
Instruction Set Principles and

Architecture

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Outline

❖Introduction and Motivation

❖Instruction Set Architecture Design

❖CISC ver. RISC

❖Overview of the MIPS Processor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Cost of software

development makes

compatibility a major force

in market

Architecture continually changing

3

Application

s

Technology

Applications

suggest how

to improve

technology,

provide

revenue to

fund

development

Improved

technologies

make new

applications

possible

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Hierarchy of Computer Architecture

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
Architecture

Firmware

Datapath & Control

Layout

Software

Hardware

Software/Hardware

Boundary

High-Level Language Programs

Assembly Language

Programs

Microprogram

Register Transfer

Notation (RTN)
Logic Diagrams

Circuit Diagrams

Machine Language

Program e.g.

BIOS (Basic Input/Output System)

e.g.

BIOS (Basic Input/Output System)

VLSI placement & routing

(ISA)
The ISA forms an abstraction layer

that sets the requirements for both

complier and CPU designers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How to Speak to Computer

High Level Language
Program

Assembly Language
Program

Compiler
lw $15, 0($2)

lw $16, 4($2)

sw $16, 0($2)

sw $15, 4($2)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Control Signal Spec

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
Program

Assembler

1000110001100010000000000000000

1000110011110010000000000000100

1010110011110010000000000000000

1010110001100010000000000000100

Need translation from application to physics
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

What is “Computer Architecture” ?

❖ Computer Architecture =

Instruction Set Architecture +

Computer Organization

❖ Instruction Set Architecture (ISA)

WHAT the computer does (logical view)

❖ Computer Organization

 HOW the ISA is implemented (physical view)

❖ We will study both in this course

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Complete set of instructions used by a machine

❖ Abstract interface between the HW and lowest-level SW.

❖ An ISA includes the following …

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like division by zero)

❖ Advantages:

 Different implementations of the same architecture

 Easier to change than HW

 Standardizes instructions, machine language bit patterns, etc.

❖ Disadvantage:

 Sometimes prevents using new innovations

Instruction Set Architecture (ISA)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Classifying Instruction Sets

❖ Early Instruction Set Architectures

 Accumulator-based or Stack-based

 Replaced with General-Purpose Register (GPR) architectures

❖ Three classes or general-purpose register architectures

1. Register-Register (or Load-Store) Architecture (RISC)

▪ Can access memory only via load and store instructions

2. Register-Memory Architecture (CISC)

▪ Can access a memory location as part of any instruction

3. Memory-Memory Architecture (not used today)

▪ Can access two or three memory locations per instruction

▪ Large variation in instruction size and work per instruction

(CPI)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

General Purpose Registers Dominate

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Memory Addressing

❖Most architectures define memory as byte addressable

❖ A memory address can provide access to …

 A byte (8 bits), 2 bytes, 4 bytes, 8 bytes, or more bytes

❖ The word size is defined differently by architectures

 The word size = 2 bytes (Intel x86), 4 bytes (MIPS), or larger

❖ Two conventions for ordering bytes within a larger object

1. Little Endian byte ordering

 Memory address X = address of least-significant byte (Intel x86)

2. Big Endian byte ordering

 Memory address X = address of most-significant byte (SPARC)

Byte 0Byte 1Byte 2Byte 3 32-bit Register

x+3 xx+1x+2

Byte 3Byte 2Byte 1Byte 0 32-bit Register

x x+3x+2x+1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Addressing Modes (Commonly Used)

❖ How instructions specify the addresses of their operands

❖ Operands can be in registers, constants, or in memory

Mode Example Meaning When used

Register ADD R1, R2, R3 R1  R2 + R3 Values in registers

Immediate ADD R1, R2, 100 R1  R2 + 100 For constants

Register Indirect LD R1, [R2] R1  Mem[R2] R2 contains address

Displacement LD R1, [R2, 8] R1  Mem[R2 + 8] Address local variables

Absolute LD R1, [1000] R1  Mem[1000] Address static data

Indexed LD R1, [R2, R3] R1  Mem[R2 + R3] R2=base, R3=index

Scaled Index LD R1, [R2, R3, s] R1  Mem[R2 + R3 << s] s = scale factor

Pre-update LD R1, [R2, 8] !
R2  R2 + 8

R1  Mem[R2]

Address is pre-updated

Using pointer to traverse array

Post-update LD R1, [R2], 8
R1  Mem[R2]

R2  R2 + 8

Address is post-updated

Using pointer to traverse array

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Types and Size of Operands

❖ Common operand types:

 ASCII character = 1 byte (64-bit register can store 8 characters)

 Unicode character or Short integer = 2 bytes = 16 bits (half word)

 Integer = 4 bytes = 32 bits (word size on many RISC processors)

 Single-precision float = 4 bytes = 32 bits (word size)

 Long integer = 8 bytes = 64 bits (double word)

 Double-precision float = 8 bytes = 64 bits (double word)

 Extended-precision float = 10 bytes = 80 bits (Intel architecture)

 Quad-precision float = 16 bytes = 128 bits (quad word)

❖ 32-bit versus 64-bit architectures

 64-bit architectures support 64-bit operands & memory addresses

 Older architectures were 32-bit (can address 4 GB of memory)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Typical Operations

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Encoding an Instruction Set

❖ Variable Encoding

 Instruction length is a variable number of bytes

 Allows all addressing modes to be used with all operations

 Examples: Intel x86 and VAX

❖ Fixed Encoding

 All instructions have a single fixed size, typically 32 bits

 Combines the addressing mode with the opcode

 Examples: MIPS, ARM, Power, SPARC, etc.

