t
n =

∞∑
n=1

(1− 2xt+ t2)nPn(x)t
n−1 .

Equivalently,
∞∑

n=0

xPn(x)t
n−

∞∑
n=0

Pn(x)t
n+1 =

∞∑
n=1

nPn(x)t
n−1−

∞∑
n=1

2nxPn(x)t
n+

∞∑
n=1

nPn(x)t
n+1

and after grouping the series

xP0(x)− P1(x) +
∞∑

n=1

[(2n+ 1)xPn(x)− (n+ 1)Pn+1(x)− nPn−1(x)] t
n

Property (8) is obtained by equating to 0 the coefficient of tn.

4. Orthogonality of Legendre polynomials

When the Legendre equation is considered as a (singular) Sturm-Liouville prob-
lem on [−1, 1], we get the following orthogonality theorem

Theorem 2. Consider the singular SL-problem

(1− x2)y′′ − 2xy′ + λy = 0 − 1 < x < 1 ,

with y bounded on (−1, 1). The eigenvalues are λn = n(n+ 1) with corresponding
eigenfunctions Pn(x). Furthermore, the eigenfunctions corresponding to distinct
eigenvalues are orthogonal. That is

(9) < Pn(x), Pm(x) >=

∫ 1

−1

Pn(x)Pm(x)dx = 0 , n ̸= m .
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LEGENDRE POLYNOMIALS AND APPLICATIONS 7

Proof. Recall that the self-adjoint form of the Legendre equation is

[(1− x2)y′]′ + λy = 0 ,

(with p(x) = 1 − x2, r(x) = 1, and q(x) = 0. The corresponding weight function
is r = 1. We have already seen that the eigenvalues and eigenfunctions are given
by λn = n(n+ 1) and Pn(x). We are left to verify the orthogonality. We write the
Legendre equation for Pm and Pn:

λnPn(x) = [(x2 − 1)P ′
n(x)]

′

λmPm(x) = [(x2 − 1)P ′
m(x)]′

Multiply the first equation by Pm, the second by Pn and subtract. We get,

(λn − λm)Pn(x)Pm(x) = [(x2 − 1)P ′
n(x)]

′Pm(x)− [(x2 − 1)P ′
m(x)]′Pn(x)

=
[
(x2 − 1)P ′

n(x)Pm(x)− (x2 − 1)P ′
m(x)Pn(x)

]′
=
[
(x2 − 1)(P ′

n(x)Pm(x)− P ′
m(x)Pn(x))

]′
Integrate from −1 to 1

(λn − λm)

∫ 1

−1

Pn(x)Pm(x)dx =
[
(x2 − 1)(P ′

n(x)Pm(x)− P ′
m(x)Pn(x))

]1
−1

= 0.

The square norms of the Legendre polynomials are given below.

Theorem 3. We have the following

(10) ||Pn(x)||2 =

∫ 1

−1

Pn(x)
2dx =

2

2n+ 1

Proof. We use generating function (7) to get

1

1− 2xt+ t2
=

( ∞∑
n=0

Pn(x)t
n

)2

=
∑

n,m≥0

Pn(x)Pm(x)tn+m

Now we integrate from −1 to 1:∫ 1

−1

dx

1− 2xt+ t2
=
∑

n,m≥0

(∫ 1

−1

Pn(x)Pm(x)dx

)
tn+m

By using the orthogonality of Pn and Pm (for n ̸= m), we get

−1

2t

[
ln |1− 2xt+ t2|

]x=1

x=−1
=

∞∑
n=0

||Pn(x)||2t2n ,

and after simplifying the left side:

1

t
ln

∣∣∣∣1 + t

1− t

∣∣∣∣ = ∞∑
n=0

||Pn(x)||2t2n .

