Chapter 9 – Welding, Bonding and the Design of Permanent Joints **9** Introduction

Uploaded By: anonymous

9 Introduction

1	2	3	4 Tensile	5 Yield	6	7	8
UNS No.	SAE and/or AISI No.	Process- ing	Strength, MPa (kpsi)	Strength, MPa (kpsi)	Elongation in 2 in, %	Reduction in Area, %	Brinell Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170

Figure 9-1

The AWS standard welding symbol showing the location of the symbol elements.

Figure 9–2

Arc- and gas-weld symbols.

Figure 9-3

Fillet welds. (*a*) The number indicates the leg size; the arrow should point only to one weld when both sides are the same. (*b*) The symbol indicates that the welds are intermittent and staggered 60 mm along on 200-mm centers.

Figure 9-4

The circle on the weld symbol indicates that the welding is to go all around.

Uploaded By: anonymous 5

Butt or groove welds: (*a*) square butt-welded on both sides; (*b*) single |V| with 60° bevel and root opening of 2 mm; (*c*) double V; (*d*) single bevel.

Figure 9-6

Special groove welds: (*a*) T joint for thick plates; (*b*) U and J welds for thick plates; (*c*) corner weld (may also have a bead weld on inside for greater strength but should not be used for heavy loads); (*d*) edge weld for sheet metal and light loads.

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}	
Fatigue	Reinforced butt weld	1.2	
Stress-Concentration	Toe of transverse fillet weld	1.5	
Factors, K_{fs}	End of parallel fillet weld	2.7	
	T-butt joint with sharp corners	2.0	

A typical butt joint.

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}
Fatigue	Reinforced butt weld	1.2
Stress-Concentration	Toe of transverse fillet weld	1.5
Factors, K_{fs}	End of parallel fillet weld	2.7
	T-butt joint with sharp corners	2.0

A transverse fillet weld.

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}
Fatigue	Reinforced butt weld	1.2
Stress-Concentration	Toe of transverse fillet weld	1.5
Factors, K_{fs}	End of parallel fillet weld	2.7
	T-butt joint with sharp corners	2.0

Figure 9-11

Parallel fillet welds.

Uploaded By: anonymous₁₀

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}
Fatigue	Reinforced butt weld	1.2
Stress-Concentration	Toe of transverse fillet weld	1.5
Factors, K_{fs}	End of parallel fillet weld	2.7
	T-butt joint with sharp corners	2.0

9.2 Butt and Fillet Welds

STUDENTS-HUB.com

Uploaded By: anonymous₁₂

9.3 Stresses in Welded Joints in Torsion (9.4 in Bending)

9.3 Stresses in Welded Joints in Torsion

9.4 Stresses in Welded Joints in Bending

STUDENTS-HUB.com

Uploaded By: anonymous₁₃

Figure 9-12

This is a *moment connection;* such a connection produces *torsion* in the welds. The shear stresses shown are resultant stresses.

Uploaded By: anonymous₁₄

8.12 Bolted and Riveted Joints Loaded in Shear

(8–56)

$$\overline{x} = \frac{A_1 x_1 + A_2 x_2 + A_3 x_3 + A_4 x_4 + A_5 x_5}{A_1 + A_2 + A_3 + A_4 + A_5} = \frac{\sum_{i=1}^{n} A_i x_i}{\sum_{i=1}^{n} A_i}$$
$$\overline{y} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3 + A_4 y_4 + A_5 y_5}{A_1 + A_2 + A_3 + A_4 + A_5} = \frac{\sum_{i=1}^{n} A_i y_i}{\sum_{i=1}^{n} A_i}$$

Figure 8-26 *A*₃ Centroid of pins, rivets, *A*₂ A_4 • *G* A_1 v $\bullet A_5$ х 0

or bolts.

Uploaded By: anonymous₁₅

Table 9-1

Torsional Properties of Fillet Welds*

Weld	Throat Area	Location of G	Unit Second Polar Moment of Area
1. \overrightarrow{G} \overrightarrow{G} \overrightarrow{d} \overrightarrow{g}	A = 0.707 hd	$\overline{x} = 0$ $\overline{y} = d/2$	$J_{\mu}=d^3/12$
2. $\downarrow b \rightarrow \downarrow$ $\overline{y} \downarrow \qquad G \qquad \downarrow$	A = 1.414hd	$\overline{x} = b/2$ $\overline{y} = d/2$	$J_u = \frac{d(3b^2 + d^2)}{6}$
3. $b \rightarrow d$ $\overline{y} \qquad G \qquad \downarrow$ $\overline{y} \qquad \overline{x} \leftarrow$	A = 0.707h(b + d)	$\overline{x} = \frac{b^2}{2(b+d)}$ $\overline{y} = \frac{d^2}{2(b+d)}$	$J_{u} = \frac{(b+d)^4 - 6b^2d^2}{12(b+d)}$
4. $(\leftarrow b \rightarrow)$ \overrightarrow{y} (\overrightarrow{G}) (\overrightarrow{d}) \overrightarrow{y} (\overrightarrow{x}) (\leftarrow)	A = 0.707h(2b + d)	$\overline{x} = \frac{b^2}{2b+d}$ $\overline{y} = d/2$	$J_u = \frac{8b^3 + 6bd^2 + d^3}{12} - \frac{b^4}{2b+d}$
5. $\leftarrow b \rightarrow$ \overline{y} $\bigcirc G$ $\stackrel{\uparrow}{d}$ $\stackrel{\downarrow}{d}$ \rightarrow \overline{x} \leftarrow	A = 1.414h(b+d)	$\overline{x} = b/2$ $\overline{y} = d/2$	$J_u = \frac{(b+d)^3}{6}$
6. r G	$A = 1.414\pi hr$		$J_u = 2\pi r^3$

STUDENTS-HUB COM of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of unit width.

Uploaded By: anonymous₁₆

EXAMPLE 9–1 A 50-kN load is transferred from a welded fitting into a 200-mm steel channel as illustrated in Fig. 9–14. Estimate the maximum stress in the weld.

EXAMPLE 9–1 A 50-kN load is transferred from a welded fitting into a 200-mm steel channel as illustrated in Fig. 9–14. Estimate the maximum stress in the weld.

(*a*) Label the ends and corners of each weld by letter. See Fig. 9–15. Sometimes it is desirable to label each weld of a set by number.

Figure 9–15

Diagram showing the weld geometry on a single plate; all dimensions in millimeters. Note that *V* and *M* represent the reaction loads applied by the welds *to the plate*.

Then the primary shear stress is

$$\tau' = \frac{V}{A} = \frac{25(10)^3}{1280} = 19.5 \text{ MPa}$$

Table 9-1

Torsional Properties of Fillet Welds*

Weld	Throat Area	Location of G	Unit Second Polar Moment of Area
1. \overrightarrow{G} \overrightarrow{d} \overrightarrow{g}	A = 0.707hd	$\overline{x} = 0$ $\overline{y} = d/2$	$J_{\mu}=d^3/12$
2. $(\downarrow b \rightarrow)$ $\overline{y} \downarrow $ \overline{x} (\downarrow)	A = 1.414hd	$\overline{x} = b/2$ $\overline{y} = d/2$	$J_{u} = \frac{d(3b^{2} + d^{2})}{6}$
3. $b \rightarrow d$ $\overline{y} \qquad G$ $d \qquad d$ $d \qquad d$ $d \qquad d$ $d \qquad d$	A = 0.707h(b + d)	$\overline{x} = \frac{b^2}{2(b+d)}$ $\overline{y} = \frac{d^2}{2(b+d)}$	$J_u = \frac{(b+d)^4 - 6b^2d^2}{12(b+d)}$
4. $(\leftarrow b \rightarrow)$ \overline{y} (\downarrow) $\rightarrow \overline{x} \leftarrow$	A = 0.707h(2b + d)	$\overline{x} = \frac{b^2}{2b+d}$ $\overline{y} = d/2$	$J_{\mu} = \frac{8b^3 + 6bd^2 + d^3}{12} - \frac{b^4}{2b+d}$
5. $\leftarrow b \rightarrow$ \overline{y} \overrightarrow{G} \overrightarrow{d} \overrightarrow{d} \overrightarrow{x} \leftarrow	A = 1.414h(b + d)	$\overline{x} = b/2$ $\overline{y} = d/2$	$J_u = \frac{(b+d)^3}{6}$
6. (r) G	$A = 1.414\pi hr$		$J_u = 2\pi r^3$

STUDENTS-HUB COMMENTATION OF Weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of unit width.

Uploaded By: anonymous₂₀

Then the primary shear stress is

$$\tau' = \frac{V}{A} = \frac{25(10)^3}{1280} = 19.5 \text{ MPa}$$

(b) Estimate the primary shear stress τ' . As shown in Fig. 9–14, each plate is welded to the channel by means of three 6-mm fillet welds. Figure 9–15 shows that we have divided the load in half and are considering only a single plate. From case 4 of Table 9–1 we find the throat area as

 $A = 0.707(6)[2(56) + 190] = 1280 \text{ mm}^2$

Uploaded By: anonymous₂₁

(c) Draw the τ' stress, to scale, at each lettered corner or end.