❖ Hybrid Encoding

 Few instruction lengths ➔ reduces the variability in length

 Compressed encoding of some frequently used instructions

 Examples: micro MIPS and ARM Thumb

Instruction

encoding

impacts the

code size

and ease of

decoding

inside the

processor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CISC and RISC

❖ CISC is an acronym for Complex Instruction Set Computer and
are chips that are easy to program and which make efficient use
of memory.

❖ RISC Reduced Instruction Set Computer is a type of microprocessor
architecture that utilizes a small, highly-optimized set of instructions,
rather than a more specialized set of instructions often found in
other types of architectures.

CISC RISC

Emphasis on hardware Emphasis on software

Includes multi-clock
complex instructions

Single-clock,
reduced instruction only

Memory-to-memory:
"LOAD" and "STORE"

incorporated in instructions

Register to register:
"LOAD" and "STORE"

are independent instructions

Small code sizes,
high cycles per second

Low cycles per second,
large code sizes

Transistors used for storing
complex instructions

Spends more transistors
on memory registersUploaded By: Jibreel BornatSTUDENTS-HUB.com

Example CISC ISA: Intel 80386

12 addressing modes:

❖ Register.

❖ Immediate.

❖ Direct.

❖ Base.

❖ Base + Displacement.

❖ Index + Displacement.

❖ Scaled Index + Displacement.

❖ Based Index.

❖ Based Scaled Index.

❖ Based Index + Displacement.

❖ Based Scaled Index + Displacement.

❖ Relative.

Operand sizes:

• Can be 8, 16, 32, 48, 64, or 80 bits long.

• Also supports string operations.

Instruction Encoding:

• The smallest instruction is one byte.

• The longest instruction is 12 bytes

long.

• The first bytes generally contain the

opcode, mode specifiers, and register

fields.

• The remainder bytes are for address

displacement and immediate data.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

RISC Example: MIPS32 Architecture

• All instructions are 32-bit wide

• Instruction Categories
– Load/Store

– Integer Arithmetic

– Jump and Branch

– Floating Point

– Memory Management

• Three Instruction Formats

• Five Addressing Modes

R0 - R31

PC

HI

LO

Registers

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

R-type

I-type

J-type

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Things to Remember …

❖Major reasons for GPR architectures

 Registers are faster than memory and reduce memory traffic

 General-Purpose Registers are easier for a compiler to use

 Register-Register architectures are simpler than Register-Memory

❖ Programs with aligned memory references run faster

 Misalignment requires multiple aligned memory references

❖ Addressing modes specify …

 Registers, constants, and memory locations

 Simple addressing modes are frequently used

 32 bits can address at most 4GB, 64 bits can address 16 Exabytes

❖Most frequently used instructions are the simplest ones

❖ Instruction encoding impacts size and ease of decoding
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Overview of the MIPS32
Architecture (Microprocessor
without Interlocked Pipelined

Stages) Processor

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Logical View of the MIPS32 Processor

Memory

Up to 232 bytes = 230 words

4 bytes per word

$0

$1

$2

$31

Hi Lo

ALU

$F0

$F1

$F2

$F31
FP

Arith

EPC

Cause

BadVaddr

Status

EIU FPU

TMU

Execution &

Integer Unit

(Main proc)

Floating

Point Unit

(Coproc 1)

Trap &

Memory Unit

(Coproc 0)

. . .

. . .

Integer
mul/div

Arithmetic &

Logic Unit

32 General

Purpose

Registers

Integer

Multiplier/Divider

32 Floating-Point

Registers

Floating-Point

Arithmetic Unit

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ 32 General Purpose Registers (GPRs)

 32-bit registers are used in MIPS32

 Register 0 is always zero

 Any value written to R0 is discarded

❖ Special-purpose registers LO and HI

 Hold results of integer multiply and divide

❖ Special-purpose program counter PC

❖ 32 Floating Point Registers (FPRs)

 Floating Point registers can be either 32-bit or 64-bit

 A pair of registers is used for double-precision floating-point

Overview of the MIPS Registers

GPRs

$0 – $31

LO

HI

PC

FPRs

$F0 – $F31

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS General-Purpose Registers

❖ 32 General Purpose Registers (GPRs)

