
Objectives
■■ To write programs for executing statements repeatedly using a while

loop (§5.2).

■■ To write loops for the guessing number problem (§5.3).

■■ To follow the loop design strategy to develop loops (§5.4).

■■ To control a loop with the user confirmation or a sentinel value (§5.5).

■■ To obtain large input from a file using input redirection rather than
typing from the keyboard (§5.5).

■■ To write loops using do-while statements (§5.6).

■■ To write loops using for statements (§5.7).

■■ To discover the similarities and differences of three types of loop
statements (§5.8).

■■ To write nested loops (§5.9).

■■ To learn the techniques for minimizing numerical errors (§5.10).

■■ To learn loops from a variety of examples (GCD, FutureTuition,
and Dec2Hex) (§5.11).

■■ To implement program control with break and continue (§5.12).

■■ To process characters in a string using a loop in a case study for
checking palindrome (§5.13).

■■ To write a program that displays prime numbers (§5.14).

Loops

CHAPTER

5

M05_LIAN9966_12_SE_C05.indd 159 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

160 Chapter 5   Loops

5.1  Introduction
A loop can be used to tell a program to execute statements repeatedly.

Suppose you need to display a string (e.g., Welcome to Java!) a hundred times. It would
be tedious to have to write the following statement a hundred times:

problem
Point

Key

System.out.println("Programming is fun");

System.out.println("Programming is fun");

100 times
...

System.out.println("Programming is fun");

So, how do you solve this problem?
Java provides a powerful construct called a loop that controls how many times an opera-

tion or a sequence of operations is performed in succession. Using a loop statement, you can
simply tell the computer to display a string a hundred times without having to code the print
statement a hundred times, as follows:

int count = 0;
while (count < 100) {

System.out.println("Welcome to Java!");
count++;

}

The variable count is initially 0. The loop checks whether count < 100 is true. If so, it
executes the loop body to display the message Welcome to Java! and increments count
by 1. It repeatedly executes the loop body until count < 100 becomes false. When count
< 100 is false (i.e., when count reaches 100), the loop terminates, and the next statement
after the loop statement is executed.

Loops are constructs that control repeated executions of a block of statements. The concept
of looping is fundamental to programming. Java provides three types of loop statements:
while loops, do-while loops, and for loops.

5.2  The while Loop
A while loop executes statements repeatedly while the condition is true.

The syntax for the while loop is as follows:

while (loop-continuation-condition) {
 // Loop body
 Statement(s);
}

Figure 5.1a shows the while loop flowchart. The part of the loop that contains the statements
to be repeated is called the loop body. A one-time execution of a loop body is referred to as an
iteration (or repetition) of the loop. Each loop contains a loop-continuation-condition,
a Boolean expression that controls the execution of the body. It is evaluated each time to de-
termine if the loop body is executed. If its evaluation is true, the loop body is executed; if its
evaluation is false, the entire loop terminates and the program control turns to the statement
that follows the while loop.

The loop for displaying Welcome to Java! a hundred times introduced in the preceding
section is an example of a while loop. Its flowchart is shown in Figure 5.1b.

loop

while loop
Point

Key

VideoNote

Use while loop
loop body
iteration
loop-continuation-condition

M05_LIAN9966_12_SE_C05.indd 160 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.2  The while Loop 161

The loop-continuation-condition is count < 100 and the loop body contains two
statements in the following code:

loop-
continuation-
condition?

true

false

(a)

(count < 100)?

true

false

(b)

int count = 0;

System.out.println("Welcome to Java!");
count++;

Statement(s)
(loop body)

Statement(s)
Before loop

Figure 5.1  The while loop repeatedly executes the statements in the loop body when the
loop-continuation-condition evaluates to true.

int count = 0;

loop continuation condition

loop body
while (count < 100) {

System.out.printIn("Welcome to Java!");
count++;

}

In this example, you know exactly how many times the loop body needs to be executed be-
cause the control variable count is used to count the number of iterations. This type of loop
is known as a counter-controlled loop.

Note
The loop-continuation-condition must always appear inside the parenthe-
ses. The braces enclosing the loop body can be omitted only if the loop body contains
one or no statement.

Here is another example to help understand how a loop works.

int sum = 0, i = 1;
while (i < 10) {
 sum = sum + i;
 i++;
}
System.out.println("sum is " + sum); // sum is 45

If i < 10 is true, the program adds i to sum. Variable i is initially set to 1, then is incre-
mented to 2, 3, and up to 10. When i is 10, i < 10 is false, so the loop exits. Therefore,
the sum is 1 + 2 + 3 + ... + 9 = 45.

counter-controlled loop

M05_LIAN9966_12_SE_C05.indd 161 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

162 Chapter 5   Loops

What happens if the loop is mistakenly written as follows?

int sum = 0, i = 1;
while (i < 10) {
 sum = sum + i;
}

This loop is infinite, because i is always 1 and i < 10 will always be true.

Note
Make sure that the loop-continuation-condition eventually becomes
false so that the loop will terminate. A common programming error involves infinite
loops (i.e., the loop runs forever). If your program takes an unusually long time to run
and does not stop, it may have an infinite loop. If you are running the program from the
command window, press CTRL+C to stop it.

Caution
Programmers often make the mistake of executing a loop one more or less time. This
is commonly known as the off-by-one error. For example, the following loop displays
Welcome to Java 101 times rather than 100 times. The error lies in the condition,
which should be count < 100 rather than count <= 100.

int count = 0;
while (count <= 100) {
 System.out.println("Welcome to Java!");
 count++;
}

Recall that Listing 3.1, AdditionQuiz.java, gives a program that prompts the user to enter an
answer for a question on addition of two single digits. Using a loop, you can now rewrite the
program to let the user repeatedly enter a new answer until it is correct, as given in Listing 5.1.

Listing 5.1  RepeatAdditionQuiz.java
 1 import java.util.Scanner;
 2
 3 public class RepeatAdditionQuiz {
 4 public static void main(String[] args) {
 5 int number1 = (int)(Math.random() * 10);
 6 int number2 = (int)(Math.random() * 10);
 7
 8 // Create a Scanner
 9 Scanner input = new Scanner(System.in);
10
11 System.out.print(
12 "What is " + number1 + " + " + number2 + "? ");
13 int answer = input.nextInt();
14
15 while (number1 + number2 != answer) {
16 System.out.print("Wrong answer. Try again. What is "
17 + number1 + " + " + number2 + "? ");
18 answer = input.nextInt();
19 }
20
21 System.out.println("You got it!");
22 }
23 }

infinite loop

off-by-one error

generate number1
generate number2

show question

get first answer

check answer

read an answer

What is 5 + 9? 12

Wrong answer. Try again. What is 5 + 9? 34

Wrong answer. Try again. What is 5 + 9? 14
You got it!

M05_LIAN9966_12_SE_C05.indd 162 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.3  Case Study: Guessing Numbers 163

The loop in lines 15–19 repeatedly prompts the user to enter an answer when number1
+ number2 != answer is true. Once number1 + number2 != answer is false, the
loop exits.

5.2.1	 Analyze the following code. Is count < 100 always true, always false, or
sometimes true or sometimes false at Point A, Point B, and Point C?

int count = 0;
while (count < 100) {
 // Point A
 System.out.println("Welcome to Java!");
 count++;
 // Point B
}
// Point C

5.2.2	 How many times are the following loop bodies repeated? What is the output of each
loop?

Point
Check

(c)

int i = 1;
while (i < 10)
 if (i % 2 == 0)
 System.out.println(i);

int i = 1;
while (i < 10)
 if (i % 2 == 0)
 System.out.println(i++);

int i = 1;
while (i < 10)
 if ((i++) % 2 == 0)
 System.out.println(i);

(a) (b)

5.2.3	 What is the output of the following code? Explain the reason.

int x = 80000000;

while (x > 0)
 x++;

System.out.println("x is " + x);

5.3  Case Study: Guessing Numbers
This case study generates a random number and lets the user repeatedly guess
a number until it is correct.

 The problem is to guess what number a computer has in mind. You will write a program that
randomly generates an integer between 0 and 100, inclusive. The program prompts the user
to enter a number continuously until the number matches the randomly generated number.
For each user input, the program tells the user whether the input is too low or too high, so the
user can make the next guess intelligently. Here is a sample run:

Point
Key

VideoNote

Guess a number

Guess a magic number between 0 and 100

Enter your guess: 50

Your guess is too high

Enter your guess: 25

Your guess is too low

Enter your guess: 42

Your guess is too high

Enter your guess: 39

Yes, the number is 39

M05_LIAN9966_12_SE_C05.indd 163 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

164 Chapter 5   Loops

The magic number is between 0 and 100. To minimize the number of guesses, enter 50
first. If your guess is too high, the magic number is between 0 and 49. If your guess is too
low, the magic number is between 51 and 100. Thus, you can eliminate half of the numbers
from further consideration after one guess.

How do you write this program? Do you immediately begin coding? No. It is important to
think before coding. Think how you would solve the problem without writing a program. You
need first to generate a random number between 0 and 100, inclusive, then to prompt the user
to enter a guess, then to compare the guess with the random number.

It is a good practice to code incrementally one step at a time. For programs involving
loops, if you don’t know how to write a loop right away, you may first write the code for
executing the loop one time, then figure out how to repeatedly execute the code in a loop. For
this program, you may create an initial draft, as given in Listing 5.2.