Recall that for |s| < 1, the Taylor series of ln(1 + s) is

ln(1 + s) =

∞∑
j=1

(−1)j−1

j
sj .
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Hence for |t| < 1, we have

1

t
ln

∣∣∣∣1 + t

1− t

∣∣∣∣ =
1

t
(ln(1 + t)− ln(1− t))

=
1

t

 ∞∑
j=1

(−1)j−1

j
tj −

∞∑
j=1

(−1)j−1

j
(−t)j


=

1

t

∞∑
j=1

(−1)j−1 + 1

j
tj

=

∞∑
n=0

2

2n+ 1
t2n

It follows that
∞∑

n=0

2

2n+ 1
t2n =

∞∑
n=0

||Pn(x)||2t2n .

An identification of the coefficient of t2n gives (10).

5. Legendre series

The collection of Legendre polynomials {Pn(x)}n≥0 forms a complete family in
the space C1

p [−1, 1] of piecewise smooth functions on the interval [−1, 1]. Any
piecewise function f has then a generalized Fourier series representation in terms of
these polynomials. The associated series is called the Legendre series of f . Hence,

f(x) ∼
∞∑

n=0

cnPn(x)

where

cn =
< f(x), Pn(x) >

||Pn(x)||2
=

2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx

Theorem 4. Let f be a piecewise smooth function on [−1, 1]. Then,

fav(x) =
f(x+) + f(x−)

2
=

∞∑
n=0

cnPn(x) .

In particular at the points x, where f is continuous, we have

f(x) =
∞∑

n=0

cnPn(x) .

Remark 1. For each m, the Legendre polynomials P0, P1, · · · , Pm forms a basis
in the space of polynomials of degree m. Thus, if R(x) is a polynomial of degree
m, then the Legendre series of R terminates at the order m (i.e. ck = 0 for k > m).
In particular,

xm = c0P0(x) + c1P1(x) + · · ·+ cmPm(x) = c0 + c1x+
c2
2
(3x2 − 1) + · · ·

For example,

x2 =
2

3
P0(x) + 0P1(x) +

2

3
P2(x)

x3 = 0P0(x) +
3

5
P1(x) + 0P2(x) +

2

5
P3(x)
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Remark 2. Suppose that f is an odd function. Since Pn is odd when n is odd and
Pn is even when n is even, then the Legendre coefficients of f with even indices are
all zero (c2j = 0). The Legendre series of f contains only odd indexed polynomials.
That is,

fav(x) =

∞∑
j=0

c2j+1P2j+1(x)

where

c2j+1 = (2(2j + 1) + 1)

∫ 1

0

f(x)P2j+1(x)dx = (4j + 3)

∫ 1

0

f(x)P2j+1(x)dx.

Similarly, if f is an even function, then its Legendre series contains only even
indexed polynomials.

fav(x) =

∞∑
j=0

c2jP2j(x)

where

c2j = (2(2j) + 1)

∫ 1

0

f(x)P2j(x)dx = (4j + 1)

∫ 1

0

f(x)P2j(x)dx.

If a function f is defined on the interval [0, 1], then we can extend it as an even
function feven to the interval [−1, 1]. The Legendre series of feven contains only
even-indexed polynomials. Similarly, if we extend f as an odd function fodd to
[−1, 1], then the Legendre series contains only odd-indexed polynomials. We have
the following theorem.

Theorem 5. Let f be a piecewise smooth function on [0, 1]. Then, f has an
expansion into even Legendre polynomials

fav(x) =
f(x+) + f(x−)

2
=

∞∑
j=0

c2jP2j(x) .

Similarly, f has an expansion into odd Legendre polynomials

fav(x) =
f(x+) + f(x−)

2
=

∞∑
j=0

c2j+1P2j+1(x) .

The coefficients are given by

cn = (2n+ 1)

∫ 1

0

f(x)Pn(x)dx .