(d) Locate the centroid of the weld pattern. Using case 4 of Table 9-1, we find

$$\overline{x} = \frac{(56)^2}{2(56) + 190} = 10.4 \text{ mm}$$

Uploaded By: anonymous₂₃

(e) Find the distances r_i (see Fig. 9–16):

$$r_A = r_B = [(190/2)^2 + (56 - 10.4)^2]^{1/2} = 105 \text{ mm}$$

 $r_C = r_D = [(190/2)^2 + (10.4)^2]^{1/2} = 95.6 \text{ mm}$

Uploaded By: anonymous₂₄

(f) Find J. Using case 4 of Table 9–1 again, with Eq. (9–6), we get $J = 0.707(6) \left[\frac{8(56)^3 + 6(56)(190)^2 + (190)^3}{12} - \frac{(56)^4}{2(56) + 190} \right]$ $= 7.07(10)^6 \text{ mm}^4$ 4. A = 0.707h(2b + d) $\bar{x} = \frac{b^2}{2b + d}$ $J_u = \frac{8b^3 + 6bd^2 + d^3}{12} - \frac{b^4}{2b + d}$ $\bar{y} = d/2$

$$J = 0.707 h J_u$$

(9-6)

Uploaded By: anonymous

(g) Find M:

$$M = Fl = 25(100 + 10.4) = 2760 \,\mathrm{N} \cdot \mathrm{m}$$

Uploaded By: anonymous₂₆

(h) Estimate the secondary shear stresses τ'' at each lettered end or corner:

(*j*) At each point labeled, combine the two stress components as vectors (since they apply to the same area). At point *A*, the angle that τ_A'' makes with the vertical, α , is also the angle r_A makes with the horizontal, which is $\alpha = \tan^{-1}(45.6/95) = 25.64^{\circ}$. This angle also applies to point *B*. Thus

$$\tau_A = \tau_B = \sqrt{(19.5 - 41.0 \sin 25.64^\circ)^2 + (41.0 \cos 25.64^\circ)^2} = 37.0 \text{ MPa}$$

Similarly, for *C* and *D*, $\beta = \tan^{-1}(10.4/95) = 6.25^{\circ}$. Thus

$$\tau_C = \tau_D = \sqrt{(19.5 + 37.3 \sin 6.25^\circ)^2 + (37.3 \cos 6.25^\circ)^2} = 43.9 \text{ MPa}$$

(*k*) Identify the most highly stressed point:

$$au_{\max} = au_C = au_D = 43.9 \text{ MPa}$$

Uploaded By: anonymous₂₈

9.3 Stresses in Welded Joints in Torsion (9.4 in Bending)

9.3 Stresses in Welded Joints in Torsion

9.4 Stresses in Welded Joints in Bending

STUDENTS-HUB.com

Uploaded By: anonymous₂₉

9.4 Stresses in Welded Joints in Bending

Figure 9-17

A rectangular cross-section cantilever welded to a support at the top and bottom edges.

Uploaded By: anonymous₃₀

9.4 Stresses in Welded Joints in Bending

Table 9-2

Bending Properties of Fillet Welds*

Weld	Throat Area	Location of G	Unit Second Moment of Area
1. \overline{y} $G \stackrel{\uparrow}{d}$	A = 0.707hd	$\overline{x} = 0$ $\overline{y} = d/2$	$I_u = \frac{d^3}{12}$
2. $(\leftarrow b \rightarrow)$ \overline{y} (\downarrow)	A = 1.414hd	$\overline{x} = b/2$ $\overline{y} = d/2$	$I_u = \frac{d^3}{6}$
3. $(\begin{array}{c} \bullet & b \end{array}) \xrightarrow{\uparrow} \\ \hline \hline \\ \hline $	A = 1.414hb	$\overline{x} = b/2$ $\overline{y} = d/2$	$I_u = \frac{bd^2}{2}$
4. $($	A = 0.707h(2b + d)	$\overline{x} = \frac{b^2}{2b+d}$ $\overline{y} = d/2$	$I_u = \frac{d^2}{12}(6b + d)$
JDEN T S-HUB.com			Uploaded By: anonymous

$$5. \qquad 4 = 0.707h(b + 2d) \qquad \overline{x} = b/2 \qquad I_u = \frac{2d^3}{3} - 2d^2\overline{y} + (b + 2d)\overline{y}^2 \qquad \underbrace{\frac{x}{y}}_{\underline{y}} = \frac{d^2}{b + 2d}$$

$$6. \qquad 4 = 1.414h(b + d) \qquad \overline{x} = b/2 \qquad I_u = \frac{d^2}{6}(3b + d) \qquad \underbrace{\frac{x}{y}}_{\underline{y}} = d/2 \qquad I_u = \frac{d^2}{6}(3b + d) \qquad \underbrace{\frac{x}{y}}_{\underline{y}} = d/2 \qquad I_u = \frac{d^2}{6}(3b + d) \qquad \underbrace{\frac{x}{y}}_{\underline{y}} = d/2 \qquad I_u = \frac{2d^3}{3} - 2d^2\overline{y} + (b + 2d)\overline{y}^2 \qquad \underbrace{\frac{x}{y}}_{\underline{y}} = \frac{d^2}{b + 2d}$$

$$8. \qquad \underbrace{| \underbrace{x} + b \xrightarrow{y}}_{\underline{y}} \qquad A = 0.707h(b + 2d) \qquad \overline{x} = b/2 \qquad I_u = \frac{2d^3}{3} - 2d^2\overline{y} + (b + 2d)\overline{y}^2 \qquad \underbrace{\frac{x}{y}}_{\underline{y}} = \frac{d^2}{b + 2d}$$

$$8. \qquad \underbrace{| \underbrace{x} + b \xrightarrow{y}}_{\underline{y}} \qquad A = 1.414h(b + d) \qquad \underbrace{\overline{x}}_{\underline{y}} = b/2 \qquad I_u = \frac{d^2}{6}(3b + d) \qquad \underbrace{\frac{x}{y}}_{\underline{y}} = d/2 \qquad \underbrace{\frac{x}{y}}_{$$

Uploaded By: anonymous

9.5 The Strength of Welded Joints

Table 9–3	AWS Electrode	Tensile Strength	Yield Strength,	Percent
Minimum Weld-Metal	Number*	kpsi (MPa)	kpsi (MPa)	Elongation
Properties	E60xx	62 (427)	50 (345)	17–25
-	E70xx	70 (482)	57 (393)	22
	E80xx	80 (551)	67 (462)	19
	E90xx	90 (620)	77 (531)	14–17
	E100xx	100 (689)	87 (600)	13-16
	E120xx	120 (827)	107 (737)	14

*The American Welding Society (AWS) specification code numbering system for electrodes. This system uses an E prefixed to a four- or five-digit numbering system in which the first two or three digits designate the approximate tensile strength. The last digit includes variables in the welding technique, such as current supply. The next-to-last digit indicates the welding position, as, for example, flat, or vertical, or overhead. The complete set of specifications may be obtained from the AWS upon request.

9.5 The Strength of Welded Joints

Table 9–4	Type of Loading	Type of Weld	Permissible Stress	n *
Stresses Permitted by the	Tension	Butt	$0.60S_{\rm v}$	1.67
AISC Code for Weld	Bearing	Butt	$0.90S_{y}$	1.11
Metal	Bending	Butt	$0.60 - 0.66S_y$	1.52-1.67
	Simple compression	Butt	$0.60S_{y}$	1.67
	Shear	Butt or fillet	$0.30S_{ut}^{\dagger}$	

*The factor of safety n has been computed by using the distortion-energy theory.

[†]Shear stress on base metal should not exceed $0.40S_{y}$ of base metal.

	Table 9–5	Type of Weld	K _{fs}
	Fatigue	Reinforced butt weld	1.2
	Stress-Concentration	Toe of transverse fillet weld	1.5
I	Factors, K_{fs}	End of parallel fillet weld	2.7
		T-butt joint with sharp corners	2.0

Table 9-6

Allowable Steady Loads and Minimum Fillet Weld Sizes

Sche	dule A: Al	lowable l	oad for	Various	Sizes of	Fillet We	lds	Schedule B: Minimum Fillet Weld Size, h
		Strength L	evel of We	ld Metal (I	EXX)		_	
	60*	70*	80	90*	100	110*	120	
	Allowable	e shear stress or partia	s on throat, l penetratio	ksi (1000 j n groove w	ps <mark>i)</mark> of fillet /eld	weld		
τ =	18.0	21.0	24.0	27.0	30.0	33.0	36.0	
	Allo	wable Unit I	Force on Fi	llet Weld, I	cip/linear in			Material Thickness of Weld Size,
$^{\dagger}f =$	12.73h	14.85h	16.97h	19.09h	21.21h	23.33h	25.45h	Thicker Part Joined, in in
Leg Size <i>h</i> , in		Allowable U	Jnit Force fork	or Various p/linear in	Sizes of Fil	llet Welds		*To $\frac{1}{4}$ incl. $\frac{1}{8}$ Over $\frac{1}{4}$ To $\frac{1}{2}$ $\frac{3}{16}$ Over $\frac{1}{4}$ To $\frac{3}{2}$ $\frac{1}{4}$
1	12.73	14.85	16.97	19.09	21.21	23.33	25.45	† Over 3 To 1^{1} 5
7/8	11.14	12.99	14.85	16.70	18.57	20.41	22.27	<u> </u>
3/4	9.55	11.14	12.73	14.32	15.92	17.50	19.09	Over $1\frac{1}{2}$ To $2\frac{1}{4}$ $\frac{3}{8}$
5/8	7.96	9.28	10.61	11.93	13.27	14.58	15.91	Over $2\frac{1}{4}$ To 6 $\frac{1}{2}$
1/2	6.37	7.42	8.48	9.54	10.61	11.67	12.73	Over 6 $\frac{5}{9}$
7/16	5.57	6.50	7.42	8.35	9.28	10.21	11.14	
3/8	4.77	5.57	6.36	7.16	7.95	8.75	9.54	Not to exceed the thickness of the thinner part.
5/16	3.98	4.64	5.30	5.97	6.63	7.29	7.95	*Minimum size for bridge application does not go below $\frac{3}{16}$ in.
1/4	3.18	3.71	4.24	4.77	5.30	5.83	6.36	[†] For minimum fillet weld size, schedule does not go above $\frac{5}{16}$ in fi
3/16	2.39	2.78	3.18	3.58	3.98	4.38	4.77	weld for every $\frac{1}{4}$ in material.
1/8	1.59	1.86	2.12	2.39	2.65	2.92	3.18	
1/16	0.795	0.930	1.06	1.19	1.33	1.46	1.59	

*Fillet welds actually tested by the joint AISC-AWS Task Committee.