Listing 5.2  GuessNumberOneTime.java
 1 import java.util.Scanner;
 2
 3 public class GuessNumberOneTime {
 4 public static void main(String[] args) {
 5 // Generate a random number to be guessed
 6 int number = (int)(Math.random() * 101);
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.println("Guess a magic number between 0 and 100");
10
11 // Prompt the user to guess the number
12 System.out.print("\nEnter your guess: ");
13 int guess = input.nextInt();
14
15 if (guess == number)
16 System.out.println("Yes, the number is " + number);
17 else if (guess > number)
18 System.out.println("Your guess is too high");
19 else
20 System.out.println("Your guess is too low");
21 }
22 }

When you run this program, it prompts the user to enter a guess only once. To let the user
enter a guess repeatedly, you may wrap the code in lines 11–20 in a loop as follows:

while (true) {
 // Prompt the user to guess the number
 System.out.print("\nEnter your guess: ");
 guess = input.nextInt();

 if (guess == number)
 System.out.println("Yes, the number is " + number);
 else if (guess > number)
 System.out.println("Your guess is too high");
 else
 System.out.println("Your guess is too low");
} // End of loop

This loop repeatedly prompts the user to enter a guess. However, this loop is not correct,
because it never terminates. When guess matches number, the loop should end. Thus, the
loop can be revised as follows:

while (guess != number) {
 // Prompt the user to guess the number

think before coding

intelligent guess

code incrementally

generate a number

enter a guess

correct guess

too high

too low

M05_LIAN9966_12_SE_C05.indd 164 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.3  Case Study: Guessing Numbers 165

 System.out.print("\nEnter your guess: ");
 guess = input.nextInt();

 if (guess == number)
 System.out.println("Yes, the number is " + number);
 else if (guess > number)
 System.out.println("Your guess is too high");
 else
 System.out.println("Your guess is too low");
} // End of loop

The complete code is given in Listing 5.3.

Listing 5.3  GuessNumber.java
 1 import java.util.Scanner;
 2
 3 public class GuessNumber {
 4 public static void main(String[] args) {
 5 // Generate a random number to be guessed
 6 int number = (int)(Math.random() * 101);
 7
 8 Scanner input = new Scanner(System.in);
 9 System.out.println("Guess a magic number between 0 and 100");
10
11 int guess = –1;
12 while (guess != number) {
13 // Prompt the user to guess the number
14 System.out.print("\nEnter your guess: ");
15 guess = input.nextInt();
16
17 if (guess == number)
18 System.out.println("Yes, the number is " + number);
19 else if (guess > number)
20 System.out.println("Your guess is too high");
21 else
22 System.out.println("Your guess is too low");
23 } // End of loop
24 }
25 }

generate a number

enter a guess

too high

too low

line# number guess output

6 39

11 −1

iteration 1 b 15 50

20 Your guess is too high

iteration 2 b 15 25

22 Your guess is too low

iteration 3 b 15 42

20 Your guess is too high

iteration 4 b 15 39

18 Yes, the number is 39

The program generates the magic number in line 6 and prompts the user to enter a guess
continuously in a loop (lines 12–23). For each guess, the program checks whether the guess is

M05_LIAN9966_12_SE_C05.indd 165 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

166 Chapter 5   Loops

correct, too high, or too low (lines 17–22). When the guess is correct, the program exits the
loop (line 12). Note that guess is initialized to −1. Initializing it to a value between 0 and
100 would be wrong, because that could be the number to be guessed.

5.3.1	 What is wrong if guess is initialized to 0 in line 11 in Listing 5.3?

5.4  Loop Design Strategies
The key to designing a loop is to identify the code that needs to be repeated and write
a condition for terminating the loop.

Writing a correct loop is not an easy task for novice programmers. Consider three steps when
writing a loop.

Step 1: Identify the statements that need to be repeated.

Step 2: Wrap these statements in a loop as follows:

while (true) {
 Statements;
}

�Step 3: Code the loop-continuation-condition and add appropriate statements for
controlling the loop.

while (loop-continuation-condition) {
 Statements;
 Additional statements for controlling the loop;
}

The Math subtraction learning tool program in Listing 3.3, SubtractionQuiz.java, generates
just one question for each run. You can use a loop to generate questions repeatedly. How
do you write the code to generate five questions? Follow the loop design strategy. First,
identify the statements that need to be repeated. These are the statements for obtaining two
random numbers, prompting the user with a subtraction question, and grading the question.
Second, wrap the statements in a loop. Third, add a loop control variable and the loop-
continuation-condition to execute the loop five times.

Listing 5.4 gives a program that generates five questions and, after a student answers all
five, reports the number of correct answers. The program also displays the time spent on the
test and lists all the questions.

Listing 5.4  SubtractionQuizLoop.java
 1 import java.util.Scanner;
 2
 3 public class SubtractionQuizLoop {
 4 public static void main(String[] args) {
 5 final int NUMBER_OF_QUESTIONS = 5; // Number of questions
 6 int correctCount = 0; // Count the number of correct answers
 7 int count = 0; // Count the number of questions
 8 long startTime = System.currentTimeMillis();
 9 String output = " "; // output string is initially empty
10 Scanner input = new Scanner(System.in);
11
12 while (count < NUMBER_OF_QUESTIONS) {
13 // 1. Generate two random single-digit integers
14 int number1 = (int)(Math.random() * 10);
15 int number2 = (int)(Math.random() * 10);
16
17 // 2. If number1 < number2, swap number1 with number2
18 if (number1 < number2) {

Point
Check

Point
Key

VideoNote

Multiple subtraction quiz

get start time

loop

M05_LIAN9966_12_SE_C05.indd 166 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.4  Loop Design Strategies 167

19 int temp = number1;
20 number1 = number2;
21 number2 = temp;
22 }
23
24 // 3. Prompt the student to answer "What is number1 – number2?"
25 System.out.print(
26 "What is " + number1 + " – " + number2 + "? ");
27 int answer = input.nextInt();
28
29 // 4. Grade the answer and display the result
30 if (number1 – number2 == answer) {
31 System.out.println("You are correct!");
32 correctCount++; // Increase the correct answer count
33 }
34 else
35 System.out.println("Your answer is wrong.\n" + number1
36 + " – " + number2 + " should be " + (number1 — number2));
37
38 // Increase the question count
39 count++;
40
41 output += "\n" + number1 + "–" + number2 + "=" + answer +
42 ((number1 – number2 == answer) ? " correct": " wrong");
43 }
44
45 long endTime = System.currentTimeMillis();
46 long testTime = endTime – startTime;
47
48 System.out.println("Correct count is " + correctCount +
49 "\nTest time is " + testTime / 1000 + " seconds\n" + output);
50 }
51 }

display a question

grade an answer

increase correct count

increase control variable

end loop

prepare output

get end time
test time

display result

What is 9 – 2? 7
You are correct!

What is 3 – 0? 3
You are correct!

What is 3 – 2? 1
You are correct!

What is 7 – 4? 4
Your answer is wrong.
7 – 4 should be 3

What is 7 – 5? 4
Your answer is wrong.
7 – 5 should be 2

Correct count is 3
Test time is 1021 seconds

9–2=7 correct
3–0=3 correct
3–2=1 correct
7–4=4 wrong
7–5=4 wrong

M05_LIAN9966_12_SE_C05.indd 167 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

168 Chapter 5   Loops

The program uses the control variable count to control the execution of the loop. count
is initially 0 (line 7) and is increased by 1 in each iteration (line 39). A subtraction question is
displayed and processed in each iteration. The program obtains the time before the test starts
in line 8 and the time after the test ends in line 45, then computes the test time in line 46. The
test time is in milliseconds and is converted to seconds in line 49.

5.4.1	 Revise the code using the System.nanoTime() to measure the time in nano seconds.

5.5 � Controlling a Loop with User Confirmation
or a Sentinel Value

It is a common practice to use a sentinel value to terminate the input.

The preceding example executes the loop five times. If you want the user to decide whether to
continue, you can offer a user confirmation. The template of the program can be coded as follows:

char continueLoop = 'Y';
while (continueLoop == 'Y') {
 // Execute the loop body once
 ...
 // Prompt the user for confirmation
 System.out.print("Enter Y to continue and N to quit: ");
 continueLoop = input.getLine().charAt(0);
}

You can rewrite the program given in Listing 5.4 with user confirmation to let the user decide
whether to advance to the next question.

Another common technique for controlling a loop is to designate a special value when
reading and processing a set of values. This special input value, known as a sentinel value,
signifies the end of the input. A loop that uses a sentinel value to control its execution is called
a sentinel-controlled loop.

Listing 5.5 gives a program that reads and calculates the sum of an unspecified number of
integers. The input 0 signifies the end of the input. Do you need to declare a new variable for
each input value? No. Just use one variable named data (line 12) to store the input value, and
use a variable named sum (line 15) to store the total. Whenever a value is read, assign it to
data and, if it is not zero, add it to sum (line 17).

Listing 5.5  SentinelValue.java
 1 import java.util.Scanner;
 2
 3 public class SentinelValue {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Read an initial data
10 System.out.print(
11 "Enter an integer (the input ends if it is 0): ");
12 int data = input.nextInt();
13
14 // Keep reading data until the input is 0
15 int sum = 0;
16 while (data != 0) {
17 sum += data;
18
19 // Read the next data
20 System.out.print(

Point
Check

Point
Key

sentinel value

sentinel-controlled loop

input

loop

M05_LIAN9966_12_SE_C05.indd 168 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.5  Controlling a Loop with User Confirmation or a Sentinel Value 169

21 "Enter an integer (the input ends if it is 0): ");
22 data = input.nextInt();
23 }
24
25 System.out.println("The sum is " + sum);
26 }
27 }

end of loop

display result

Enter an integer (the input ends if it is 0): 2

Enter an integer (the input ends if it is 0): 3

Enter an integer (the input ends if it is 0): 4

Enter an integer (the input ends if it is 0): 0

The sum is 9

line# data sum output

12 2

15 0

iteration 1 b 17 2

22 3

iteration 2 b 17 5

22 4

iteration 3 b 17 9

22 0

25 The sum is 9

If data is not 0, it is added to sum (line 17) and the next item of input data is read (lines
20–22). If data is 0, the loop body is no longer executed and the while loop terminates. The
input value 0 is the sentinel value for this loop. Note if the first input read is 0, the loop body
never executes, and the resulting sum is 0.

Caution
Don’t use floating-point values for equality checking in a loop control. Because
floating-point values are approximations for some values, using them could result in
imprecise counter values and inaccurate results.

Consider the following code for computing 1 + 0.9 + 0.8 + ... + 0.1:

double item = 1; double sum = 0;
while (item != 0) { // No guarantee item will be 0
 sum += item;
 item −= 0.1;
}
System.out.println(sum);

Variable item starts with 1 and is reduced by 0.1 every time the loop body is exe-
cuted. The loop should terminate when item becomes 0. However, there is no guar-
antee that item will be exactly 0, because the floating-point arithmetic is approximated.
This loop seems okay on the surface, but it is actually an infinite loop.