Example 1. Consider the function f(x) =

{
1 0 < x < 1,
0 −1 < x < 0

The n-th Legendre

coefficient of f is

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx =
2n+ 1

2

∫ 1

0

Pn(x)dx .
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The first four coefficients are

c0 =
1

2

∫ 1

0

dx =
1

2

c1 =
3

2

∫ 1

0

xdx =
3

4

c2 =
5

2

∫ 1

0

1

2
(3x2 − 1)dx = 0

c3 =
7

2

∫ 1

0

1

2
(5x3 − 3x)dx = − 7

16

Hence,

1 =
1

2
P0(x) +

3

4
P1(x)−

7

16
P3(x) + · · · 0 < x < 1,

0 =
1

2
P0(x) +

3

4
P1(x)−

7

16
P3(x) + · · · −1 < x < 0

Example 2. Let f(x) =

{
1 0 < x < 1,
−1 −1 < x < 0

. Since f is odd, its Legendre series

contains only odd indexed polynomials. We have

c2n+1 = (4n+ 3)

∫ 1

0

P2n+1(x)dx .

By using the recurrence relation (6) ((2k + 1)Pk = P ′
k+1 − P ′

k−1) with k = 2n+ 1,
we get

c2n+1 =

∫ 1

0

(P ′
2n+2(x)− P ′

2n(x))dx = P2n+2(1)− P2n+2(0)− P2n(1) + P2n(0) .

Since P2j(1) = 1 that P2j(0) = (−1)j (2j)!/22j(j!)2 (see exercise 1), then it follows
that

c2n+1 = P2n(0)− P2n+2(0) =

(
(−1)n(4n+ 3)

2n+1(n+ 1)

)
(2n)!

(n!)2
.

We have then the expansion

1 =
∞∑

n=0

(
(−1)n(4n+ 3)

2n+1(n+ 1)

)
(2n)!

(n!)2
P2n+1(x) , 0 < x < 1 .

6. Separation of variables for ∆u = 0 in spherical coordinates

Recall that if (x, y, z) and (ρ, θ, ϕ) denote, respectively, the cartesian and the
spherical coordinates in R3:

x = ρ cos θ sinϕ, y = ρ sin θ sinϕ, z = ρ cosϕ,

then the Laplace operator has expression

∆ =
∂2

∂ρ2
+

2

ρ

∂

∂ρ
+

1

ρ2 sin2 ϕ

∂2

∂θ2
+

1

ρ2
∂2

∂ϕ2
+

cotϕ

ρ2
∂

∂ϕ

with ρ > 0, θ ∈ R , and ϕ ∈ (0, π).
Consider the problem of finding bounded solutions u = u(ρ, θ, ϕ) of the Laplace

equation ∆u = 0. That is, u(ρ, θ, ϕ) bounded inside the sphere ρ < A and satisfies

(11)
∂2u

∂ρ2
+

2

ρ

∂u

∂ρ
+

1

ρ2 sin2 ϕ

∂2u

∂θ2
+

1

ρ2
∂2u

∂ϕ2
+

cotϕ

ρ2
∂u

∂ϕ
= 0
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LEGENDRE POLYNOMIALS AND APPLICATIONS 11

The method at our disposal is that of separation of variables. Suppose that

u(ρ, θ, ϕ) = R(ρ)Θ(θ)Φ(ϕ)

solves the Laplace equation (we are assuming that Θ and Θ′ are 2π-periodic). After
replacing u and its derivatives in terms of R, Θ, Φ and their derivatives, we can
rewrite (11) as

(12) ρ2
R′′(ρ)

R(ρ)
+ 2ρ

R′(ρ)

R(ρ)
+

Θ′′(θ)

sin2 ϕΘ(θ)
+

Φ′′(ϕ)

Φ(ϕ)
+

cotϕΦ′(ϕ)

Φ(ϕ)
= 0

Separating the variable ρ from θ and ϕ leads to

ρ2R′′ + 2ρR′ − λR = 0,
Θ′′(θ)

sin2 ϕΘ(θ)
+

Φ′′(ϕ)

Φ(ϕ)
+

cotϕΦ′(ϕ)