 $^{\dagger}f = 0.707h \tau_{\text{all}}$.

9.6 Static Loading

EXAMPLE 9–4 Perform an adequacy assessment of the statically loaded welded cantilever carrying 500 lbf depicted in Fig. 9–20. The cantilever is made of AISI 1018 HR steel and welded with a $\frac{3}{8}$ -in fillet weld as shown in the figure. An E6010 electrode was used, and the design factor was 3.0.

- (a) Use the conventional method for the weld metal.
- (b) Use the conventional method for the attachment (cantilever) metal.
- (c) Use a welding code for the weld metal.

9.4 Stresses in Welded Joints in Bending

Table 9-2

Bending Properties of Fillet Welds*

Weld	Throat Area	Location of G	Unit Second Moment of Area
1. \overline{g}	A = 0.707hd	$\overline{x} = 0$ $\overline{y} = d/2$	$I_u = \frac{d^3}{12}$
2.	A = 1.414hd	$\overline{x} = b/2$ $\overline{y} = d/2$	$I_u = \frac{d^3}{6}$
3. $(\leftarrow b \rightarrow)$ \overline{y} $(\overrightarrow{x}) \leftarrow $	A = 1.414hb	$\overline{x} = b/2$ $\overline{y} = d/2$	$I_u = \frac{bd^2}{2}$
4. $\leftarrow b \rightarrow$	A = 0.707h(2b + d)	$\overline{x} = \frac{b^2}{2b+d}$ $\overline{y} = d/2$	$I_u = \frac{d^2}{12}(6b + d)$
JDEN TS HUB.com			Uploaded By: anonymou

EXAMPLE 9-4 Perform an adequacy assessment of the statically loaded welded cantilever carrying 500 lbf depicted in Fig. 9–20. The cantilever is made of AISI 1018 HR steel and welded with a $\frac{3}{8}$ -in fillet weld as shown in the figure. An E6010 electrode was used, and the design factor was 3.0.

(a) Use the conventional method for the weld metal.

STUDENTS-HUB.com

Uploaded By: anonymous₃₈

EXAMPLE 9-4 Perform an adequacy assessment of the statically loaded welded cantilever carrying 500 lbf depicted in Fig. 9–20. The cantilever is made of AISI 1018 HR steel and welded with a $\frac{3}{8}$ -in fillet weld as shown in the figure. An E6010 electrode was used, and the design factor was 3.0.

(a) Use the conventional method for the weld metal.

Table 9-3

Minimum Weld-MetalProperties

AWS Electrode Number*	Tensile Strength kpsi (MPa)	Yield Strength, kpsi (MPa)
E60xx	62 (427)	50 (345)
E70xx	70 (482)	57 (393)
E80xx	80 (551)	67 (462)
E90xx	90 (620)	77 (531)
E100xx	100 (689)	87 (600)
E120xx	120 (827)	107 (737)

From Table 9–3, $S_y = 50$ kpsi, $S_{ut} = 62$ kpsi.

Uploaded By: anonymous₃₉

EXAMPLE 9-4 Perform an adequacy assessment of the statically loaded welded cantilever carrying 500 lbf depicted in Fig. 9–20. The cantilever is made of AISI 1018 HR steel and welded with a $\frac{3}{8}$ -in fillet weld as shown in the figure. An E6010 electrode was used, and the design factor was 3.0.

(a) Use the conventional method for the weld ------1

Primary shear:

$$\tau' = \frac{F}{A} = \frac{500(10^{-3})}{1.06} = 0.472 \text{ kpsi}$$

Secondary shear:

$$\tau'' = \frac{Mr}{I} = \frac{500(10^{-3})(6)(1)}{0.353} = 8.50 \text{ kpsi}$$

The shear magnitude τ is from the vector addition

$$\tau = (\tau'^2 + \tau''^2)^{1/2} = (0.472^2 + 8.50^2)^{1/2} = 8.51$$
 kpsi

The factor of safety based on a minimum strength and the distortion-energy criterion is

$$n = \frac{S_{sy}}{\tau} = \frac{0.577(50)}{8.51} = 3.39$$

Since $n \ge n_d$, that is, $3.39 \ge 3.0$, the weld metal has satisfactory strength. STUDENTS-HUB.com Uploaded By: anonymous₄₀

جَافِيَعَهُرُ بِلَاتِيَتِيَتُ BIRZEIT UNIVERSITY

EXAMPLE 9-4

Perform an adequacy assessment of the statically loaded welded cantilever carrying 500 lbf depicted in Fig. 9–20. The cantilever is made of AISI 1018 HR steel and welded with a $\frac{3}{8}$ -in fillet weld as shown in the figure. An E6010 electrode was used, and the design factor was 3.0.

(a) Use the conventional method for the weld metal.

(b) Use the conventional method for the attachment (cantilever) metal.

1	2	3	4 Tensile	5 Yield	6	7	8
UNS No.	SAE and/or AISI No.	Process- ing	Strength, MPa (kpsi)	Strength, MPa (kpsi)	Elongation in 2 in, %	Reduction in Area, %	Brinell Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
STUDENTS-	HUB.com	CD	440 (64)	370 (54)	15	Uploaded By: an	onympys

EXAMPLE 9-4 Perform an adequacy assessment of the statically loaded welded cantilever carrying 500 lbf depicted in Fig. 9–20. The cantilever is made of AISI 1018 HR steel and welded with a $\frac{3}{8}$ -in fillet weld as shown in the figure. An E6010 electrode was used, and the design factor was 3.0.

(a) Use the conventional method for the weld metal.

(b) Use the conventional method for the attachment (cantilever) metal.

(b) From Table A–20, minimum strengths are $S_{ut} = 58$ kpsi and $S_y = 32$ kpsi. Then

$$\sigma = \frac{M}{I/c} = \frac{M}{bd^2/6} = \frac{500(10^{-3})6}{0.375(2^2)/6} = 12 \text{ kpsi}$$
$$n = \frac{S_y}{\sigma} = \frac{32}{12} = 2.67$$

Since $n < n_d$, that is, 2.67 < 3.0, the joint is unsatisfactory as to the attachment strength.

STUDENTS-HUB.com

Uploaded By: anonymous

In fatigue, the Gerber criterion is best:

$$n_f = \frac{1}{2} \left(\frac{0.67S_{ut}}{\tau_m} \right)^2 \frac{\tau_a}{S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2\tau_m S_{se}}{0.67S_{ut} \tau_a} \right)^2} \right]$$

 For the surface factor, an as-forged surface should always be assumed for weldments unless a superior finish is specified and obtained.

	Fact	Exponent	
Surface Finish	S _{ut} , kpsi	S _{ut} , MPa	Ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995
	Surface Finish Ground Machined or cold-drawn Hot-rolled As-forged	FactSurface FinishSurface FormulaGround1.34Machined or cold-drawn2.70Hot-rolled14.4As-forged39.9	Factor aSurface FinishSut/ kpsiSut/ MPaGround1.341.58Machined or cold-drawn2.704.51Hot-rolled14.457.7As-forged39.9272.

Uploaded By: anonymous

EXAMPLE 9-6 The AISI 1018 HR steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf $(F_a = F_m = 1000 \text{ lbf})$. Determine the fatigue factor of safety fatigue strength of the weldment.

$$n_{f} = \frac{1}{2} \left(\underbrace{0.67S_{ut}}_{\tau_{m}} \right)^{2} \frac{\tau_{a}}{S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2\tau_{m}S_{se}}{0.67S_{ut}\tau_{a}} \right)^{2}} \right]$$

Uploaded By: anonymous₄₅

EXAMPLE 9-6 The AISI 1018 HR steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf $(F_a = F_m = 1000 \text{ lbf})$. Determine the fatigue factor of safety fatigue strength of the weldment.

EXAMPLE 9-6 The AISI 1018 HR steel strap of Fig. 9-22 has a repeatedly applied load of 2000 lbf $(F_a = F_m = 1000 \text{ lbf})$. Determine the fatigue factor of safety fatigue strength of the weldment. W 4-×13-in I beam

1018

<E6010

1018

2000 lbf

repeatedly

applied (0-2000 lbf)

 $\frac{3}{8}$ in

2 in

 $\rightarrow \frac{1}{2}$ in \checkmark

BIRZEIT UNIVERSITY

2 3 8 1 **AWS Electrode Tensile Strength** Yield Strength, Number* kpsi (MPa) kpsi (MPa) SAE and/or Processrinell UNS No. AISI No. rdness ing E60xx 62 (427) 50 (345) E70xx 70 (482) 57 (393) G10060 1006 HR 86 E80xx 80 (551) 67 (462) CD 95 E90xx 90 (620) 77 (531) G10100 1010 HR 95 E100xx 87 (600) 100 (689) CD 105 E120xx 120 (827) 107 (737) G10150 HR 1015 101 CD 390 (20) 370 (717) 111 LX /111 G10180 1018 HR 25 50 400 (58) 220 (32) 116 CD 15 440 (64) 370 (54) 40 126 STUDENTS-HUR Uploaded By: anonymous₄₇

5/17/2020

Hot-rolled

As-forged

9.7 Fatigue Loading – Example 9-6

-0.718

-0.995

Surface Factor
$$k_a$$
 $k_a = aS_{ut}^b$ $k_a = 39.9(58)^{-0.995} = 0.702.$ Table 6-2Factor aExponentParameters for MarinSurface Finish S_{uv} kpsi S_{uv} MPaSurface ModificationGround1.341.58-0.085Factor, Eq. (6-19)Machined or cold-drawn2.704.51-0.265

Size Factor k_b

For axial loading there is no size effect, so

14.4

39.9

 $k_b = 1$

57.7

272.