 Assembler uses the dollar notation to name registers

▪ $0 is register 0, $1 is register 1, …, and $31 is register 31

 All registers are 32-bit wide in MIPS32

 Register $0 is always zero

▪ Any value written to $0 is discarded

❖ Software conventions

 Software defines names to all registers

▪ To standardize their use in programs

 $8 - $15 are called $t0 - $t7

▪ Used for temporary values

 $16 - $23 are called $s0 - $s7

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS Register Conventions

Name Register Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$v0 – $v1 $2 – $3 Result values of a function

$a0 – $a3 $4 – $7 Arguments of a function

$t0 – $t7 $8 – $15 Temporary Values

$s0 – $s7 $16 – $23 Saved registers (preserved across call)

$t8 – $t9 $24 – $25 More temporaries

$k0 – $k1 $26 – $27 Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)

❖ Assembler can refer to registers by name or by number

 It is easier for you to remember registers by name

 Assembler converts register name to its corresponding number

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS Register File

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Instruction Formats

❖ All instructions are 32-bit wide, Three instruction formats:

❖ Register (R-Type)

 Register-to-register instructions

Op: operation code specifies the format of the instruction

❖ Immediate (I-Type)

 16-bit immediate constant is part in the instruction

❖ Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS Five Addressing Modes

1 Register Addressing:

Where the operand is a register (R-Type)

2 Immediate Addressing:

Where the operand is a constant in the instruction (I-Type, ALU)

3 Base or Displacement Addressing:

Where the operand is at the memory location whose address is the
sum of a register and a constant in the instruction (I-Type, load/store)

4 PC-Relative Addressing:

Where the address is the sum of the PC and the 16-address field in
the instruction shifted left 2 bits. (I-Type, branches)

5 Pseudodirect Addressing:

Where the jump address is the 26-bit jump target from the instruction
shifted left 2 bits concatenated with the 4 upper bits of the PC (J-
Type)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

27

MIPS Addressing
Modes/Instructio
n Formats

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS R-Type (ALU) Instruction Fields

❖ op: Opcode, basic operation of the instruction.

 For R-Type op = 0

❖ rs: The first register source operand.

❖ rt: The second register source operand.

❖ rd: The register destination operand.

❖ shamt: Shift amount used in constant shift operations.

❖ funct: Function, selects the specific variant of operation in the op

field.

OP rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Type: All ALU instructions that use three registers

add $1,$2,$3

sub $1,$2,$3

and $1,$2,$3

or $1,$2,$3
Examples:

Destination register in rd
Operand register in rt

Operand register in rs

R-Type = Register Type

Register Addressing used (Mode 1)

1st operand 2nd operand Destination

Rs, rt , rd

are register specifier fields

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS ALU I-Type Instruction Fields

I-Type ALU instructions that use two registers and an immediate value.

❖ op: Opcode, operation of the instruction.

❖ rs: The register source operand.

❖ rt: The result destination register.

❖ immediate: Constant second operand for ALU instruction.

OP rs rt immediate

6 bits 5 bits 5 bits 16 bits

add immediate: addi $1,$2,100

and immediate andi $1,$2,10

Examples:

Result register in rt
Source operand register in rs

Constant operand

in immediate

I-Type = Immediate Type

Immediate Addressing used (Mode 2)

1st operand 2nd operandDestination

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS Load/Store I-Type Instruction Fields

❖ op: Opcode, operation of the instruction.

 For load op = 35, for store op = 43.

❖ rs: The register containing memory base address.

❖ rt: For loads, the destination register. For stores, the

source register of value to be stored.

❖ address: 16-bit memory address offset in bytes added to

base register.

OP rs rt address

6 bits 5 bits 5 bits 16 bits

Store word: sw $3, 500($4)

Load word: lw $1, 32($2)

Examples:

Offset base register in rssource register in rt

Destination register in rt Offset
base register in rs

Signed address

offset in bytes

Base or Displacement Addressing used (Mode 3)

Base Src./Dest.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS Branch I-Type Instruction Fields

❖ op: Opcode, operation of the instruction.

❖ rs: The first register being compared

❖ rt: The second register being compared.

❖ address: 16-bit memory address branch target offset in

words added to PC to form branch address.

OP rs rt address

6 bits 5 bits 5 bits 16 bits

Branch on equal beq $1,$2,100

Branch on not equal bne $1,$2,100

Examples:

Register in rs

Register in rt offset in bytes equal to

instruction address field x 4

Signed address

offset in words

PC-Relative Addressing used (Mode 4)

Added

to PC to form

branch target

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

J-Type = Jump Type

Pseudodirect Addressing used (Mode 5)

MIPS J-Type Instruction Fields

❖ op: Opcode, operation of the instruction.

 Jump j op = 2

 Jump and link jal op = 3

❖ jump target: jump memory address in words.

J-Type: Include jump j, jump and link jal

OP jump target

6 bits 26 bits

jump target = 2500

4 bits 26 bits 2 bits

0 0

PC(31-28)

Effective 32-bit jump address: PC(31-28),jump_target,00

From

PC+4

Jump j 10000

Jump and link jal 10000

Examples:

Jump memory address in bytes equal to

instruction field jump target x 4

Jump target

in words

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