Φ(ϕ)
= −λ

where λ is the separation constant. A further separation of the second equation
leads to the three ODEs

ρ2R′′(ρ) + 2ρR′(ρ)− λR(ρ) = 0(13)

Θ′′(θ) + αΘ(θ) = 0(14)

Φ′′(ϕ) +
cosϕ

sinϕ
Φ′(ϕ) +

(
λ− α

sin2 ϕ

)
Φ(ϕ) = 0(15)

with α and λ constants. The R-equation and Θ-equation are familiar and we know
how to solve them: (13) is a Cauchy-Euler equation and (14) has constant coeffi-
cients. Furthermore, the periodicity of Θ implies that α = m2 with m nonnegative
integer and the eigenfunctions are cos(mθ) and sin(mθ).

A class of solutions of ∆u = 0. Consider the case α = m = 0. In this case
Θ(θ) = 1 and the function u is independent on θ. The R-equation and Φ-equations
are

ρ2R′′(ρ) + 2ρR′(ρ)− λR(ρ) = 0(16)

Φ′′(ϕ) +
cosϕ

sinϕ
Φ′(ϕ) + λΦ(ϕ) = 0(17)

Equation (16) is a Cauchy-Euler equation with solutions

R1(ρ) = ρp1 , R2(ρ) = ρp2

where p1,2 are the roots of p2 + p− λ = 0.
To understand the Φ-equation, we need to make a change of variable. For ϕ ∈

(0, π), consider the change of variable

t = cosϕ t ∈ (−1, 1) ,

and let
w(t) = Φ(ϕ) = Φ(arccos t) ⇔ Φ(ϕ) = w(cosϕ) .

We use equation (17) to write an ODE for w. We have

Φ′(ϕ) = − sinϕw′(cosϕ) = −
√
1− t2 w′(t) ,

Φ′′(ϕ) = sin2 ϕw′′(cosϕ)− cosϕw′(cosϕ) = (1− t2)w′′(t)− tw′(t)

By replacing these expressions of Φ′ and Φ′′ in (17), we get

(18) (1− t2)w′′(t)− 2tw′(t) + λw(t) = 0 .

This is the Legendre equation. To get w a bounded solution, we need to have
λ = n(n + 1) with n a nonnegative integer. In this case w is a multiple of the

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://students-hub.com


12 LEGENDRE POLYNOMIALS AND APPLICATIONS

Legendre polynomial Pn(t). By going back to the function Φ and variable ϕ, we
get the following lemma.

Lemma 1. The eigenvalues and eigenfunctions of equation (17) are λ = n(n+1)
with n a nonnegative integer and

Φn(ϕ) = Pn(cosϕ) ,

where Pn is Legendre polynomial of degree n.

For λ = n(n + 1) the exponents p1,2 for the R-equation are p1 = n and p2 =
−(n+ 1) and the independent solution of (16) are

ρn , ρ−(n+1) =
1

ρn+1
.

Note that the second solution is unbounded. We have established the following.

Proposition 1. If u(ρ, ϕ) = R(ρ)Φ(ϕ) is a bounded solution of the Laplace
equation ∆u = 0 inside a sphere, then there exists a nonnegative integer n so that

u(ρ, ϕ) = CρnPn(cos(ϕ)) , (C constant).

The following figure illustrates the graphs of the spherical polynomials Pn(cosϕ)
for n = 0, 1, 2, and 3. The surface has parametric equation (|Pn(cosϕ)|, θ, ϕ).