Load Factor
$$k_c$$
 \blacktriangleright $k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$ $k_c = 0.59.$

 $S_{se} = 0.702(1)0.59(1)(1)(1)0.5(58) = 12.0$ kpsi

STUDENTS-HUB.com

Uploaded By: anonymous $_{\!\!\!\!\!\!_{48}}$

EXAMPLE 9-6 The AISI 1018 HR steel strap of Fig. 9-22 has a repeatedly applied load of 2000 lbf $(F_a = F_m = 1000 \text{ lbf})$. Determine the fatigue factor of safety fatigue strength of the weldment.

From Table 9–5, $K_{fs} = 2$. Only primary shear is present:

$$\tau'_a = \tau'_m = \frac{K_{fs}F_a}{A} = \frac{(1000)}{1.061} = 1885 \text{ psi}$$

Table 9–5FatigueStress-ConcentrationFactors, K_{fs}

Type of Weld	K _{fs}
Reinforced butt weld	1.2
Toe of transverse fillet weld	1.5
End of parallel fillet weld	2.7
T-butt joint with sharp corners	2.0

Weld	Throat Area	Location of G	Unit Second Moment of A	Polar Area	بَخَافِيَّةُ بَنَّ EIT UNIVERSITY
$\begin{array}{c} 1. \\ \hline g \\ \hline g \\ \hline \end{array} \end{array} \left(\begin{array}{c} \uparrow \\ d \\ \downarrow \end{array} \right)$	A = 0.707hd	$\overline{x} = 0$ $\overline{y} = d/2$	$J_u = d^3/12$		
2. $(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \hline \end{array} \end{array}) \xrightarrow{\bullet} G \begin{pmatrix} \uparrow \\ d \\ \downarrow \\ \hline \end{array} \end{pmatrix}$	A = 1.414hd	$\overline{x} = b/2$ $\overline{y} = d/2$	Torsional Proper	ties of Fillet	Welds*
$\rightarrow \overline{x} \leftarrow$	A = 1.414((0.375)(2) = 1	.061 in ²		
Weld	Throat Area	Location of G	Unit Second Moment	of Area	
1. $\overline{g} \downarrow \overline{g} \downarrow$	A = 0.707 hd	$\overline{x} = 0$ $\overline{y} = d/2$	$I_u = \frac{d^3}{12}$		
2. $(\leftarrow b \rightarrow)$ $\overline{y} \downarrow \qquad G \qquad \downarrow$	A = 1.414hd	$\overline{x} = b/2$ $\overline{y} = d/2$	$I_u = \frac{d^3}{6}$ Table 9–2 Bending Properties	s of Fillet W	elds*
$ \overrightarrow{x} \leftarrow $ $3. \overleftarrow{b} \rightarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow $	A = 1.414hb	$\overline{x} = b/2$ $\overline{y} = d/2$	$I_u = \frac{bd^2}{2}$		
<u>⊽↓</u> ↓ STUĐEN T S-HUB.co	m			Uploaded E	By: anonymous ₅₀

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}
Fatigue	Reinforced butt weld	1.2
Stress-Concentration	Toe of transverse fillet weld	1.5
Factors, K_{fs}	End of parallel fillet weld	2.7
	T-butt joint with sharp corners	2.0

Uploaded By: anonymous₅₁

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}
Fatigue	Reinforced butt weld	1.2
Stress-Concentration	Toe of transverse fillet weld	1.5
Factors, K_{fs}	End of parallel fillet weld	2.7
	T-butt joint with sharp corners	2.0

Uploaded By: anonymous₅₂

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}
Fatigue	Reinforced butt weld	1.2
Stress-Concentration	Toe of transverse fillet weld	1.5
Factors, K_{fs}	End of parallel fillet weld	2.7
	T-butt joint with sharp corners	2.0

9.1 Welding Symbols

Table 9–5	Type of Weld	K _{fs}
Fatigue	Reinforced butt weld	1.2
Stress-Concentration	Toe of transverse fillet weld	1.5
Factors, K_{fs}	End of parallel fillet weld	2.7
	T-butt joint with sharp corners	2.0

Uploaded By: anonymous₅₄

EXAMPLE 9-6 The AISI 1018 HR steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf $(F_a = F_m = 1000 \text{ lbf})$. Determine the fatigue factor of safety fatigue strength of the weldment.

From Table 9–5, $K_{fs} = 2$. Only primary shear is present:

$$\tau'_a = \tau'_m = \frac{K_{fs}F_a}{A} = \frac{2(1000)}{1.061} = 1885 \text{ psi}$$

Table 9-5

Fatigue Stress-Concentration Factors, K_{fs}

Type of WeldK_{fs}Reinforced butt weld1.2Toe of transverse fillet weld1.5End of parallel fillet weld2.7T-butt joint with sharp corners2.0

EXAMPLE 9-6 The AISI 1018 HR steel strap of Fig. 9–22 has a repeatedly applied load of 2000 lbf $(F_a = F_m = 1000 \text{ lbf})$. Determine the fatigue factor of safety fatigue strength of the weldment.

$$n_f = \frac{1}{2} \left(\frac{0.67S_{ut}}{\tau_m} \right)^2 \frac{\tau_a}{S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2\tau_m S_{se}}{0.67S_{ut} \tau_a} \right)^2} \right]$$

$$n_{f} = \frac{1}{2} \left(\frac{0.67S_{ut}}{\tau_{m}} \right)^{2} \frac{\tau_{a}}{S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2\tau_{m}S_{se}}{0.67S_{ut}\tau_{a}} \right)^{2}} \right]$$
$$n_{f} = \frac{1}{2} \left[\frac{0.67(58)}{1.885} \right]^{2} \frac{1.885}{12.0} \left\{ -1 + \sqrt{1 + \left[\frac{2(1.885)12.0}{0.67(58)1.885} \right]^{2}} \right\} = 5.85$$

Uploaded By: anonymous₅₆

STUDENTS HUB.com

Wire Spring

Flat Spring

Uploaded By: anonymous₅₇

10.1 Stresses in Helical Springs

Figure 10-1

(*a*) Axially loaded helical spring; (*b*) free-body diagram showing that the wire is subjected to a direct shear and a torsional shear.

(b)

Uploaded By: anonymous₅₈

10.1 Stresses in Helical Springs

$$\tau_{\max} = \frac{Tr}{J} + \frac{F}{A} \quad \square \qquad \tau = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2} \quad \square \qquad \tau = K_s \frac{8FD}{\pi d^3}$$

Now we define the *spring index*

$$C = \frac{D}{d}$$

where K_s is a *shear stress-correction factor* and is defined by the equation

$$K_s = \frac{2C+1}{2C}$$

Uploaded By: anonymous₅₉

10.2 The Curvature Effect

Without Curvature Effect

$$\tau_{\max} = \frac{Tr}{J} + \frac{F}{A} \quad \Longrightarrow \quad \tau = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2} \quad \Longrightarrow \quad \tau = K_s \frac{8FD}{\pi d^3}$$

Shear stress correction factor $K_s = \frac{2C+1}{2C}$

With Curvature Effect

$$\tau_{\max} = \frac{Tr}{J} + \frac{F}{A} \qquad \Longrightarrow \qquad \tau = \frac{8FD}{\pi d^3} + \frac{4F}{\pi d^2} \qquad \Longrightarrow \qquad \tau = K_B \frac{8FD}{\pi d^3}$$
$$\tau = K_W \frac{8FD}{\pi d^3}$$

Bergsträsser factor $K_B = \frac{4C+2}{4C-3}$ STUDENTS-HUB.com Wahl $K_W = \frac{4C - 1}{4C - 4} + \frac{0.615}{C}$

Uploaded By: anonymous₆₀

10.3 Deflection of Helical Springs

جَافِيَّةُ بِنَائِيَةً

Total Strain Energy

$$U = \frac{T^2 l}{2GJ} + \frac{F^2 l}{2AG}$$

$$U = \frac{4F^2D^3N}{d^4G} + \frac{2F^2DN}{d^2G}$$

Castigliano's Theorem

$$y = \frac{\partial U}{\partial F} = \frac{8FD^3N}{d^4G} + \frac{4FDN}{d^2G} \approx \frac{8FD^3N}{d^4G}$$
$$k \approx \frac{d^4G}{8D^3N}$$

Uploaded By: anonymous₆₁

10.4 Compression Springs

Figure 10-2

Types of ends for compression springs: (*a*) both ends plain; (*b*) both ends squared; (*c*) both ends squared and ground; (*d*) both ends plain and ground.

left hand

(b) Squared or closed end, right hand (d) Plain end, ground, left hand

Type of Spring Ends				
Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground
End coils, N_e	0	1	2	2
Total coils, N_t	Na	$N_a + 1$	$N_a + 2$	$N_a + 2$
Free length, L_0	$pN_a + d$	$p(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$
Solid length, Ls	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t
Pitch, p	$(L_0 - d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$

Table 10-1

Formulas for the Dimensional Characteristics of Compression-Springs. $(N_a = \text{Number of}$ Active Coils) Source: From Design Handbook, 1987, p. 32. Courtes Not Associated Spring.