In the preceding example, if you have a large number of data to enter, it would be cumbersome
to type from the keyboard. You can store the data separated by whitespaces in a text file, say
input.txt, and run the program using the following command:

java SentinelValue < input.txt

numeric error

M05_LIAN9966_12_SE_C05.indd 169 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

170 Chapter 5   Loops

This command is called input redirection. The program takes the input from the file input.
txt rather than having the user type the data from the keyboard at runtime. Suppose the con-
tents of the file are as follows:

2 3 4 5 6 7 8 9 12 23 32
23 45 67 89 92 12 34 35 3 1 2 4 0

The program should get sum to be 518.
Similarly, there is output redirection, which sends the output to a file rather than displaying

it on the console. The command for output redirection is

java ClassName > output.txt

Input and output redirections can be used in the same command. For example, the follow-
ing command gets input from input.txt and sends output to output.txt:

java SentinelValue < input.txt > output.txt

Try running the program to see what contents are in output.txt.
When reading data through input redirection, you can invoke input.hasNext() to detect the end

of input. For example, the following code reads all int value from the input and displays their total.

import java.util.Scanner;

public class TestEndOfInput {
 public static void main(String[] args) {

// Create a Scanner
 Scanner input = new Scanner(System.in);
 int sum = 0;

 while (input.hasNext ()) {
 sum += input.nextInt();
 }

 System.out.println(“The sum is “ + sum);
 }
}

If there is no more input in the file, input.hasNext() will return false.

Note
If you enter the input from the command window, you can end the input by pressing
ENTER and then CTRL+Z, and then pressing ENTER again. In this case, input.has-
Next() will return false.

5.5.1	 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;	

public class Test {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 int number, max;
 number = input.nextInt(); max = number;

 while (number != 0) {
 number = input.nextInt();
 if (number > max)
 max = number;
 }

 System.out.println("max is " + max);
 System.out.println("number " + number);
 }
}

input redirection

output redirection

Point
Check

M05_LIAN9966_12_SE_C05.indd 170 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.6  The do-while Loop 171

5.6  The do-while Loop
A do-while loop is the same as a while loop except that it executes the loop body
first then checks the loop continuation condition.

The do-while loop is a variation of the while loop. Its syntax is as follows:

do {
 // Loop body;
 Statement(s);
} while (loop-continuation-condition);

Its execution flowchart is shown in Figure 5.2a.
The loop body is executed first, then the loop-continuation-condition is evaluated.

If the evaluation is true, the loop body is executed again; if it is false, the do-while loop
terminates. For example, the following while loop statement

int count = 0;
while (count < 100) {
 System.out.println("Welcome to Java!");
 count++;
}

can be written using a do-while loop as follows:

int count = 0;
do {
 System.out.println("Welcome to Java!");
 count++;
} while (count < 100);

The flowchart of this do-while loop is shown in Figure 5.2b.
The difference between a while loop and a do-while loop is the order in which the loop-

continuation-condition is evaluated and the loop body is executed. In the case of a do-
while loop, the loop body is executed at least once. You can write a loop using either the while
loop or the do-while loop. Sometimes one is a more convenient choice than the other. For exam-
ple, you can rewrite the while loop in Listing 5.5 using a do-while loop, as given in Listing 5.6.

VideoNote

Use do-while loop
do-while loop

Point
Key

loop-
continuation-

conditiontrue

(a)

(count < 100)?
true

falsefalse

(b)

System.out.println("Welcome to Java!");
count++;

Statement(s)
(loop body)

Statement(s)
Before loop int count = 0;

Figure 5.2  The do-while loop executes the loop body first then checks the loop-
continuation-condition to determine whether to continue or terminate the loop.

M05_LIAN9966_12_SE_C05.indd 171 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

172 Chapter 5   Loops

Listing 5.6  TestDoWhile.java
 1 import java.util.Scanner;
 2
 3 public class TestDoWhile {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 int data;
 7 int sum = 0;
 8
 9 // Create a Scanner
10 Scanner input = new Scanner(System.in);
11
12 // Keep reading data until the input is 0
13 do {
14 // Read the next data
15 System.out.print(
16 "Enter an integer (the input ends if it is 0): ");
17 data = input.nextInt();
18
19 sum += data;
20 } while (data != 0);
21
22 System.out.println("The sum is " + sum);
23 }
24 }

loop

end loop

Enter an integer (the input ends if it is 0): 3

Enter an integer (the input ends if it is 0): 5

Enter an integer (the input ends if it is 0): 6

Enter an integer (the input ends if it is 0): 0

The sum is 14

Tip
Use a do-while loop if you have statements inside the loop that must be executed
at least once, as in the case of the do-while loop in the preceding TestDoWhile
program. These statements must appear before the loop as well as inside it if you use a
while loop.

5.6.1	 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 int number, max;
 number = input.nextInt();
 max = number;

 do {
 number = input.nextInt();
 if (number > max)
 max = number;
 } while (number != 0);

Point
Check

M05_LIAN9966_12_SE_C05.indd 172 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.7  The for Loop 173

 System.out.println("max is " + max);
 System.out.println("number " + number);
 }
}

5.6.2	 What are the differences between a while loop and a do-while loop? Convert the
following while loop into a do-while loop:

Scanner input = new Scanner(System.in);
int sum = 0;
System.out.println("Enter an integer " +
 "(the input ends if it is 0)");
int number = input.nextInt();
while (number != 0) {
 sum += number;
 System.out.println("Enter an integer " +
 "(the input ends if it is 0)");
 number = input.nextInt();
}

5.7  The for Loop
A for loop has a concise syntax for writing loops.

 Often you write a loop in the following common form:

i = initialValue; // Initialize loop control variable
while (i < endValue) {
 // Loop body
 ...
 i++; // Adjust loop control variable
}

This loop is intuitive and easy for beginners to grasp. However, programmers often forget to
adjust the control variable, which leads to an infinite loop. A for loop can be used to avoid
the potential error and simplify the preceding loop as shown in (a) below. In general, the syn-
tax for a for loop is as shown in (a), which is equivalent to (b).

Point
Key

for (i = initialValue; i < endValue; i++) {

 // Loop body
 ...
}

(a)

i = initialValue;

while (i < endValue) {

 // Loop body
 ...
 i++;

}

(b)

In general, the syntax of a for loop is as follows:

for (initial-action; loop-continuation-condition;
 action-after-each-iteration) {
 // Loop body;
 Statement(s);
}

The flowchart of the for loop is shown in Figure 5.3a.
The for loop statement starts with the keyword for, followed by a pair of parentheses en-

closing the control structure of the loop. This structure consists of initial-action, loop-
continuation-condition, and action-after-each-iteration. The control structure is

for loop

M05_LIAN9966_12_SE_C05.indd 173 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

174 Chapter 5   Loops

followed by the loop body enclosed inside braces. The initial-action, loop-continuation-
condition, and action-after-each-iteration are separated by semicolons.

A for loop generally uses a variable to control how many times the loop body is executed
and when the loop terminates. This variable is referred to as a control variable. The initial-
action often initializes a control variable, the action-after-each-iteration usually
increments or decrements the control variable, and the loop-continuation-condition
tests whether the control variable has reached a termination value. For example, the following
for loop prints Welcome to Java! a hundred times:

int i;
for (i = 0; i < 100; i++) {
 System.out.println("Welcome to Java!");
}

The flowchart of the statement is shown in Figure 5.3b. The for loop initializes i to 0,
then repeatedly executes the println statement and evaluates i++ while i is less than 100.

The initial-action, i = 0, initializes the control variable, i. The loop-
continuation-condition, i < 100, is a Boolean expression. The expression is eval-
uated right after the initialization and at the beginning of each iteration. If this condition is
true, the loop body is executed. If it is false, the loop terminates and the program control
turns to the line following the loop.

The action-after-each-iteration, i++, is a statement that adjusts the control
variable. This statement is executed after each iteration and increments the control variable.
Eventually, the value of the control variable should force the loop-continuation-condi-
tion to become false; otherwise, the loop is infinite.

The loop control variable can be declared and initialized in the for loop. Here is an
example:

for (int i = 0; i < 100; i++) {
 System.out.println("Welcome to Java!");
}

control variable

initial-action

action-after-each-iteration

omitting braces

Statement(s)
(loop body)

(a)

Initial-action

action-after-each-iteration

true

false
loop-

continuation-
condition

System.out.println(
 "Welcome to Java!");

(b)

i = 0;

true

false
(i < 100)?

i++;

Figure 5.3  A for loop performs an initial action once, then repeatedly executes the
statements in the loop body, and performs an action after an iteration when the loop-
continuation-condition evaluates to true.

M05_LIAN9966_12_SE_C05.indd 174 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.7  The for Loop 175

If there is only one statement in the loop body, as in this example, the braces can be omitted.

Tip
The control variable must be declared inside the control structure of the loop or before
the loop. If the loop control variable is used only in the loop, and not elsewhere, it is a
good programming practice to declare it in the initial-action of the for loop. If
the variable is declared inside the loop control structure, it cannot be referenced outside
the loop. In the preceding code, for example, you cannot reference i outside the for
loop, because it is declared inside the for loop.

Note
The initial-action in a for loop can be a list of zero or more comma-separated
variable declaration statements or assignment expressions. For example:

for (int i = 0, j = 0; i + j < 10; i++, j++) {
 // Do something
}

The action-after-each-iteration in a for loop can be a list of zero or
more comma-separated statements. For example:

for (int i = 1; i < 100; System.out.println(i), i++) ;

This example is correct, but it is a bad example, because it makes the code difficult
to read. Normally, you declare and initialize a control variable as an initial action, and
increment or decrement the control variable as an action after each iteration.