7. Dirichlet problem in the sphere with longitudinal symmetry

Consider the following Dirichlet problem in the sphere of radius L:

(19)

{
∆u(ρ, θ, ϕ) = 0
u(L, θ, ϕ) = f(θ, ϕ)

Such a problem models the steady state heat distribution inside the sphere when
the temperature on the surface is given by f . The case with longitudinal symmetry
means that the problem is independent on the angle θ. Thus f = f(ϕ) and the
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temperature u depends only on the radius ρ and the altitude ϕ ( u = u(ρ, ϕ)).
Problem (19) can be written as

(20)

 uρρ +
2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0

u(L, ϕ) = f(ϕ)

Since u is assumed to be a bounded function, then the method of separation of
variables for the PDE in (20) leads (as we have seen above) to the following solutions
with separated variables

un(ρ, ϕ) = ρnPn(cosϕ) , n = 0, 1, 2, · · ·

The general series solution of the PDE in (20) is therefore

u(r, ϕ) =
∞∑

n=0

Cnρ
nPn(cosϕ) .

In order for such a solution to satisfy the nonhomogeneous condition we need to
have

u(L, ϕ) = f(ϕ) =

∞∑
n=0

CnL
nPn(cosϕ) .

The last series is a Legendre series but it is expressed in terms of cosϕ. To find the
coefficients Cn, we need to express the last series as a Legendre series in standard
form . We resort again to the substitution t = cosϕ with −1 < t < 1. We rewrite
f in terms of the variable t (for instance g(t) = f(ϕ)). The last series is

g(t) =
∞∑

n=0

CnL
nPn(t) .

Now this is the usual Legendre series of the function g(t). Its n-th Legendre coef-
ficients CnL

n is given by

CnL
n =

2n+ 1

2

∫ 1

−1

g(t)Pn(t)dt .

We can rewrite Cn this in terms of the variable ϕ as

(21) Cn =
2n+ 1

2Ln

∫ π

0

sinϕ f(ϕ)Pn(cosϕ) dϕ .

The solution of problem (20) is therefore

u(ρ, ϕ) =

∞∑
n=0

Cnρ
nPn(cosϕ) ,

where Cn is given by formula (21).

Example 1. The following Dirichlet problem represents the steady-state temper-
ature distribution inside a ball of radius 10 assuming that the upper hemisphere is
kept at constant temperature 100 and the lower hemisphere is kept at temperature
0.

uρρ +
2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, u(10, ϕ) = f(ϕ)

f(ϕ) =

{
100 if 0 < ϕ < π/2,
0 if (π/2) < ϕ < π,
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14 LEGENDRE POLYNOMIALS AND APPLICATIONS

The solution to this problem is

u(ρ, ϕ) =
∞∑

n=0

Cnρ
nPn(cosϕ)

where

Cn =
2n+ 1

2(10n)

∫ π

0

f(ϕ) sinϕPn(cosϕ) dϕ

=
50(2n+ 1)

10n

∫ π/2

0

sinϕPn(cosϕ) dϕ

=
50(2n+ 1)

10n

∫ 1

0

Pn(t) dt

We can find a closed expression for Cn. You will be asked in the exercises to
establish the formula ∫ 1

0

Pn(x) =
1

2n+ 1
[Pn−1(0)− Pn+1(0)]

Thus, it follows from the fact that Podd(0) = 0 that Ceven = 0 and from

P2j(0) = (−1)j
(2j)!

22j(j!)2

that

C2j+1 =
25(−1)j(2j)!

102j+122j(j + 1)(j!)2

The solution to the problem

u(ρ, ϕ) = 25
∞∑
j=0

(−1)j(2j)!

22j(j + 1)(j!)2

( ρ

10

)2j+1

P2j+1(cosϕ)

Example 2. (Dirichlet problem in a spherical shell). Consider the BVP

uρρ +
2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 1 < ρ < 2 , 0 < ϕ < (π/2) ,

u(1, ϕ) = 50, u(2, ϕ) = 100, 0 < ϕ < (π/2) ,
u(ρ, π/2) = 0 1 < ρ < 2 .

Such a problem models the steady-state temperature distribution inside in a spher-
ical shell when the temperature on the outer hemisphere is kept at 100 degrees, that
in the inner hemisphere is kept at temperature 50 degrees and the temperature at
the base is kept at 0 degree.