Uploaded By: anonymous

Chapter 10 – Mechanical Springs

10.5 Stability

Critical Deflection

(10–10)

 $y_{\rm cr} = L_0 C_1' \left[1 - \left(1 - \frac{C_2'}{\lambda_{\rm eff}^2} \right)^{1/2} \right]$

Effective Slenderness ratio

$$\lambda_{\rm eff} = \frac{\alpha L_0}{D} \tag{10-11}$$

Table 10-2

End-Condition Constants α for Helical Compression Springs*

End Condition	Constant α
Spring supported between flat parallel surfaces (fixed ends)	0.5
One end supported by flat surface perpendicular to spring axis (fixed); other end pivoted (hinged)	0.707
Both ends pivoted (hinged)	1
One end clamped; other end free	2

*Ends supported by flat surfaces must be squared and ground.

Dimensionless Elastic Constants

$$C_1' = \frac{E}{2(E-G)}$$
$$C_2' = \frac{2\pi^2(E-G)}{2G+E}$$

Uploaded By: anonymous

10.5 Stability

10.5 Stability

Critical Deflection
$$y_{cr} = L_0 C'_1 \left[1 - \left(1 - \frac{C'_2}{\lambda_{eff}^2} \right)^{1/2} \right]$$
 (10–10)
To ensure stability *y* (*Deflection*) must be < y_{cr} \longrightarrow $\frac{C'_2}{\lambda_{eff}^2} < 1$

To ensure stability y (*Deflection*) must be $< y_{cr}$

$$L_0 < \frac{\pi D}{\alpha} \left[\frac{2(E-G)}{2G+E} \right]^{1/2}$$
(10–12)

For steels, this turns out to be (No Bucking occurs):

$$L_0 < 2.63 \frac{D}{\alpha}$$

Uploaded By: anonymous₆₅

Table 10–3 High-Carbon and Allov	Name of Material	Similar Specifications	Description
Spring Steels Source: From Harold C. R. Carlson, "Selection and Application of Spring Materials," <i>Mechanical</i> <i>Engineering</i> , vol. 78, 1956, pp. 331–334.	Music wire, 0.80–0.95 <i>C</i>	UNS G10850 AISI 1085 ASTM A228-51	This is the best, toughest, and most widely used of all spring materials for small springs. It has the highest tensile strength and can withstand higher stresses under repeated loading than any other spring material. Available in diameters 0.12 to 3 mm (0.005 to 0.125 in). Do not use above 120°C (250°F) or at subzero temperatures.
	Oil-tempered wire, 0.60–0.70 <i>C</i>	UNS G10650 AISI 1065 ASTM 229-41	This general-purpose spring steel is used for many types of coil springs where the cost of music wire is prohibitive and in sizes larger than available in music wire. Not for shock or impact loading. Available in diameters 3 to 12 mm (0.125 to 0.5000 in), but larger and smaller sizes may be obtained. Not for use above 180°C (350°F) or at subzero temperatures.
DENTS-HUB.com	Hard-drawn wire, 0.60–0.70 <i>C</i>	UNS G10660 AISI 1066 ASTM A227-47	This is the cheapest general-purpose spring steel and should be used only where life, accuracy, and deflection are not too important. Available in diameters 0.8 to 12 mm (0.031 to 0.500 in). Not for use above 120°C (250°F) or at subzero temperatures

Table 10-4

Constants A and m of $S_{ut} = A/d^m$ for Estimating Minimum Tensile Strength of Common Spring Wires Source: From Design Handbook, 1987, p. 19. Courtesy of Associated Spring.

Material	ASTM No.	Exponent m	Diameter, in	A, kpsi · in ^m	Diameter, mm	A, MPa · mm ^m	Relative Cost of Wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire ^{\dagger}	A229	0.187	0.020-0.500	147	0.5-12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028-0.500	140	0.7-12.7	1783	1.0
Chrome-vanadium wire [§]	A232	0.168	0.032-0.437	169	0.8-11.1	2005	3.1
Chrome-silicon wire ^{II}	A401	0.108	0.063-0.375	202	1.6–9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013-0.10	169	0.3-2.5	1867	7.6–11
		0.263	0.10-0.20	128	2.5-5	2065	
		0.478	0.20-0.40	90	5-10	2911	
Phosphor-bronze wire**	B159	0	0.004-0.022	145	0.1-0.6	1000	8.0
		0.028	0.022-0.075	121	0.6-2	913	
		0.064	0.075-0.30	110	2-7.5	932	

*Surface is smooth, free of defects, and has a bright, lustrous finish.

[†]Has a slight heat-treating scale which must be removed before plating.

[‡]Surface is smooth and bright with no visible marks.

[§]Aircraft-quality tempered wire, can also be obtained annealed.

^{II}Tempered to Rockwell C49, but may be obtained untempered.

[#]Type 302 stainless steel.

Uploaded By: anonymous₆₇

Table 10-5

Mechanical Properties of Some Spring Wires

	Elastic Limit, Percent of S Diameter		Digmeter	E		G	
Material	Tension	Torsion	d, in	Mpsi	GPa	Mpsi	GPa
Music wire A228	65–75	45-60	< 0.032	29.5	203.4	12.0	82.7
			0.033-0.063	29.0	200	11.85	81.7
			0.064-0.125	28.5	196.5	11.75	81.0
			>0.125	28.0	193	11.6	80.0
HD spring A227	60-70	45-55	< 0.032	28.8	198.6	11.7	80.7
			0.033-0.063	28.7	197.9	11.6	80.0
			0.064-0.125	28.6	197.2	11.5	79.3
			>0.125	28.5	196.5	11.4	78.6
Oil tempered A239	85-90	45-50		28.5	196.5	11.2	77.2
Valve spring A230	85-90	50-60		29.5	203.4	11.2	77.2
Chrome-vanadium A231	88-93	65-75		29.5	203.4	11.2	77.2
A232	88–93			29.5	203.4	11.2	77.2
Chrome-silicon A401	85-93	65-75		29.5	203.4	11.2	77.2
Stainless steel							
A313*	65-75	45-55		28	193	10	69.0
17-7PH	75-80	55-60		29.5	208.4	11	75.8
414	65-70	42-55		29	200	11.2	77.2
420	65-75	45-55		29	200	11.2	77.2
431	72–76	50-55		30	206	11.5	79.3
Phosphor-bronze B159	75-80	45-50		15	103.4	6	41.4
Beryllium-copper B197	70	50		17	117.2	6.5	44.8
	75	50-55		19	131	7.3	50.3
Inconel alloy X-750	65-70	40-45		31	213.7	11.2	77.2

*Also includes 302, 304, and 316. STUDECNTADS TO COMPANY to torsional stress design values.

Table 10-6

		Maximum Percent of Tensile Strength			
Maximum Allowable		Before Set Removed	After Set Removed		
Torsional Stresses for	Material	(includes K _W or K _B)	(includes K _s)		
Helical Compression		45	(0.70		
Springs in Static	drawn carbon steel	45	60-70		
Applications	Hardened and tempered	50	65–75		
Source: Robert E. Joerres, "Springs," Chap. 6 in Joseph	carbon and low-alloy steel				
E. Shigley, Charles R. Mischke, and Thomas H. Brown,	Austenitic stainless steels	35	55–65		
of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.	Nonferrous alloys	35	55–65		

Yield Shear Strength = Ultimate Tensile Strength x Maximum Percent of Tensile Strength S_{sy} = Maximum Percent of Tensile Strength x S_{ut}

Uploaded By: anonymous₆₉

Chapter 10 – Mechanical Springs

Example 10-1

EXAMPLE 10–1

A helical compression spring is made of no. 16 music wire. The outside coil diameter of the spring is $\frac{7}{16}$ in. The ends are squared and there are $12\frac{1}{2}$ total turns.

- (a) Estimate the torsional yield strength of the wire.
- (b) Estimate the static load corresponding to the yield strength.
- (c) Estimate the scale of the spring.
- (d) Estimate the deflection that would be caused by the load in part (b).
- (e) Estimate the solid length of the spring.

(f) What length should the spring be to ensure that when it is compressed solid and then released, there will be no permanent change in the free length?

- (g) Given the length found in part (f), is buckling a possibility?
- (*h*) What is the pitch of the body coil?

Example 10-1

EXAMPLE 10-1 A helical compression spring is made of no. 16 music wire. The outside coil diameter of the spring is $\frac{7}{16}$ in. The ends are squared and there are $12\frac{1}{2}$ total turns. (*a*) Estimate the torsional yield strength of the wire.

 S_{sy} = Maximum Percent of Tensile Strength x S_{ut}

Table 10-6

		Maximum Percent of Tensile Strength				
Maximum Allowable Torsional Stresses for	Material	Before Set Removed (includes K _W or K _B)	After Set Removed (includes K _s)			
Helical Compression Springs in Static	Music wire and cold- drawn carbon steel	45	60–70			
Applications Source: Robert E. Joerres, "Springs," Chap. 6 in Joseph	Hardened and tempered carbon and low-alloy steel	50	65–75			
E. Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), <i>Standard Handbook</i>	Austenitic stainless steels	35	55-65			
of Machine Design, 3rd ed., McGraw-Hill, New York, 2004.	Nonferrous alloys	35	55–65			

Table 10-4

Constants A and m of $S_{ut} = A/d^m$ for Estimating Minimum Tensile Strength of Common Spring Wires Source: From Design Handbook, 1987, p. 19. Courtesy of Associated Spring.