Note
If the loop-continuation-condition in a for loop is omitted, it is implicitly
true. Thus, the statement given below in (a), which is an infinite loop, is the same as
in (b). To avoid confusion, though, it is better to use the equivalent loop in (c).

declare control variable

for loop variations

for (; ;) {
 // Do something

}

(a)

for (; true;) {
 // Do something

}

(b)

while (true) {
 // Do something

}

(c)
This is better

Equivalent Equivalent

5.7.1	 Do the following two loops result in the same value in sum?
Point

Check

for (int i = 0; i < 10; ++i) {
 sum += i;
}

for (int i = 0; i < 10; i++) {
 sum += i;
}

(a) (b)

5.7.2	 What are the three parts of a for loop control? Write a for loop that prints the
numbers from 1 to 100.

5.7.3	 Suppose the input is 2 3 4 5 0. What is the output of the following code?

import java.util.Scanner;

public class Test {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);

 int number, sum = 0, count;
 for (count = 0; count < 5; count++) {
 number = input.nextInt();
 sum += number;
 }

M05_LIAN9966_12_SE_C05.indd 175 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

176 Chapter 5   Loops

 System.out.println("sum is " + sum);
 System.out.println("count is " + count);
 }
}

5.7.4	 What does the following statement do?

for (; ;) {
	 // Do something
}

5.7.5	 If a variable is declared in a for loop control, can it be used after the loop exits?

5.7.6	 Convert the following for loop statement to a while loop and to a do-while loop:

long sum = 0;
for (int i = 0; i <= 1000; i++)
 sum = sum + i;

5.7.7	 Count the number of iterations in the following loops.

int count = 0;
while (count < n) {
 count++;

}

(a)

for (int count = 0;
 count <= n; count++) {

}

(b)

int count = 5;
while (count < n) {
 count++;

}

(c)

int count = 5;
while (count < n) {
 count = count + 3;
}

(d)

5.8  Which Loop to Use?
You can use a for loop, a while loop, or a do-while loop, whichever is convenient.

 The while loop and do-while loop are easier to learn than the for loop. However, you
will learn the for loop quickly after some practice. A for loop places control variable
initialization, loop continuation condition, and adjustment after each iteration all together. It
is more concise and enables you to write the code with less errors than the other two loops.

The while loop and for loop are called pretest loops because the continuation condition
is checked before the loop body is executed. The do-while loop is called a posttest loop
because the condition is checked after the loop body is executed. The three forms of loop
statements—while, do-while, and for—are expressively equivalent; that is, you can write
a loop in any of these three forms. For example, a while loop in (a) in the following figure
can always be converted into the for loop in (b).

Point
Key

pretest loop
posttest loop

while (loop-continuation-condition) {
 // Loop body

}

(a)

for (; loop-continuation-condition;) {
 // Loop body

}

(b)

Equivalent

A for loop in (a) in the next figure can generally be converted into the while loop in (b) ex-
cept in certain special cases (see CheckPoint Question 5.12.2 in Section 5.12 for such a case).

Equivalent

for (initial-action;
 loop-continuation-condition;

 action-after-each-iteration) {

 // Loop body;

}

(a)

initial-action;

while (loop-continuation-condition) {
 // Loop body;

 action-after-each-iteration;

}

(b)

M05_LIAN9966_12_SE_C05.indd 176 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.8  Which Loop to Use? 177

Use the loop statement that is most intuitive and comfortable for you. In general, a for
loop may be used if the number of repetitions is known in advance, as, for example, when
you need to display a message a hundred times. A while loop may be used if the number of
repetitions is not fixed, as in the case of reading the numbers until the input is 0. A do-while
loop can be used to replace a while loop if the loop body has to be executed before the con-
tinuation condition is tested.

Caution
Adding a semicolon at the end of the for clause before the loop body is a common
mistake, as shown below in (a). In (a), the semicolon signifies the end of the loop
prematurely. The loop body is actually empty, as shown in (b). (a) and (b) are equiva-
lent. Both are incorrect.

for (int i = 0; i < 10; i++);
{

 System.out.println("i is " + i);
}

(a)

Error

for (int i = 0; i < 10; i++) { };
{

 System.out.println("i is " + i);
}

(b)

Empty body

Similarly, the loop in (c) is also wrong. (c) is equivalent to (d). Both are incorrect.

Error Empty body

int i = 0;
while (i < 10);
{

 System.out.println("i is " + i);
 i++;

}

int i = 0;
while (i < 10) { };
{

 System.out.println("i is " + i);
 i++;

}

(c) (d)

These errors often occur when you use the next-line block style. Using the end-of-line
block style can avoid errors of this type.

In the case of the do-while loop, the semicolon is needed to end the loop.

int i = 0;
do {
 System.out.println("i is " + i);
 i++;

} while (i < 10); This is correct.

5.8.1	 Can you convert a for loop to a while loop? List the advantages of using for
loops.

5.8.2	 Can you always convert a while loop into a for loop? Convert the following
while loop into a for loop:

int i = 1;
int sum = 0;
while (sum <	 10000) {
 sum = sum + i;
 i++;
}

Point
Check

M05_LIAN9966_12_SE_C05.indd 177 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

178 Chapter 5   Loops

5.8.3	 Identify and fix the errors in the following code:

1 public class Test {
2 public void main(String[] args) {
3 for (int i = 0; i < 10; i++);
4 sum += i;
5
6 if (i < j);
7 System.out.println(i)
8 else
9 System.out.println(j);
10
11 while (j < 10);
12 {
13 j++;
14 }
15
16 do {
17 j++;
18 } while (j < 10)
19 }
20 }

5.8.4	 What is wrong with the following programs?

1 public class ShowErrors {
2 public static void main(String[] args) {
3 int i = 0;
4 do {
5 System.out.println(i + 4);
6 i++;

7

8 while (i < 10)
8

9

1 public class ShowErrors {
2 public static void main(String[] args) {
3 for (int i = 0; i < 10; i++);
4 System.out.println(i + 4);
5

6

(b)(a)

}

}

}

}

}

5.9  Nested Loops
A loop can be nested inside another loop.

Nested loops consist of an outer loop and one or more inner loops. Each time the outer loop is
repeated, the inner loops are reentered, and started anew.

Listing 5.7 presents a program that uses nested for loops to display a multiplication table.

Listing 5.7  MultiplicationTable.java
 1 public class MultiplicationTable {
 2 /** Main method */
 3 public static void main(String[] args) {
 4 // Display the table heading
 5 System.out.println(" Multiplication Table");
 6
 7 // Display the number title
 8 System.out.print(" ");
 9 for (int j = 1; j <= 9; j++)
10 System.out.print(" " + j);

Point
Key

nested loop

table title

M05_LIAN9966_12_SE_C05.indd 178 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.9  Nested Loops 179

11
12 System.out.println("\n — — — — — — — — — — —— — — — — — — — —");
13
14 // Display table body
15 for (int i = 1; i <= 9; i++) {
16 System.out.print(i + " | ");
17 for (int j = 1; j <= 9; j++) {
18 // Display the product and align properly
19 System.out.printf("%4d", i * j);
20 }
21 System.out.println();
22 }
23 }
24 }

outer loop

inner loop

Multiplication Table

1 2 3 4 5 6 7 8 9

1 | 1 2 3 4 5 6 7 8 9
2 | 2 4 6 8 10 12 14 16 18
3 | 3 6 9 12 15 18 21 24 27
4 | 4 8 12 16 20 24 28 32 36
5 | 5 10 15 20 25 30 35 40 45
6 | 6 12 18 24 30 36 42 48 54
7 | 7 14 21 28 35 42 49 56 63
8 | 8 16 24 32 40 48 56 64 72
9 | 9 18 27 36 45 54 63 72 81

The program displays a title (line 5) on the first line in the output. The first for loop (lines
9 and 10) displays the numbers 1–9 on the second line. A dashed (–) line is displayed on the
third line (line 12).

The next loop (lines 15–22) is a nested for loop with the control variable i in the outer
loop and j in the inner loop. For each i, the product i * j is displayed on a line in the inner
loop, with j being 1, 2, 3, …, 9.

Note
Be aware that a nested loop may take a long time to run. Consider the following loop
nested in three levels:

for (int i = 0; i < 10000; i++)
 for (int j = 0; j < 10000; j++)
 for (int k = 0; k < 10000; k++)
 Perform an action

The action is performed one trillion times. If it takes 1 microsecond to perform the ac-
tion, the total time to run the loop would be more than 277 hours. Note 1 microsecond
is one-millionth (10-6) of a second.

5.9.1	 How many times is the println statement executed?

for (int i = 0; i < 10; i++)
 for (int j = 0; j < i; j++)
 System.out.println(i * j)

Point
Check

M05_LIAN9966_12_SE_C05.indd 179 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

180 Chapter 5   Loops

5.9.2	 Show the output of the following programs. (Hint: Draw a table and list the vari-
ables in the columns to trace these programs.)

public class Test {
public static void main(String[] args) {
for (int i = 1; i < 5; i++) {

int j = 0;
while (j < i) {

 System.out.print(j + " ");
 j++;

 }

 }

 }

}

(a)

public class Test {
public static void main(String[] args) {

int i = 0;
while (i < 5) {

for (int j = i; j > 1; j––)
 System.out.print(j + " ");
 System.out.println("****");
 i++;

 }

 }

}

(b)

(c)

public class Test {
public static void main(String[] args) {

int i = 5;
while (i >= 1) {
int num = 1;
for (int j = 1; j <= i; j++) {

 System.out.print(num + "xxx");
 num *= 2;
 }

 System.out.println();

 i--;

 }

 }

}

public class Test {
public static void main(String[] args) {

int i = 1;
do {

int num = 1;
for (int j = 1; j <= i; j++) {

 System.out.print(num + "G");
 num += 2;
 }

 System.out.println();

 i++;

 } while (i <= 5);
 }

}

(d)

5.10  Minimizing Numeric Errors
Using floating-point numbers in the loop continuation condition may cause numeric
errors.

Numeric errors involving floating-point numbers are inevitable, because floating-point num-
bers are represented in approximation in computers by nature. This section discusses how to
minimize such errors through an example.

Listing 5.8 presents an example summing a series that starts with 0.01 and ends with 1.0.
The numbers in the series will increment by 0.01, as follows: 0.01 + 0.02 + 0.03, and
so on.