The separation of variables for the homogeneous part leads to the ODE problems

ρ2R′′ + 2ρR′ − λR = 0,
sinϕΦ′′ + cosϕΦ′ + λ sinϕΦ = 0, Φ(π/2) = 0

As we have seen above, the eigenvalues of the Φ-equation are λ = n(n + 1) and
corresponding eigenfunctions Pn(cosϕ). This time however, we also need to have

Φn(π/2) = Pn(0) = 0 .

Therefore n must be odd. The solutions with separated variables of the homoge-
neous part are ρnPn(cosϕ) and ρ−(n+1)Pn(cosϕ) with n odd (note that since in this
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problem ρ > 1, the second solution ρ−(n+1) of the R-equation must be considered).
The series solution is

u(ρ, ϕ) =
∞∑
j=0

[
A2j+1ρ

2j+1 +
B2j+1

ρ2j+2

]
P2j+1(cosϕ) .

Now we use the nonhomogeneous boundary condition to find the coefficients.

100 =
∞∑
j=0

[
A2j+12

2j+1 +
B2j+1

22j+2

]
P2j+1(cosϕ)

50 =
∞∑
j=0

[A2j+1 +B2j+1]P2j+1(cosϕ)

for 0 < ϕ < (π/2). Equivalently,

100 =
∞∑
j=0

[
A2j+12

2j+1 +
B2j+1

22j+2

]
P2j+1(x) , 0 < x < 1 ,

50 =
∞∑
j=0

[A2j+1 +B2j+1]P2j+1(x) , 0 < x < 1 .

By using the above series and the series expansion of 1 over [0, 1] into odd Legendre
polynomials (see previous examples)

1 =
∞∑
j=0

(−1)j(2j)!

22j+2(j + 1)(j!)2
P2j+1(x) 0 < x < 1 ,

we get

A2j+1 +B2j+1 =
50(−1)j(2j)!

22j+2(j + 1)(j!)2

22j+1A2j+1 +B2j+1
1

22j+2
=

100(−1)j(2j)!

22j+2(j + 1)(j!)2

From these equations A2j+1 and B2j+1 can be explicitly found.
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16 LEGENDRE POLYNOMIALS AND APPLICATIONS

8. More solutions of ∆u = 0

Recall, from the previous section, that if u = R(ρ)Θ(θ)Φ(ϕ) satisfies ∆u = 0,
then the functions R, Θ, and Φ satisfy the ODEs

ρ2R′′(ρ) + 2ρR′(ρ)− λR(ρ) = 0(22)

Θ′′(θ) + αΘ(θ) = 0(23)

Φ′′(ϕ) +
cosϕ

sinϕ
Φ′(ϕ) +

(
λ− α

sin2 ϕ

)
Φ(ϕ) = 0(24)

The function Θ is 2π-periodic, R and Φ bounded. In the previous section we
assumed u independent on θ (this is the case corresponding to the eigenvalue α = 0.)
Now suppose that u depends effectively on θ. The eigenvalues and eigenfunctions
of the Θ-problem are

α = m2,

{
Θ1(θ) = cos(mθ)
Θ2(θ) = sin(mθ)

, m ∈ Z+

For α = m2, the Φ-equation becomes

(25) Φ′′(ϕ) +
cosϕ

sinϕ
Φ′(ϕ) +

(
λ− m2

sin2 ϕ

)
Φ(ϕ) = 0

If we use the variable t = cosϕ and let w(t) = Φ(cosϕ), then w solves

(26) (1− t2)w′′(t)− 2tw′(t) +

(
λ− m2

1− t2

)
w(t) = 0 .

or equivalently in self-adjoint form as

(27)
[
(1− t2)w′(t)

]′
+

(
λ− m2

1− t2

)
w(t) = 0 .

Equation (26) (or (27)) is called the generalized Legendre equation. Its solutions are
related to those of the Legendre equation and are given by the following lemma.