Material	ASTM No.	Exponent m	Diameter, in	A, kpsi · in ^m	Diameter, mm	A, MPa · mm ^m	Relative Cost of Wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire [†]	A229	0.187	0.020-0.500	147	0.5-12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028-0.500	140	0.7-12.7	1783	1.0
Chrome-vanadium wire [§]	A232	0.168	0.032-0.437	169	0.8-11.1	2005	3.1
Chrome-silicon wire ^{II}	A401	0.108	0.063-0.375	202	1.6-9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013-0.10	169	0.3-2.5	1867	7.6–11
		0.263	0.10-0.20	128	2.5–5	2065	
		0.478	0.20-0.40	90	5-10	2911	
Phosphor-bronze wire**	B159	0	0.004-0.022	145	0.1-0.6	1000	8.0
		0.028	0.022-0.075	121	0.6-2	913	
		0.064	0.075-0.30	110	2-7.5	932	

*Surface is smooth, free of defects, and has a bright, lustrous finish.

[†]Has a slight heat-treating scale which must be removed before plating.

[‡]Surface is smooth and bright with no visible marks.

[§]Aircraft-quality tempered wire, can also be obtained annealed.

Tempered to Rockwell C49, but may be obtained untempered.

[#]Type 302 stainless steel.

Uploaded By: anonymous₇₂

Table A-28

Decimal Equivalents of Wire and Sheet-Metal Gauges* (All Sizes Are Given in Inches)

Name of Gauge:	American or Brown & Sharpe	Birmingham or Stubs Iron Wire	United States Standard [†]	Manu- facturers Standard	Steel Wire or Washburn & Moen	Music Wire	Stubs Steel Wire	Twist Drill
Principal Use:	Nonferrous Sheet, Wire, and Rod	Ferrous Strip, Flat Wire, and Spring Steel	Ferrous Sheet and Plate, 480 lbf/ft ³	Ferrous Sheet	Ferrous Wire Except Music Wire	Music Wire	Steel Drill Rod	Twist Drills and Drill Steel
7/0			0.500		0.490			
6/0	0.580 0		0.468 75		0.461 5	0.004		
5/0	0.516 5		0.437 5		0.430 5	0.005		
4/0	0.460 0	0.454	0.406 25		0.393 8	0.006		
3/0	0.409 6	0.425	0.375		0.362 5	0.007		
2/0	0.364 8	0.380	0.343 75		0.331 0	0.008		
0	0.324 9	0.340	0.312 5		0.306 5	0.009		
1	0.289 3	0.300	0.281 25		0.283 0	0.010	0.227	0.228 0
2	0.257 6	0.284	0.265 625		0.262 5	0.011	0.219	0.221 0
3	0.229 4	0.259	0.25	0.239 1	0.243 7	0.012	0.212	0.213 0
4	0.204 3	0.238	0.234 375	0.224 2	0.225 3	0.013	0.207	0.209 0
5	0.181 9	0.220	0.218 75	0.209 2	0.207 0	0.014	0.204	0.205 5
6	0.162 0	0.203	0.203 125	0.194 3	0.192 0	0.016	0.201	0.204 0
7	0.144 3	0.180	0.187 5	0.179 3	0.177 0	0.018	0.199	0.201 0
8	0.128 5	0.165	0.171 875	0.164 4	0.162 0	0.020	0.197	0.199 0
9	0.114 4	0.148	0.156 25	0.149 5	0.148 3	0.022	0.194	0.196 0
10	0.101 9	0.134	0.140 625	0.134 5	0.135 0	0.024	0.191	0.193 5
11	0.090 74	0.120	0.125	0.119 6	0.120 5	0.026	0.188	0.191 0
12	0.080 81	0.109	0.109 357	0.104 6	0.105 5	0.029	0.185	0.189 0
13	0.071 96	0.095	0.093 75	0.089 7	0.091 5	0.031	0.182	0.185 0
14	0.064 08	0.083	0.078 125	0.074 7	0.080 0	0.033	0.180	0.182 0
15	0.057 07	0.072	0.070 312 5	0.067 3	0.072 0	0.035	0.178	0.180 0
16	0.050 82	0.065	0.062 5	0.059 8	0.062 5	0.037	0.175	0.177 0
ITS-HUB	.COM045 26	0.058	0.056 25	0.053 8	0.054 0	0.03 9 p	loaded	By:0anon

(a) From Table A–28, the wire diameter is d = 0.037 in. From Table 10–4, we find A = 201 kpsi \cdot in^m and m = 0.145. Therefore, from Eq. (10–14)

$$S_{ut} = \frac{A}{d^m} = \frac{201}{0.037^{0.145}} = 324 \text{ kpsi}$$

Then, from Table 10–6,

$$S_{sy} = 0.45S_{ut} = 0.45(324) = 146$$
 kpsi

EXAMPLE 10–1 A helical compression spring is made of no. 16 music wire. The outside coil diameter of the spring is $\frac{7}{16}$ in. The ends are squared and there are $12\frac{1}{2}$ total turns.

(b) Estimate the static load corresponding to the yield strength.

STUDENTS-HUB.com

Uploaded By: anonymous₇₅

EXAMPLE 10–1 A helical compression spring is made of no. 16 music wire. The outside coil diameter of the spring is $\frac{7}{16}$ in. The ends are squared and there are $12\frac{1}{2}$ total turns.

(c) Estimate the scale of the spring.

$$k = \frac{d^4 G}{8D^3 N_a}$$

A helical compression spring is made of no. 16 music wire. The outside coil diameter of the spring is $\frac{7}{16}$ in. The ends are squared and there are $12\frac{1}{2}$ total turns.

Figure 10-2

Types of ends for compression springs: (*a*) both ends plain; (*b*) both ends squared; (*c*) both ends squared and ground; (*d*) both ends plain and ground.

(b) Squared or closed end, right hand (d) Plain end, ground, left hand

Type of Spring Ends							
Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground			
End coils, N_e	0	1	2	2			
Total coils, N_t	N _a	$N_a + 1$	$N_a + 2$	$N_a + 2$			
Free length, L_0	$pN_a + d$	$p(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$			
Solid length, Ls	$d(N_t + 1)$	dN_t	$d(N_t + 1)$	dN_t			
Pitch, p	$(L_0 - d)/N_a$	$L_0/(N_a + 1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$			

Table 10-1

Formulas for the Dimensional Characteristics of Compression-Springs. $(N_a = \text{Number of}$ Active Coils) Source: From Design Handbook, 1987, p. 32. Countery of Associated Copping.

10.6 Spring Materials

Table 10-5

Mechanical Properties of Some Spring Wires

	Elastic	Limit,	Digmeter	E		G		
Material	Tension Torsion		d, in	Mpsi	GPa	Mpsi	GPa	
Music wire A228	65–75 45–60		< 0.032	29.5	203.4	12.0	82.7	
			0.033-0.063	29.0	200	11.85	81.7	
			0.064-0.125	28.5	196.5	11.75	81.0	
			>0.125	28.0	193	11.6	80.0	
HD spring A227	60–70	45–55	< 0.032	28.8	198.6	11.7	80.7	
			0.033-0.063	28.7	197.9	11.6	80.0	
			0.064-0.125	28.6	197.2	11.5	79.3	
			>0.125	28.5	196.5	11.4	78.6	
Oil tempered A239	85-90	45-50		28.5	196.5	11.2	77.2	
Valve spring A230	85-90	50-60		29.5	203.4	11.2	77.2	
Chrome-vanadium A231	88–93	65-75		29.5	203.4	11.2	77.2	
A232	88–93			29.5	203.4	11.2	77.2	
Chrome-silicon A401	85–93	65-75		29.5	203.4	11.2	77.2	
Stainless steel								
A313*	65-75	45-55		28	193	10	69.0	
17-7PH	75-80	55-60		29.5	208.4	11	75.8	
414	65-70	42-55		29	200	11.2	77.2	
420	65-75	45-55		29	200	11.2	77.2	
431	72–76	50-55		30	206	11.5	79.3	
Phosphor-bronze B159	75-80	45-50		15	103.4	6	41.4	
Beryllium-copper B197	70	50		17	117.2	6.5	44.8	
	75	50-55		19	131	7.3	50.3	
Inconel alloy X-750	65-70	40-45		31	213.7	11.2	77.2	

STUDENTS-HUB.COm 5/17, Note: See Table 10–6 for allowable torsional stress design values. Uploaded By: anonymous₇₈

Zimmerli Data

Unpeened:

$$S_{sa} = 35 \text{ kpsi} (241 \text{ MPa})$$
 $S_{sm} = 55 \text{ kpsi} (379 \text{ MPa})$ (10–28)

Peened:

$$S_{sa} = 57.5 \text{ kpsi} (398 \text{ MPa})$$
 $S_{sm} = 77.5 \text{ kpsi} (534 \text{ MPa})$ (10–29)

For example, given an unpeened spring with $S_{su} = 211.5$ kpsi, the Gerber ordinate intercept for shear, from Eq. (6–42), p. 314, is

$$S_{se} = \frac{S_{sa}}{1 - \left(\frac{S_{sm}}{S_{su}}\right)^2} = \frac{35}{1 - \left(\frac{55}{211.5}\right)^2} = 37.5 \text{ kpsi}$$

Uploaded By: anonymous₇₉

$S_{su} = 0.67S_{ut}$	(10–30)
$F_a = \frac{F_{\max} - F_{\min}}{2}$	(10–31 <i>a</i>)
$F_m = \frac{F_{\max} + F_{\min}}{2}$	(10–31 <i>b</i>)
$\tau_a = K_B \frac{8F_a D}{\pi d^3}$	(10–32)
$\tau_m = K_B \frac{8F_m D}{\pi d^3}$	(10–33)

Uploaded By: anonymous₈₀

Fatigue Failure Criteria for Fluctuating Stress

Uploaded By: anonymous₈₁

Fatigue Failure Criteria for Fluctuating Stress

STUDENTS-HUB.com

Uploaded By: anonymous₈₂

EXAMPLE 10-4 An as-wound helical compression spring, made of music wire, has a wire size of 0.092 in, an outside coil diameter of $\frac{9}{16}$ in, a free length of $4\frac{3}{8}$ in, 21 active coils, and both ends squared and ground. The spring is unpeened. This spring is to be assembled with a preload of 5 lbf and will operate with a maximum load of 35 lbf during use. (*a*) Estimate the factor of safety guarding against fatigue-failure using a torsional Gerber fatigue-failure criterion with Zimmerli data.