Listing 5.8  TestSum.java
 1 public class TestSum {
 2 public static void main(String[] args) {
 3 // Initialize sum
 4 float sum = 0;
 5
 6 // Add 0.01, 0.02, ..., 0.99, 1 to sum
 7 for (float i = 0.01f; i <= 1.0f; i = i + 0.01f)
 8 sum += i;
 9
10 // Display result

Point
Key

VideoNote

Minimize numeric errors

loop

M05_LIAN9966_12_SE_C05.indd 180 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.10  Minimizing Numeric Errors 181

11 System.out.println("The sum is " + sum);
12 }
13 }

The sum is 50.499985

The for loop (lines 7 and 8) repeatedly adds the control variable i to sum. This variable,
which begins with 0.01, is incremented by 0.01 after each iteration. The loop terminates
when i exceeds 1.0.

The for loop initial action can be any statement, but it is often used to initialize a control
variable. From this example, you can see a control variable can be a float type. In fact, it
can be any data type.

The exact sum should be 50.50, but the answer is 50.499985. The result is imprecise be-
cause computers use a fixed number of bits to represent floating-point numbers, and thus they
cannot represent some floating-point numbers exactly. If you change float in the program
to double, as follows, you should see a slight improvement in precision, because a double
variable holds 64 bits, whereas a float variable holds 32 bits.

// Initialize sum
double sum = 0;

// Add 0.01, 0.02, ..., 0.99, 1 to sum
for (double i = 0.01; i <= 1.0; i = i + 0.01)
 sum += i;

However, you will be stunned to see the result is actually 49.50000000000003. What
went wrong? If you display i for each iteration in the loop, you will see that the last i is
slightly larger than 1 (not exactly 1). This causes the last i not to be added into sum. The fun-
damental problem is the floating-point numbers are represented by approximation. To fix the
problem, use an integer count to ensure all the numbers are added to sum. Here is the new loop:

double currentValue = 0.01;

for (int count = 0; count < 100; count++) {
 sum += currentValue;
 currentValue += 0.01;
}

After this loop, sum is 50.50000000000003. This loop adds the numbers from small-
est to biggest. What happens if you add numbers from biggest to smallest (i.e., 1.0, 0.99,
0.98,. . . , 0.02, 0.01 in this order) is as follows:

double currentValue = 1.0;

for (int count = 0; count < 100; count++) {
 sum += currentValue;
 currentValue –= 0.01;
}

After this loop, sum is 50.49999999999995. Adding from biggest to smallest is less accurate
than adding from smallest to biggest. This phenomenon is an artifact of the finite-precision
arithmetic. Adding a very small number to a very big number can have no effect if the result
requires more precision than the variable can store. For example, the inaccurate result of
100000000.0 + 0.000000001 is 100000000.0. To obtain more accurate results, care-
fully select the order of computation. Adding smaller numbers before bigger numbers to sum
is one way to minimize errors.

double precision

numeric error

avoiding numeric error

M05_LIAN9966_12_SE_C05.indd 181 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

182 Chapter 5   Loops

5.11  Case Studies
Loops are fundamental in programming. The ability to write loops is essential in
learning Java programming.

If you can write programs using loops, you know how to program! For this reason, this sec-
tion presents three additional examples of solving problems using loops.

5.11.1  Case Study: Finding the Greatest Common Divisor
The greatest common divisor (gcd) of the two integers 4 and 2 is 2. The greatest common di-
visor of the two integers 16 and 24 is 8. How would you write this program to find the great-
est common divisor? Would you immediately begin to write the code? No. It is important to
think before you code. Thinking enables you to generate a logical solution for the problem
without concern about how to write the code.

Let the two input integers be n1 and n2. You know that number 1 is a common divisor,
but it may not be the greatest common divisor. Therefore, you can check whether k (for k =
2, 3, 4, and so on) is a common divisor for n1 and n2, until k is greater than n1 or n2. Store
the common divisor in a variable named gcd. Initially, gcd is 1. Whenever a new common
divisor is found, it becomes the new gcd. When you have checked all the possible common
divisors from 2 up to n1 or n2, the value in variable gcd is the greatest common divisor.

Once you have a logical solution, type the code to translate the solution into a Java pro-
gram as follows:

int gcd = 1; // Initial gcd is 1
int k = 2; // Possible gcd

while (k <= n1 && k <= n2) {
 if (n1 % k == 0 && n2 % k == 0)
 gcd = k; // Update gcd
 k++; // Next possible gcd
}

// After the loop, gcd is the greatest common divisor for n1 and n2

Listing 5.9 presents the program that prompts the user to enter two positive integers and
finds their greatest common divisor.

Listing 5.9  GreatestCommonDivisor.java
 1 import java.util.Scanner;
 2
 3 public class GreatestCommonDivisor {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter two integers
10 System.out.print("Enter first integer: ");
11 int n1 = input.nextInt();
12 System.out.print("Enter second integer: ");
13 int n2 = input.nextInt();
14
15 int gcd = 1; // Initial gcd is 1
16 int k = 2; // Possible gcd
17 while (k <= n1 && k <= n2) {
18 if (n1 % k == 0 && n2 % k == 0)
19 gcd = k; // Update gcd
20 k++;

Point
Key

gcd

think before you code

logical solution

input

input

gcd

check divisor

M05_LIAN9966_12_SE_C05.indd 182 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.11  Case Studies 183

21 }
22
23 System.out.println("The greatest common divisor for " + n1 +
24 " and " + n2 + " is " + gcd);
25 }
26 }

output

Enter first integer: 125

Enter second integer: 2525
The greatest common divisor for 125 and 2525 is 25

Translating a logical solution to Java code is not unique. For example, you could use a for
loop to rewrite the code as follows:

for (int k = 2; k <= n1 && k <= n2; k++) {
 if (n1 % k == 0 && n2 % k == 0)
 gcd = k;
}

A problem often has multiple solutions, and the gcd problem can be solved in many ways.
Programming Exercise 5.14 suggests another solution. A more efficient solution is to use the
classic Euclidean algorithm (see Section 22.6).

You might think that a divisor for a number n1 cannot be greater than n1 / 2 and would
attempt to improve the program using the following loop:

for (int k = 2; k <= n1 / 2 && k <= n2 / 2; k++) {
 if (n1 % k == 0 && n2 % k == 0)
 gcd = k;
}

This revision is wrong. Can you find the reason? See Checkpoint Question 5.11.1 for the
answer.

5.11.2  Case Study: Predicting the Future Tuition
Suppose the tuition for a university is $10,000 this year and tuition increases 7% every year.
In how many years will the tuition be doubled?

Before you can write a program to solve this problem, first consider how to solve it by
hand. The tuition for the second year is the tuition for the first year * 1.07. The tuition for a
future year is the tuition of its preceding year * 1.07. Thus, the tuition for each year can be
computed as follows:

double tuition = 10000; int year = 0; // Year 0
tuition = tuition * 1.07; year++; // Year 1
tuition = tuition * 1.07; year++; // Year 2
tuition = tuition * 1.07; year++; // Year 3
...

Keep computing the tuition for a new year until it is at least 20000. By then, you will know
how many years it will take for the tuition to be doubled. You can now translate the logic into
the following loop:

double tuition = 10000; // Year 0
int year = 0;
while (tuition < 20000) {
 tuition = tuition * 1.07;
 year++;
}

The complete program is given in Listing 5.10.

think before you type

multiple solutions

erroneous solutions

think before you code

M05_LIAN9966_12_SE_C05.indd 183 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

184 Chapter 5   Loops

Listing 5.10  FutureTuition.java
 1 public class FutureTuition {
 2 public static void main(String[] args) {
 3 double tuition = 10000; // Year 0
 4 int year = 0;
 5 while (tuition < 20000) {
 6 tuition = tuition * 1.07;
 7 year++;
 8 }
 9
10 System.out.println("Tuition will be doubled in "
11 + year + " years");
12 System.out.printf("Tuition will be $%.2f in %1d years",
13 tuition, year);
14 }
15 }

loop
next year’s tuition

Tuition will be doubled in 11 years
Tuition will be $21048.52 in 11 years

The while loop (lines 5–8) is used to repeatedly compute the tuition for a new year. The
loop terminates when the tuition is greater than or equal to 20000.

5.11.3  Case Study: Converting Decimals to Hexadecimals
Hexadecimals are often used in computer systems programming (see Appendix F for an in-
troduction to number systems). How do you convert a decimal number to a hexadecimal
number? To convert a decimal number d to a hexadecimal number is to find the hexadecimal
digits hn, hn - 1, hn - 2, c , h2, h1, and h0 such that

d = hn * 16n + hn - 1 * 16n - 1 + hn - 2 * 16n - 2 + g
+ h2 * 162 + h1 * 161 + h0 * 160

These hexadecimal digits can be found by successively dividing d by 16 until the quotient
is 0. The remainders are h0, h1, h2, c , hn - 2, hn - 1, and hn. The hexadecimal digits include the
decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus A, which is the decimal value 10; B, which is
the decimal value 11; C, which is 12; D, which is 13; E, which is 14; and F, which is 15.

For example, the decimal number 123 is 7B in hexadecimal. The conversion is done as
follows. Divide 123 by 16. The remainder is 11 (B in hexadecimal) and the quotient is 7.
Continue to divide 7 by 16. The remainder is 7 and the quotient is 0. Therefore, 7B is the
hexadecimal number for 123.

Remainder

h0

Quotient

16 123

112

11

7

h1

16 7

0

7

0

Listing 5.11 gives a program that prompts the user to enter a decimal number and converts
it into a hex number as a string.