Lemma. Let y(t) be a solution of the legendre equation

(1− t2)
d2y

dt2
− 2t

dy

dt
+ λy = 0 .

Then the function

w(t) = (1− t2)m/2 d
my(t)

dtm

solves the generalized Legendre equation

(1− t2)w′′(t)− 2tw′(t) +

(
λ− m2

1− t2

)
w(t) = 0 .

For λ = n(n+ 1), the bounded solutions of (26) are

Pm
n (t) = (1− t2)m/2 d

mPn(t)

dtm

these are called the associated Legendre polynomials (of degree n and order m).
Note that since Pn is a polynomial of degree n, then if m > n, the function Pm

n is
identically zero (Pm

n (t) = 0). Note also that P 0
n(x) = Pn(x).
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Example.

P 1
2 (x) = 3x

√
1− x2 , P 1

3 (x) =
3

2
(5x2 − 1)

√
1− x2

P 2
3 = 15x(1− x2) P 2

4 (x) =
15

2
(7x2 − 1)(1− x2)

P 3
4 (x) = 105x(1− x2)3/2 P 3

5 (x) =
105

2
(9x2 − 1)(1− x2)3/2

In summary we have constructed solutions of ∆u = 0 of the form

ρn cos(mθ)Pm
n (cosϕ) (m ≤ n)

The functions
Ymn(θ, ϕ) = Pm

n (cosϕ) cos(mθ)

are called spherical harmonics. Some of the surfaces given in spherical coordinates
by

ρ = Pm
n (θ)

are plotted in the figure

Example: small vibrations of a spherical membrane. Consider the radial
vibrations of a spherical membrane of radius L. Let u(θ, ϕ, t) denotes the radial dis-
placement at time t, from equilibrium, of the point on the L-sphere with coordinates
(θ, ϕ). The function u satisfies the wave equation

utt = c2
(
uϕϕ + cotϕuϕ +

1

sinϕ
uθθ

)
The method of separation of variables for the PDE leads to the following solutions

Pm
n (cosϕ) cos(mθ) cos(ωmnt), ,

with m ≤ n and ωmn = c
√
n(n+ 1).The solution

umn(θ, ϕ, t) = L+ aPm
n (cosϕ) cos(mθ) cos(ωmnt), ,
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18 LEGENDRE POLYNOMIALS AND APPLICATIONS

are the (m,n)-modes of vibration of the spherical membrane. Some of the profiles
are illustrated in the following figure.

m=0, n=4 m=1, n=4

m=2, n=4 m=3, n=4

m=3, n=7
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9. Exercises.

Exercise 1. Use the recurrence relation that gives the coefficients of the Legendre
polynomials to show that

P2n(0) = (−1)n
(2n)!

22n(n!)2
.

Exercise 2. Use exercise 1 to verify that

P2n(0)− P2n+2(0) = (−1)n
(
4n+ 3

2n+ 2

)
(2n)!

22n(n!)2
.

Exercise 3. Use P0(x) = 1, P1(x) = x and the recurrence relation (8):

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x)

to find P2(x), P3(x), P4(x), and P5(x).

Exercise 4. Use Rodrigues’ formula to find the Legendre polynomials P0(x) to
P5(x).

Exercise 5. Use Rodrigues’ formula to establish

xP ′
n(x) = nPn(x) + P ′

n−1(x) .

Exercise 6. Write x2 as a linear combination of P0(x), P1(x), and P2(x). That is,
find constants A, B, and C so that

x2 = AP0(x) +BP1(x) + CP2(x) .

Exercise 7. Write x3 as a linear combination of P0, P1, P2, and P3.

Exercise 8. Write x4 as a linear combination of P0, P1, P2, P3 and P4.