$$n_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a} \right)^2} \right]$$

$$\sigma_m > 0$$

$$n_f = \frac{1}{2} \left(\frac{0.67S_{ut}}{\tau_m} \right)^2 \frac{\tau_a}{S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2\tau_m S_{se}}{0.67S_{ut} \tau_a} \right)^2} \right]$$

$$S_{sa} = \frac{r^2 S_{su}^2}{2S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2S_{se}}{rS_{su}}\right)^2} \right]$$

$$n_f = \frac{S_{sa}}{\tau_a}$$

STUDENTS-HUB.com

Uploaded By: anonymous₈₃

Table 6-7

Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for Gerber and Langer Failure Criteria

Intersecting Equations	Intersection Coordinates
$\frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 = 1$	$S_{a} = \frac{r^{2} S_{ut}^{2}}{2S_{e}} \left[-1 + \sqrt{1 + \left(\frac{2S_{e}}{rS_{ut}}\right)^{2}} \right]$
Load line $r = \frac{S_a}{S_m}$	$S_m = \frac{S_a}{r}$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_a = \frac{rS_y}{1+r}$
Load line $r = \frac{S_a}{S_m}$	$S_m = \frac{S_y}{1 + r}$
$\frac{S_a}{S_e} + \left(\frac{S_m}{S_{ut}}\right)^2 = 1$	$S_m = \frac{S_{ut}^2}{2S_e} \left[1 - \sqrt{1 + \left(\frac{2S_e}{S_{ut}}\right)^2 \left(1 - \frac{S_y}{S_e}\right)} \right]$
$\frac{S_a}{S_y} + \frac{S_m}{S_y} = 1$	$S_a = S_y - S_m, r_{\rm crit} = S_a/S_m$

Fatigue factor of safety

$$n_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a} \right)^2} \right] \qquad \sigma_m > 0$$

Uploaded By: anonymous₈₄

An as-wound helical compression spring, made of music wire, has a wire size of 0.092 in, an outside coil diameter of $\frac{9}{16}$ in, a free length of $4\frac{3}{8}$ in, 21 active coils, and both ends squared and ground. The spring is unpeened. This spring is to be assembled

Table 10-4

Constants A and m of $S_{ut} = A/d^m$ for Estimating Minimum Tensile Strength of Common Spring Wires Source: From Design Handbook, 1987, p. 19. Courtesy of Associated Spring.

Material	ASTM No.	Exponent m	Diameter, in	A, kpsi · in ^m	Diameter, mm	A, MPa · mm ^m	Relative Cost of Wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire ^{\dagger}	A229	0.187	0.020-0.500	147	0.5-12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028-0.500	140	0.7-12.7	1783	1.0
Chrome-vanadium wire§	A232	0.168	0.032-0.437	169	0.8-11.1	2005	3.1
Chrome-silicon wire ^{II}	A401	0.108	0.063-0.375	202	1.6-9.5	1974	4.0
302 Stainless wire#	A313	0.146	0.013-0.10	169	0.3-2.5	1867	7.6–11
		0.263	0.10-0.20	128	2.5–5	2065	
		0.478	0.20-0.40	90	5-10	2911	
Phosphor-bronze wire**	B159	0	0.004-0.022	145	0.1-0.6	1000	8.0
		0.028	0.022-0.075	121	0.6-2	913	
		0.064	0.075-0.30	110	2-7.5	932	

$$S_{ut} = \frac{A}{d^m} = \frac{201}{0.092^{0.145}} = 284.1 \text{ kpsi}$$

Uploaded By: anonymous₈₅

EXAMPLE 10-4 An as-wound helical compression spring, made of music wire, has a wire size of 0.092 in, an outside coil diameter of $\frac{9}{16}$ in, a free length of $4\frac{3}{8}$ in, 21 active coils, and both ends squared and ground. The spring is unpeened. This spring is to be assembled with a preload of 5 lbf and will operate with a maximum load of 35 lbf during use. (*a*) Estimate the factor of safety guarding against fatigue-failure using a torsional Gerber fatigue-failure criterion with Zimmerli data.

$$F_a = \frac{35-5}{2} = 15 \,\text{lbf}$$
 $F_m = \frac{35+5}{2} = 20 \,\text{lbf}$

The alternating shear-stress component is found from Eq. (10-32) to be

$$\tau_a = K_B \frac{8F_a D}{\pi d^3} = (1.287) \frac{8(15)0.4705}{\pi (0.092)^3} (10^{-3}) = 29.7 \text{ kpsi}$$

Equation (10-33) gives the midrange shear-stress component

$$\tau_m = K_B \frac{8F_m D}{\pi d^3} = 1.287 \frac{8(20)0.4705}{\pi (0.092)^3} (10^{-3}) = 39.6 \text{ kpsi}$$

STUDENTS-HUB.com

Uploaded By: anonymous₈₆

EXAMPLE 10-4 An as-wound helical compression spring, made of music wire, has a wire size of 0.092 in, an outside coil diameter of $\frac{9}{16}$ in, a free length of $4\frac{3}{8}$ in, 21 active coils, and both ends squared and ground. The spring is unpeened. This spring is to be assembled with a preload of 5 lbf and will operate with a maximum load of 35 lbf during use. (*a*) Estimate the factor of safety guarding against fatigue-failure using a torsional Gerber fatigue-failure criterion with Zimmerli data.

$$n_f = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a} \right)^2} \right]$$

$$\sigma_m > 0$$

$$n_f = \frac{1}{2} \left(\frac{0.67S_{ut}}{\tau_m} \right)^2 \frac{\tau_a}{S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2\tau_m S_{se}}{0.67S_{ut} \tau_a} \right)^2} \right]$$

$$S_{sa} = \frac{r^2 S_{su}^2}{2S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2S_{se}}{rS_{su}}\right)^2} \right]$$

$$n_f = \frac{S_{sa}}{\tau_a}$$

STUDENTS-HUB.com

Uploaded By: anonymous₈₇

Fatigue Failure Criteria for Fluctuating Stress

The load-line slope $r = \tau_a / \tau_m = 29.7 / 39.6 = 0.75$.

STUDENTS-HUB.com

Uploaded By: anonymous₈₈

(a) The Gerber ordinate intercept for the Zimmerli data, Eq. (10-28), is

$$S_{se} = \frac{S_{sa}}{1 - (S_{sm}/S_{su})^2} = \frac{35}{1 - (55/190.3)^2} = 38.2 \text{ kpsi}$$

The amplitude component of strength S_{sa} , from Table 6–7, p. 315, is

$$S_{sa} = \frac{r^2 S_{su}^2}{2S_{se}} \left[-1 + \sqrt{1 + \left(\frac{2S_{se}}{rS_{su}}\right)^2} \right]$$
$$= \frac{0.75^2 190.3^2}{2(38.2)} \left\{ -1 + \sqrt{1 + \left[\frac{2(38.2)}{0.75(190.3)}\right]^2} \right\} = 35.8 \text{ kpsi}$$

and the fatigue factor of safety n_f is given by

$$n_f = \frac{S_{sa}}{\tau_a} = \frac{35.8}{29.7} = 1.21$$

Uploaded By: anonymous₈₉

جَامِعَنَ بُرْنِيْتُ

EXAMPLE 10-4

- An as-wound helical compression spring, made of music wire, has a wire size of 0.092 in, an outside coil diameter of $\frac{9}{16}$ in, a free length of $4\frac{3}{8}$ in, 21 active coils, and both ends squared and ground. The spring is unpeened. This spring is to be assembled with a preload of 5 lbf and will operate with a maximum load of 35 lbf during use. (*a*) Estimate the factor of safety guarding against fatigue-failure using a torsional Gerber fatigue-failure criterion with Zimmerli data.
- (b) Repeat part (a) using the Sines torsional fatigue criterion (steady stress component has no effect), with Zimmerli data.
- (c) Repeat using a torsional Goodman failure criterion with Zimmerli data.
- (d) Estimate the critical frequency of the spring.

Fatigue Failure Criteria for Fluctuating Stress

Uploaded By: anonymous₉₁

Zimmerli Data

Unpeened:

$$S_{sa} = 35 \text{ kpsi} (241 \text{ MPa})$$
 $S_{sm} = 55 \text{ kpsi} (379 \text{ MPa})$ (10–28)

Peened:

$$S_{sa} = 57.5 \text{ kpsi} (398 \text{ MPa})$$
 $S_{sm} = 77.5 \text{ kpsi} (534 \text{ MPa})$ (10–29)

For example, given an unpeened spring with $S_{su} = 211.5$ kpsi, the Gerber ordinate intercept for shear, from Eq. (6–42), p. 314, is

$$S_{se} = \frac{S_{sa}}{1 - \left(\frac{S_{sm}}{S_{su}}\right)^2} = \frac{35}{1 - \left(\frac{55}{211.5}\right)^2} = 37.5 \text{ kpsi}$$

Figure 10-5

Types of ends used on extension springs. (Courtesy of Associated Spring.)

(a) Machine half loop-open

(b) Raised hook

(c) Short twisted loop

(d) Full twisted loop

Figure 10-6

Ends for extension springs. (a) Usual design; stress at A is due to combined axial force and bending moment. (b) Side view of part a; stress is mostly torsion at B. (c) Improved design; stress at A is due to combined axial force and bending moment. (d) Side view of part c; stress at B is mostly torsion.