M05_LIAN9966_12_SE_C05.indd 184 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.11  Case Studies 185

Listing 5.11  Dec2Hex.java

 1 import java.util.Scanner;
 2
 3 public class Dec2Hex {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a decimal integer
10 System.out.print("Enter a decimal number: ");
11 int decimal = input.nextInt();
12
13 // Convert decimal to hex
14 String hex = "";
15
16 while (decimal != 0) {
17 int hexValue = decimal % 16;
18
19 // Convert a decimal value to a hex digit
20 char hexDigit = (0 <= hexValue && hexValue <= 9)?
21 (char)(hexValue + '0'): (char)(hexValue – 10 + 'A');
22
23 hex = hexDigit + hex;
24 decimal = decimal / 16;
25 }
26
27 System.out.println("The hex number is " + hex);
28 }
29 }

input decimal

decimal to hex

get a hex char

add to hex string

Enter a decimal number: 1234

The hex number is 4D2

line# decimal hex hexValue hexDigit

14 1234 ""

iteration 1 c 17 2

23 “2” 2

24 77

iteration 2 c 17 13

23 “D2” D

24 4

iteration 3 c 17 4

23 “4D2” 4

24 0

The program prompts the user to enter a decimal integer (line 11), converts it to a hex num-
ber as a string (lines 14–25), and displays the result (line 27). To convert a decimal to a hex
number, the program uses a loop to successively divide the decimal number by 16 and obtain
its remainder (line 17). The remainder is converted into a hex character (lines 20 and 21). The
character is then appended to the hex string (line 23). The hex string is initially empty (line
14). Divide the decimal number by 16 to remove a hex digit from the number (line 24). The
loop ends when the remaining decimal number becomes 0.

M05_LIAN9966_12_SE_C05.indd 185 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

186 Chapter 5   Loops

The program converts a hexValue between 0 and 15 into a hex character. If hexValue
is between 0 and 9, it is converted to (char)(hexValue +'0') (line 21). Recall that when
adding a character with an integer, the character’s Unicode is used in the evaluation. For
example, if hexValue is 5, (char)(hexValue + '0') returns 5. Similarly, if hexValue
is between 10 and 15, it is converted to (char)(hexValue – 10 + 'A') (line 21). For
instance, if hexValue is 11, (char),(hexValue – 10 + 'A') returns B.

5.11.1	 Will the program work if n1 and n2 are replaced by n1 / 2 and n2 / 2 in line 17
in Listing 5.9?

5.11.2	 In Listing 5.11, why is it wrong if you change the code (char)(hexValue +
'0') to hexValue + '0' in line 21?

5.11.3	 In Listing 5.11, how many times the loop body is executed for a decimal number
245, and how many times the loop body is executed for a decimal number 3245?

5.11.4	 What is the hex number after E? What is the hex number after F?

5.11.5	 Revise line 27 in Listing 5.11 so the program displays hex number 0 if the input
decimal is 0.

5.12  Keywords break and continue
The break and continue keywords provide additional controls in a loop.

Pedagogical Note
Two keywords, break and continue, can be used in loop statements to provide
additional controls. Using break and continue can simplify programming in some
cases. Overusing or improperly using them, however, can make programs difficult to
read and debug. (Note to instructors: You may skip this section without affecting stu-
dents’ understanding of the rest of the book.)

You have used the keyword break in a switch statement. You can also use break in a loop
to immediately terminate the loop. Listing 5.12 presents a program to demonstrate the effect
of using break in a loop.

Listing 5.12  TestBreak.java
 1 public class TestBreak {
 2 public static void main(String[] args) {
 3 int sum = 0;
 4 int number = 0;
 5
 6 while (number < 20) {
 7 number++;
 8 sum += number;
 9 if (sum >= 100)
10 break;
11 }
12
13 System.out.println(“The number is “ + number);
14 System.out.println(“The sum is “ + sum);
15 }
16 }

Point
Check

Point
Key

break statement

The number is 14

The sum is 105

break

M05_LIAN9966_12_SE_C05.indd 186 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.12  Keywords break and continue 187

The program in Listing 5.12 adds integers from 1 to 20 in this order to sum until sum is
greater than or equal to 100. Without the if statement (line 9), the program calculates the
sum of the numbers from 1 to 20. However, with the if statement, the loop terminates when
sum becomes greater than or equal to 100. Without the if statement, the output would be as
follows:

The number is 20

The sum is 210

The sum is 210

The sum is 189

You can also use the continue keyword in a loop. When it is encountered, it ends the
current iteration and program control goes to the end of the loop body. In other words, con-
tinue breaks out of an iteration, while the break keyword breaks out of a loop. Listing 5.13
presents a program to demonstrate the effect of using continue in a loop.

Listing 5.13  TestContinue.java

 1 public class TestContinue {
 2 public static void main(String[] args) {
 3 int sum = 0;
 4 int number = 0;
 5
 6 while (number < 20) {
 7 number++;
 8 if (number == 10 || number == 11)
 9 continue;
10 sum += number;
11 }
12
13 System.out.println("The sum is " + sum);
14 }
15 }

continue statement

continue

The program in Listing 5.13 adds integers from 1 to 20 except 10 and 11 to sum. With
the if statement in the program (line 8), the continue statement is executed when number
becomes 10 or 11. The continue statement ends the current iteration so that the rest of the
statement in the loop body is not executed; therefore, number is not added to sum when it is
10 or 11. Without the if statement in the program, the output would be as follows:

In this case, all of the numbers are added to sum, even when number is 10 or 11. Therefore,
the result is 210, which is 21 more than it was with the if statement.

Note
The continue statement is always inside a loop. In the while and do-while
loops, the loop-continuation-condition is evaluated immediately after the
continue statement. In the for loop, the action-after-each-iteration
is performed, then the loop-continuation-condition is evaluated immedi-
ately after the continue statement.

M05_LIAN9966_12_SE_C05.indd 187 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

188 Chapter 5   Loops

Note
Some programming languages have a goto statement. The goto statement indiscrim-
inately transfers control to any statement in the program and executes it. This makes
your program vulnerable to errors. The break and continue statements in Java are
different from goto statements. They operate only in a loop or a switch statement.
The break statement breaks out of the loop, and the continue statement breaks
out of the current iteration in the loop.

You can always write a program without using break or continue in a loop (see
CheckPoint Question 5.12.3). In general, though, using break and continue is appropriate
if it simplifies coding and makes programs easier to read.

Suppose you need to write a program to find the smallest factor other than 1 for an integer
n (assume n >= 2). You can write a simple and intuitive code using the break statement as
follows:

int factor = 2;
while (factor <= n) {
 if (n % factor == 0)
 break;
 factor++;
}
System.out.println("The smallest factor other than 1 for "
 + n + " is " + factor);

You may rewrite the code without using break as follows:

boolean found = false;
int factor = 2;
while (factor <= n && !found) {
 if (n % factor == 0)
 found = true;
 else
 factor++;
}
System.out.println("The smallest factor other than 1 for "
 + n + " is " + factor);

Obviously, the break statement makes this program simpler and easier to read in this
case. However, you should use break and continue with caution. Too many break and
continue statements will produce a loop with many exit points and make the program dif-
ficult to read.

Note
Programming is a creative endeavor. There are many different ways to write code. In
fact, you can find a smallest factor using a rather simple code as follows:

int factor = 2;
while (n % factor != 0)
 factor++;
or
for (int factor = 2; n % factor != 0; factor++);

The code here finds the smallest factor for an integer n. Programming Exercise 5.16
writes a program that finds all smallest factors in n.

5.12.1	 What is the keyword break for? What is the keyword continue for? Will the fol-
lowing programs terminate? If so, give the output.

goto

Point
Check

M05_LIAN9966_12_SE_C05.indd 188 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.13  Case Study: Checking Palindromes 189

5.12.2	The for loop on the left is converted into the while loop on the right. What is
wrong? Correct it.

int balance = 10;
while (true) {
if (balance < 9)
break;

 balance = balance – 9;
}

System.out.println("Balance is "
+ balance);

(a)

int balance = 10;
while (true) {

if (balance < 9)
continue;

 balance = balance – 9;
}

System.out.println("Balance is "
 + balance);

(b)

int sum = 0;
for (int i = 0; i < 4; i++) {

if (i % 3 == 0) continue;
 sum += i;
}

Converted

Wrong conversion

int i = 0, sum = 0;
while (i < 4) {
if (i % 3 == 0) continue;

 sum += i;
 i++;
}

5.12.3	Rewrite the programs TestBreak and TestContinue in Listings 5.12 and 5.13
without using break and continue.

5.12.4	After the break statement in (a) is executed in the following loop, which statement
is executed? Show the output. After the continue statement in (b) is executed in
the following loop, which statement is executed? Show the output.

for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {
if (i * j > 2)
break;

 System.out.println(i * j);
 }

 System.out.println(i);
}

(a)

for (int i = 1; i < 4; i++) {
for (int j = 1; j < 4; j++) {

if (i * j > 2)
continue;

 System.out.println(i * j);
 }

 System.out.println(i);
}

(b)

5.13  Case Study: Checking Palindromes
This section presents a program that checks whether a string is a palindrome.

 A string is a palindrome if it reads the same forward and backward. The words “mom,”
“dad,” and “noon,” for instance, are all palindromes.

The problem is to write a program that prompts the user to enter a string and reports whether the
string is a palindrome. One solution is to check whether the first character in the string is the same
as the last character. If so, check whether the second character is the same as the second-to-last

Point
Key

M05_LIAN9966_12_SE_C05.indd 189 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

190 Chapter 5   Loops

character. This process continues until a mismatch is found or all the characters in the string are
checked, except for the middle character if the string has an odd number of characters.

Listing 5.14 gives the program.

Listing 5.14  Palindrome.java

 1 import java.util.Scanner;
 2
 3 public class Palindrome {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8
 9 // Prompt the user to enter a string
10 System.out.print("Enter a string: ");
11 String s = input.nextLine();
12
13 // The index of the first character in the string
14 int low = 0;
15
16 // The index of the last character in the string
17 int high = s.length() – 1;
18
19 boolean isPalindrome = true;
20 while (low < high) {
21 if (s.charAt(low) != s.charAt(high)) {
22 isPalindrome = false;
23 break;
24 }
25
26 low++;
27 high––;
28 }
29
30 if (isPalindrome)
31 System.out.println(s + " is a palindrome");
32 else
33 System.out.println(s + " is not a palindrome");
34 }
35 }

think before you code

input string

low index

high index

update indices

Enter a string: noon
noon is a palindrome

Enter a string: abcdefgnhgfedcba

abcdefgnhgfedcba is not a palindrome

The program uses two variables, low and high, to denote the positions of the two characters
at the beginning and the end in a string s (lines 14 and 17), as shown in the following figure.