Exercise 9. Use the results from exercises 6, 7, and 8 to find the integrals.∫ 1

−1

x2P2(x)dx,

∫ 1

−1

x2P31(x)dx∫ 1

−1

x3P1(x)dx,

∫ 1

−1

x3P4(x)dx∫ 1

−1

x4P2(x)dx,

∫ 1

−1

x4P4(x)dx

Exercise 10. Use the fact that for m ∈ Z+, the function xm can written as a
linear combination of P0(x), · · · , Pm(x) to show that∫ 1

−1

xmPn(x) = 0, for n > m .
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Exercise 11. Use formula (8) and a property (even/odd) of the Legendre polyno-
mials to verify that ∫ h

−1

Pn(x)dx =
1

2n+ 1
[Pn+1(h)− Pn−1(h)]∫ 1

h

Pn(x)dx =
1

2n+ 1
[Pn−1(h)− Pn+1(h)]

Exercise 12. Find the Legendre series of the functions

f(x) = −3, g(x) = x3, h(x) = x4, m(x) = |x|.

Exercise 13. Find the Legendre series of the function

f(x) =

{
0 for − 1 < x < 0
x for 0 < x < 1

Exercise 14. Find the Legendre series of the function

f(x) =

{
0 for − 1 < x < h
1 for h < x < 1

(Use exercise 11.)

Exercise 15. Find the first three nonzero terms of the Legendre series of the
functions f(x) = sinx and g(x) = cosx.

In exercises 16 to 19 solve the following Dirichlet problem inside the sphere uρρ +
2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 0 < ρ < L, 0 < ϕ < π

u(L, ϕ) = f(ϕ) 0 < ϕ < π

Assume u(ρ, ϕ) is bounded.

Exercise 16. L = 10, and f(ϕ) =

{
50 for 0 < ϕ < (π/2),
100 for (π/2) < ϕ < π.

Exercise 17. L = 1 and f(ϕ) = cosϕ.

Exercise 18. L = 5 and f(ϕ) =

{
50 for 0 < ϕ < (π/4),
0 for (π/4) < ϕ < π.

Exercise 19. L = 2 and f(ϕ) = sin2 ϕ = 1− cos2 ϕ.

Exercise 20. Solve the following Dirichlet problem in a hemisphere
uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 0 < ρ < 1, 0 < ϕ < (π/2)

u(1, ϕ) = 100 0 < ϕ < (π/2)
u(ρ, π/2) = 0 0 < ρ < 1 .

Exercise 21. Solve the following Dirichlet problem in a hemisphere
uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 0 < ρ < 1, 0 < ϕ < (π/2)

u(1, ϕ) = cosϕ 0 < ϕ < (π/2)
u(ρ, π/2) = 0 0 < ρ < 1 .
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Exercise 22. Solve the following Dirichlet problem in a spherical shell
uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 1 < ρ < 2, 0 < ϕ < π

u(1, ϕ) = 50 0 < ϕ < π
u(2, ϕ) = 100 0 < ϕ < π .

Exercise 23. Solve the following Dirichlet problem in a spherical shell
uρρ +

2

ρ
uρ +

1

ρ2
uϕϕ +

cosϕ

ρ2 sinϕ
uϕ = 0, 1 < ρ < 2, 0 < ϕ < π

u(1, ϕ) = cosϕ 0 < ϕ < π
u(2, ϕ) = sin2 ϕ 0 < ϕ < π .

Exercise 24. Find the gravitational potential at any point outside the surface of
the earth knowing that the radius of the earth is 6400 km and that the gravitational
potential on the earth surface is given by

f(ϕ) =

{
200− cosϕ for 0 < ϕ < (π/2),
200 for (π/2) < ϕ < π.

(This is an exterior Dirichlet problem)

Exercise 25. The sun has a diameter of 1.4 × 106 km. If the temperature on
the sun’s surface is 20, 0000 C, find the approximate temperature on the following
planets.

Planet Mean distance from sun
(millions of kilometers)

Mercury 57.9
Venus 108.2
Earth 149.7
Mars 228.1
Jupiter 778.6
Saturn 1429.0
Uranus 2839.6
Neptune 4491.6
Pluto 5880.2
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