STUDENTS-HUB.com

Uploaded By: anonymous

 $C_1 = \frac{2r_1}{d}$

جَامَعَةُ نُوَيَعَةً فَعَامَ الْمُعَامَةُ الْمُعَامَةُ الْمُعَامَةُ الْمُعَامَةُ الْمُعَامَةُ الْمُعَامَةُ الْ BIRZEIT UNIVERSITY

Figure 10-6

Ends for extension springs. (*a*) Usual design; stress at *A* is due to combined axial force and bending moment. (*b*) Side view of part *a*; stress is mostly torsion at *B*. (*c*) Improved design; stress at *A* is due to combined axial force and bending moment. (*d*) Side view of part *c*; stress at *B* is mostly torsion.

EXAMPLE 10–7 The helical coil extension spring of Ex. 10–6 is subjected to a dynamic loading from 1.5 to 5 lbf. Estimate the factors of safety using the Gerber failure criterion for (*a*) coil fatigue, (*b*) coil yielding, (*c*) end-hook bending fatigue at point *A* of Fig. 10–6*a*, and (*d*) end-hook torsional fatigue at point *B* of Fig. 10–6*b*.

Solution A number of quantities are the same as in Ex. 10–6: d = 0.035 in, $S_{ut} = 264.7$ kpsi, D = 0.213 in, $r_1 = 0.106$ in, C = 6.086, $K_B = 1.234$, $(K)_A = 1.14$, $(K)_B = 1.18$, $N_b = 12.17$ turns, $L_0 = 0.817$ in, k = 17.91 lbf/in, $F_i = 1.19$ lbf, and $(\tau_i)_{uncorr} = 15.1$ kpsi. Then

$$F_a = (F_{\text{max}} - F_{\text{min}})/2 = (5 - 1.5)/2 = 1.75 \text{ lbf}$$

$$F_m = (F_{\text{max}} + F_{\text{min}})/2 = (5 + 1.5)/2 = 3.25 \text{ lbf}$$

The strengths from Ex. 10–6 include $S_{ut} = 264.7$ kpsi, $S_y = 198.5$ kpsi, and $S_{sy} = 119.1$ kpsi. The ultimate shear strength is estimated from Eq. (10–30) as

STUDENTS-HUB.com

 $S_{su} = 0.67S_{ut} = 0.67(264.7) = 177.3$ kpsüploaded By: anonymous

EXAMPLE 10-7

The helical coil extension spring of Ex. 10–6 is subjected to a dynamic loading from 1.5 to 5 lbf. Estimate the factors of safety using the Gerber failure criterion for (*a*) coil fatigue, (*b*) coil yielding, (*c*) end-hook bending fatigue at point *A* of Fig. 10–6*a*, and (*d*) end-hook torsional fatigue at point *B* of Fig. 10–6*b*.

(a) Body-coil fatigue:

$$\tau_a = \frac{8K_B F_a D}{\pi d^3} = \frac{8(1.234)1.75(0.213)}{\pi (0.035^3)} (10^{-3}) = 27.3 \text{ kpsi}$$

$$\tau_m = \frac{F_m}{F_a} \tau_a = \frac{3.25}{1.75} 27.3 = 50.7 \text{ kpsi}$$

Using the Zimmerli data of Eq. (10-28) gives

$$S_{se} = \frac{S_{sa}}{1 - \left(\frac{S_{sm}}{S_{su}}\right)^2} = \frac{35}{1 - \left(\frac{55}{177.3}\right)^2} = 38.7 \text{ kps}$$

From Table 6–7, p. 315, the Gerber fatigue criterion for shear is

$$(n_f)_{\text{body}} = \frac{1}{2} \left(\frac{S_{su}}{\tau_m} \right)^2 \frac{\tau_a}{S_{se}} \left[-1 + \sqrt{1 + \left(2 \frac{\tau_m}{S_{su}} \frac{S_{se}}{\tau_a} \right)^2} \right]$$
$$= \frac{1}{2} \left(\frac{177.3}{50.7} \right)^2 \frac{27.3}{38.7} \left[-1 + \sqrt{1 + \left(2 \frac{50.7}{177.3} \frac{38.7}{27.3} \right)^2} \right] = 1.24$$
Uploaded By: anonymous₉₇

EXAMPLE 10–7 The helical coil extension spring of Ex. 10–6 is subjected to a dynamic loading from 1.5 to 5 lbf. Estimate the factors of safety using the Gerber failure criterion for (*a*) coil fatigue, (*b*) coil yielding, (*c*) end-hook bending fatigue at point *A* of Fig. 10–6*a*, and (*d*) end-hook torsional fatigue at point *B* of Fig. 10–6*b*.

Figure 10-6

Ends for extension springs. (*a*) Usual design; stress at *A* is due to combined axial force and bending moment. (*b*) Side view of part *a*; stress is mostly torsion at *B*. (*c*) Improved design; stress at *A* is due to combined axial force and bending moment. (*d*) Side view of part *c*; stress at *B* is mostly torsion.

 $\sigma_A = F \left[(K)_A \frac{16D}{\pi d^3} + \frac{4}{\pi d^2} \right]$ $(K)_A = \frac{4C_1^2 - C_1 - 1}{4C_1(C_1 - 1)}$ $C_1 = \frac{2r_1}{d}$

EXAMPLE 10–7 The helical coil extension spring of Ex. 10–6 is subjected to a dynamic loading from 1.5 to 5 lbf. Estimate the factors of safety using the Gerber failure criterion for (*a*) coil fatigue, (*b*) coil yielding, (*c*) end-hook bending fatigue at point *A* of Fig. 10–6*a*, and (*d*) end-hook torsional fatigue at point *B* of Fig. 10–6*b*.

(c) End-hook bending fatigue: using Eqs. (10-34) and (10-35) gives

$$\sigma_a = F_a \left[(K)_A \frac{16D}{\pi d^3} + \frac{4}{\pi d^2} \right]$$

= 1.75 $\left[1.14 \frac{16(0.213)}{\pi (0.035^3)} + \frac{4}{\pi (0.035^2)} \right] (10^{-3}) = 52.3 \text{ kpsi}$
 $\sigma_m = \frac{F_m}{F_a} \sigma_a = \frac{3.25}{1.75} 52.3 = 97.1 \text{ kpsi}$

To estimate the tensile endurance limit using the distortion-energy theory,

$$S_e = S_{se}/0.577 = 38.7/0.577 = 67.1$$
 kpsi

Using the Gerber criterion for tension gives

$$(n_f)_A = \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m} \right)^2 \frac{\sigma_a}{S_e} \left[-1 + \sqrt{1 + \left(2\frac{\sigma_m}{S_{ut}}\frac{S_e}{\sigma_a} \right)^2} \right]$$
$$= \frac{1}{2} \left(\frac{264.7}{97.1} \right)^2 \frac{52.3}{67.1} \left[-1 + \sqrt{1 + \left(2\frac{97.1}{264.7}\frac{67.1}{52.3} \right)^2} \right] = 1.08$$
ploaded By: anonymous

STUDENTS-HUB.com

بخافظ برانتین BIRZEIT UNIVERSITY

EXAMPLE 10–7 The helical coil extension spring of Ex. 10–6 is subjected to a dynamic loading from 1.5 to 5 lbf. Estimate the factors of safety using the Gerber failure criterion for (*a*) coil fatigue, (*b*) coil yielding, (*c*) end-hook bending fatigue at point *A* of Fig. 10–6*a*, and (*d*) end-hook torsional fatigue at point *B* of Fig. 10–6*b*.

STUDENTS-HUB.com

جَامَعَة بَنْ الْمُتَعَامَة BIRZEIT UNIVERSITY

Figure 10-6

Ends for extension springs. (*a*) Usual design; stress at *A* is due to combined axial force and bending moment. (*b*) Side view of part *a*; stress is mostly torsion at *B*. (*c*) Improved design; stress at *A* is due to combined axial force and bending moment. (*d*) Side view of part *c*; stress at *B* is mostly torsion.

EXAMPLE 10–7 The helical coil extension spring of Ex. 10–6 is subjected to a dynamic loading from 1.5 to 5 lbf. Estimate the factors of safety using the Gerber failure criterion for (*a*) coil fatigue, (*b*) coil yielding, (*c*) end-hook bending fatigue at point *A* of Fig. 10–6*a*, and (*d*) end-hook torsional fatigue at point *B* of Fig. 10–6*b*.

(d) End-hook torsional fatigue: from Eq. (10-36)

$$(\tau_a)_B = (K)_B \frac{8F_a D}{\pi d^3} = 1.18 \frac{8(1.75)0.213}{\pi (0.035^3)} (10^{-3}) = 26.1 \text{ kpsi}$$
$$(\tau_m)_B = \frac{F_m}{F_a} (\tau_a)_B = \frac{3.25}{1.75} 26.1 = 48.5 \text{ kpsi}$$

Then, again using the Gerber criterion, we obtain

$$(n_f)_B = \frac{1}{2} \left(\frac{S_{su}}{\tau_m} \right)^2 \frac{\tau_a}{S_{se}} \left[-1 + \sqrt{1 + \left(2\frac{\tau_m}{S_{su}} \frac{S_{se}}{\tau_a} \right)^2} \right]$$
$$= \frac{1}{2} \left(\frac{177.3}{48.5} \right)^2 \frac{26.1}{38.7} \left[-1 + \sqrt{1 + \left(2\frac{48.5}{177.3} \frac{38.7}{26.1} \right)^2} \right] = 1.30$$

STUDENTS-HUB.com

Figure 10-8 Torsion springs. (Courtesy of Associated Spring.) Short hook ends Special ends Hinge ends Straight offset Double torsion

Straight torsion