String s

low

a b c d e f e d c b a

high

M05_LIAN9966_12_SE_C05.indd 190 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

5.14  Case Study: Displaying Prime Numbers 191

Initially, low is 0 and high is s.length() – 1. If the two characters at these positions
match, increment low by 1 and decrement high by 1 (lines 26–27). This process continues
until (low >= high) or a mismatch is found (line 21).

The program uses a boolean variable isPalindrome to denote whether the string s is
a palindrome. Initially, it is set to true (line 19). When a mismatch is discovered (line 21),
isPalindrome is set to false (line 22) and the loop is terminated with a break statement
(line 23).

5.13.1	 What happens to the program if (low < high) in line 20 is changed to (low <= high)?

5.14  Case Study: Displaying Prime Numbers
This section presents a program that displays the first 50 prime numbers in 5 lines,
each containing 10 numbers.

 An integer greater than 1 is prime if its only positive divisor is 1 or itself. For example, 2, 3,
5, and 7 are prime numbers, but 4, 6, 8, and 9 are not.

The problem is to display the first 50 prime numbers in 5 lines, each of which contains 10
numbers. The problem can be broken into the following tasks:

■■ Determine whether a given number is prime.

■■ For number = 2, 3, 4, 5, 6, …, test whether it is prime.

■■ Count the prime numbers.

■■ Display each prime number and display 10 numbers per line.

Obviously, you need to write a loop and repeatedly test whether a new number is prime.
If the number is prime, increase the count by 1. The count is 0 initially. When it reaches 50,
the loop terminates.

Here is the algorithm for the problem:

Set the number of prime numbers to be printed as
 a constant NUMBER_OF_PRIMES;
Use count to track the number of prime numbers and
 set an initial count to 0;
Set an initial number to 2;

while (count < NUMBER_OF_PRIMES) {
 Test whether number is prime;

 if number is prime {
 Display the prime number and increase the count;
 }

 Increment number by 1;
}

To test whether a number is prime, check whether it is divisible by 2, 3, 4, and so on up to
number/2. If a divisor is found, the number is not a prime. The algorithm can be described
as follows:

Use a boolean variable isPrime to denote whether
 the number is prime; Set isPrime to true initially;

for (int divisor = 2; divisor <= number / 2; divisor++) {
 if (number % divisor == 0) {
 Set isPrime to false
 Exit the loop;
 }
}

Point
Check

Point
Key

M05_LIAN9966_12_SE_C05.indd 191 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

192 Chapter 5   Loops

The complete program is given in Listing 5.15.

Listing 5.15  PrimeNumber.java

 1 public class PrimeNumber {
 2 public static void main(String[] args) {
 3 final int NUMBER_OF_PRIMES = 50; // Number of primes to display
 4 final int NUMBER_OF_PRIMES_PER_LINE = 10; // Display 10 per line
 5 int count = 0; // Count the number of prime numbers
 6 int number = 2; // A number to be tested for primeness
 7
 8 System.out.println("The first 50 prime numbers are \n");
 9
10 // Repeatedly find prime numbers
11 while (count < NUMBER_OF_PRIMES) {
12 // Assume the number is prime
13 boolean isPrime = true; // Is the current number prime?
14
15 // Test whether number is prime
16 for (int divisor = 2; divisor <= number / 2; divisor++) {
17 if (number % divisor == 0) { // If true, number is not prime
18 isPrime = false; // Set isPrime to false
19 break; // Exit the for loop
20 }
21 }
22
23 // Display the prime number and increase the count
24 if (isPrime) {
25 count++; // Increase the count
26
27 if (count % NUMBER_OF_PRIMES_PER_LINE == 0) {
28 // Display the number and advance to the new line
29 System.out.println(number);
30 }
31 else
32 System.out.print(number + " ");
33 }
34
35 // Check if the next number is prime
36 number++;
37 }
38 }
39 }

count prime numbers

check primeness

exit loop

display if prime

The first 50 prime numbers are
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

This is a complex program for novice programmers. The key to developing a program-
matic solution for this problem, and for many other problems, is to break it into subproblems
and develop solutions for each of them in turn. Do not attempt to develop a complete solution
in the first trial. Instead, begin by writing the code to determine whether a given number is
prime, then expand the program to test whether other numbers are prime in a loop.

To determine whether a number is prime, check whether it is divisible by a number be-
tween 2 and number/2 inclusive (lines 16–21). If so, it is not a prime number (line 18);
otherwise, it is a prime number. For a prime number, display it (lines 27–33). If the count is

subproblem

M05_LIAN9966_12_SE_C05.indd 192 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Chapter Summary   193

divisible by 10, display the number followed by a newline (lines 27–30). The program ends
when the count reaches 50.

The program uses the break statement in line 19 to exit the for loop as soon as the
number is found to be a nonprime. You can rewrite the loop (lines 16–21) without using the
break statement, as follows:

for (int divisor = 2; divisor <= number / 2 && isPrime;
 divisor++) {
 // If true, the number is not prime
 if (number % divisor == 0) {
 // Set isPrime to false, if the number is not prime
 isPrime = false;
 }
}

However, using the break statement makes the program simpler and easier to read in this
case.

Prime numbers have many applications in computer science. Section 22.7 will study sev-
eral efficient algorithms for finding prime numbers.

5.14.1	 Simplify the code in lines 27–32 using a conditional operator. Point
Check

Key Terms

break statement  186
continue statement  187
do-while loop  171
for loop  173
infinite loop  162
input redirection  170
iteration  160
loop  160

loop body  160
nested loop  178
off-by-one error  162
output redirection  170
posttest loop  176
pretest loop  176
sentinel value  168
while loop  160

Chapter Summary

1.	 There are three types of repetition statements: the while loop, the do-while loop, and
the for loop.

2.	 The part of the loop that contains the statements to be repeated is called the loop body.

3.	 A one-time execution of a loop body is referred to as an iteration of the loop.

4.	 An infinite loop is a loop statement that executes infinitely.

5.	 In designing loops, you need to consider both the loop control structure and the loop
body.

6.	 The while loop checks the loop-continuation-condition first. If the condition
is true, the loop body is executed; if it is false, the loop terminates.

7.	 The do-while loop is similar to the while loop, except the do-while loop executes
the loop body first then checks the loop-continuation-condition to decide
whether to continue or to terminate.

8.	 The while loop and the do-while loop often are used when the number of repetitions
is not predetermined.

M05_LIAN9966_12_SE_C05.indd 193 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

194 Chapter 5   Loops

9.	 A sentinel value is a special value that signifies the end of the loop.

10.	 The for loop generally is used to execute a loop body a fixed number of times.

11.	 The for loop control has three parts. The first part is an initial action that often ini-
tializes a control variable. The second part, the loop-continuation-condition,
determines whether the loop body is to be executed. The third part is executed after
each iteration and is often used to adjust the control variable. Usually, the loop control
variables are initialized and changed in the control structure.

12.	 The while loop and for loop are called pretest loops because the continuation condi-
tion is checked before the loop body is executed.

13.	 The do-while loop is called a posttest loop because the condition is checked after the
loop body is executed.

14.	 Two keywords break and continue can be used in a loop.

15.	 The break keyword immediately ends the innermost loop, which contains the break.

16.	 The continue keyword only ends the current iteration.

Quiz

Answer the quiz for this chapter online at the Companion Website.

Programming Exercises

Pedagogical Note
Read each problem several times until you understand it. Think how to solve the prob-
lem before starting to write code. Translate your logic into a program.

A problem often can be solved in many different ways. Students are encouraged to
explore various solutions.

Sections 5.2–5.7
	 *5.1	 (Count positive and negative numbers and compute the average of numbers)

Write a program that reads an unspecified number of integers, determines how
many positive and negative values have been read, and computes the total and av-
erage of the input values (not counting zeros). Your program ends with the input
0. Display the average as a floating-point number. Here are sample runs:

read and think before coding

explore solutions

Enter an integer, the input ends if it is 0: 1 2 –1 3 0
The number of positives is 3
The number of negatives is 1
The total is 5.0
The average is 1.25

Enter an integer, the input ends if it is 0: 0
No numbers are entered except 0

M05_LIAN9966_12_SE_C05.indd 194 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   195

	 5.2	 (Repeat additions) Listing 5.4, SubtractionQuizLoop.java, generates five
random subtraction questions. Revise the program to generate 10 random addi-
tion questions for two integers between 1 and 15. Display the correct count and
test time.

	 5.3	 (Conversion from kilograms to pounds) Write a program that displays the follow-
ing table (note 1 kilogram is 2.2 pounds):

Kilograms Pounds
1 2.2
3 6.6
. . .
197 433.4
199 437.8

	 5.4	 (Conversion from miles to kilometers) Write a program that displays the follow-
ing table (note 1 mile is 1.609 kilometers):

Miles Kilometers
1 1.609
2 3.218
. . .
9 14.481
10 16.090

	 5.5	 (Conversion from kilograms to pounds and pounds to kilograms) Write a pro-
gram that displays the following two tables side by side:

Kilograms Pounds | Pounds Kilograms
1 2.2 | 20 9.09
3 6.6 | 25 11.36
. . .
197 433.4 | 510 231.82
199 437.8 | 515 234.09

	 5.6	 (Conversion from miles to kilometers) Write a program that displays the follow-
ing two tables side by side:

Miles Kilometers | Kilometers Miles
1 1.609 | 20 12.430
2 3.218 | 25 15.538
. . .
9 14.481 | 60 37.290
10 16.090 | 65 40.398

	 **5.7	 (Financial application: compute future tuition) Suppose the tuition for a univer-
sity is $10,000 this year and increases 5% every year. In one year, the tuition will
be $10,500. Write a program that displays the tuition in 10 years, and the total
cost of four years’ worth of tuition starting after the tenth year.

	 5.8	 (Find the highest score) Write a program that prompts the user to enter the num-
ber of students and each student’s name and score, and finally displays the name
of the student with the highest score. Use the next() method in the Scanner
class to read a name, rather than using the nextLine() method. Assume that the
number of students is at least 1.

	 *5.9	 (Find the two highest scores) Write a program that prompts the user to enter the
number of students and each student’s name and score, and finally displays the
student with the highest score and the student with the second-highest score. Use
the next() method in the Scanner class to read a name rather than using the
nextLine() method. Assume that the number of students is at least 2.

M05_LIAN9966_12_SE_C05.indd 195 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

196 Chapter 5   Loops

	 5.10	 (Find numbers divisible by 5 and 6) Write a program that displays all the num-
bers from 100 to 1,000 (10 per line) that are divisible by 5 and 6. Numbers are
separated by exactly one space.

	 5.11	 (Find numbers divisible by 5 or 6, but not both) Write a program that displays
all the numbers from 100 to 200 (10 per line) that are divisible by 5 or 6, but not
both. Numbers are separated by exactly one space.

	 5.12	 (Find the smallest n such that n2 7 12,000) Use a while loop to find the small-
est integer n such that n2 is greater than 12,000.

	 5.13	 (Find the largest n such that n3 6 12,000) Use a while loop to find the largest
integer n such that n3 is less than 12,000.

Sections 5.8–5.10
	 *5.14	 (Compute the greatest common divisor) Another solution for Listing 5.9 to find

the greatest common divisor of two integers n1 and n2 is as follows: First find d
to be the minimum of n1 and n2, then check whether d, d–1, d–2, …, 2, or 1 is
a divisor for both n1 and n2 in this order. The first such common divisor is the
greatest common divisor for n1 and n2. Write a program that prompts the user to
enter two positive integers and displays the gcd.

	 *5.15	 (Display the ASCII character table) Write a program that prints the characters in
the ASCII character table from ! to ~. Display 10 characters per line. The ASCII
table is given in Appendix B. Characters are separated by exactly one space.

	 *5.16	 (Find the factors of an integer) Write a program that reads an integer and dis-
plays all its smallest factors in an increasing order. For example, if the input
integer is 120, the output should be as follows: 2, 2, 2, 3, 5.

	**5.17	 (Display pyramid) Write a program that prompts the user to enter an integer from
1 to 15 and displays a pyramid, as presented in the following sample run:

Pattern A Pattern B Pattern C Pattern D

1 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2

 1

1 2 1 2 3 4 5

1 2 3 1 2 3 4

1 2 3 4 1 2 3

1 2 3 4 5 1 2

1 2 3 4 5 6

1

2 1

3 2 1

4 3 2 1

5 4 3 2 1

1 6 5 4 3 2 1

Enter the number of lines: 7

 1

 2 1 2

 3 2 1 2 3

 4 3 2 1 2 3 4

 5 4 3 2 1 2 3 4 5

 6 5 4 3 2 1 2 3 4 5 6

7 6 5 4 3 2 1 2 3 4 5 6 7

	 *5.18	 (Display four patterns using loops) Use nested loops that display the following
patterns in four separate programs:

M05_LIAN9966_12_SE_C05.indd 196 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   197

	**5.19	 (Display numbers in a pyramid pattern) Write a nested for loop that prints the
following output:

1
1 2 1

1 2 4 2 1
1 2 4 8 4 2 1

1 2 4 8 16 8 4 2 1
1 2 4 8 16 32 16 8 4 2 1

1 2 4 8 16 32 64 32 16 8 4 2 1
 1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

	 *5.20	 (Display prime numbers between 2 and 1,000) Modify the program given in Listing
5.15 to display all the prime numbers between 2 and 1,000, inclusive. Display eight
prime numbers per line. Numbers are separated by exactly one space.

Comprehensive
	**5.21	 (Financial application: compare loans with various interest rates) Write a pro-

gram that lets the user enter the loan amount and loan period in number of years,
and displays the monthly and total payments for each interest rate starting from
5% to 8%, with an increment of 1/8. Here is a sample run:

Loan Amount: 10000

Number of Years: 5

Interest Rate Monthly Payment Total Payment
5.000% 188.71 11322.74
5.125% 189.29 11357.13
5.250% 189.86 11391.59
...
7.875% 202.17 12129.97
8.000% 202.76 12165.84

For the formula to compute monthly payment, see Listing 2.9, ComputeLoan.java.

	**5.22	 (Financial application: loan amortization schedule) The monthly payment for a given
loan pays the principal and the interest. The monthly interest is computed by multiply-
ing the monthly interest rate and the balance (the remaining principal). The principal
paid for the month is therefore the monthly payment minus the monthly interest. Write
a program that lets the user enter the loan amount, number of years, and interest rate
then displays the amortization schedule for the loan. Here is a sample run:

VideoNote

Display loan schedule

Loan Amount: 10000

Number of Years: 1

Annual Interest Rate: 7

Monthly Payment: 865.26
Total Payment: 10383.21

Payment# Interest Principal Balance
1 58.33 806.93 9193.07
2 53.62 811.64 8381.43
...
11 10.00 855.26 860.27
12 5.01 860.25 0.01

M05_LIAN9966_12_SE_C05.indd 197 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

198 Chapter 5   Loops

Note
The balance after the last payment may not be zero. If so, the last payment should be
the normal monthly payment plus the final balance.

Hint: Write a loop to display the table. Since the monthly payment is the same for each
month, it should be computed before the loop. The balance is initially the loan amount.
For each iteration in the loop, compute the interest and principal, and update the bal-
ance. The loop may look as follows:

for (i = 1; i <= numberOfYears * 12; i++) {
 interest = monthlyInterestRate * balance;
 principal = monthlyPayment – interest;
 balance = balance – principal;
 System.out.println(i + "\t\t" + interest
 + "\t\t" + principal + "\t\t" + balance);
}

	 *5.23	 (Demonstrate cancellation errors) A cancellation error occurs when you are
manipulating a very large number with a very small number. The large number
may cancel out the smaller number. For example, the result of 100000000.0
+ 0.000000001 is equal to 100000000.0. To avoid cancellation errors and
obtain more accurate results, carefully select the order of computation. For ex-
ample, in computing the following summation, you will obtain more accurate
results by computing from right to left rather than from left to right:

1 +
1
2

+
1
3

+ c +
1
n

		 Write a program that compares the results of the summation of the preceding
series, computing from left to right and from right to left with n = 50000.

	 *5.24	 (Sum a series) Write a program to compute the following summation:

1
3

+
3
5

+
5
7

+
7
9

+
9
11

+
11
13

+ g +
95
97

+
97
99

	**5.25	 (Compute p) You can approximate p by using the following summation:

p = 4 a1 -
1
3

+
1
5

-
1
7

+
1
9

-
1
11

+ g +
(-)i+ 1

2i - 1
b

		 Write a program that displays the p value for i = 10000, 20000, …, and 100000.

	**5.26	 (Compute e) You can approximate e using the following summation:

e = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+ g +
1
i!

		 Write a program that displays the e value for i = 1, 2, …, and 20. Format
the number to display 16 digits after the decimal point. (Hint: Because
i! = i * (i - 1) * c * 2 * 1, then

1
i!

 is
1

i(i - 1)!

		 Initialize e and item to be 1, and keep adding a new item to e. The new item is
the previous item divided by i, for i >= 2.)

	**5.27	 (Display leap years) Write a program that displays all the leap years, 10 per line,
from 101 to 2100, separated by exactly one space. Also display the number of
leap years in this period.

VideoNote

Sum a series

M05_LIAN9966_12_SE_C05.indd 198 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   199

	**5.28	 (Display the first days of each month) Write a program that prompts the user to
enter the year and first day of the year, then displays the first day of each month
in the year. For example, if the user entered the year 2013, and 2 for Tuesday,
January 1, 2013, your program should display the following output:

January 1, 2013 is Tuesday
...
December 1, 2013 is Sunday

	**5.29	 (Display calendars) Write a program that prompts the user to enter the year and
first day of the year and displays the calendar table for the year on the console. For
example, if the user entered the year 2013, and 2 for Tuesday, January 1, 2013,
your program should display the calendar for each month in the year, as follows:

January 2013

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

. . .

December 2013

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

	 *5.30	 (Financial application: compound value) Suppose you save $100 each month
into a savings account with the annual interest rate 5%. Thus, the monthly in-
terest rate is 0.05 / 12 = 0.00417. After the first month, the value in the
account becomes

100 * (1 + 0.00417) = 100.417

		 After the second month, the value in the account becomes

(100 + 100.417) * (1 + 0.00417) = 201.252

		 After the third month, the value in the account becomes

(100 + 201.252) * (1 + 0.00417) = 302.507

		 and so on.

	 Write a program that prompts the user to enter an amount (e.g., 100), the an-
nual interest rate (e.g., 5), and the number of months (e.g., 6) then displays the
amount in the savings account after the given month.

M05_LIAN9966_12_SE_C05.indd 199 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

200 Chapter 5   Loops

	 *5.31	 (Financial application: compute CD value) Suppose you put $10,000 into a CD
with an annual percentage yield of 5.75%. After one month, the CD is worth

10000 + 10000 * 5.75 / 1200 = 10047.92

		 After two months, the CD is worth

10047.91 + 10047.91 * 5.75 / 1200 = 10096.06

		 After three months, the CD is worth

10096.06 + 10096.06 * 5.75 / 1200 = 10144.44

		 and so on.

	 Write a program that prompts the user to enter an amount (e.g., 10000), the
annual percentage yield (e.g., 5.75), and the number of months (e.g., 18) and
displays a table as presented in the sample run.

Enter the initial deposit amount: 10000

Enter annual percentage yield: 5.75

Enter maturity period (number of months): 18

Month CD Value
1 10047.92
2 10096.06
...
17 10846.57
18 10898.54

	**5.32	 (Game: lottery) Revise Listing 3.8, Lottery.java, to generate a lottery of a two-
digit number. The two digits in the number are distinct. (Hint: Generate the first
digit. Use a loop to continuously generate the second digit until it is different
from the first digit.)

	**5.33	 (Perfect number) A positive integer is called a perfect number if it is equal to the sum
of all of its positive divisors, excluding itself. For example, 6 is the first perfect num-
ber because 6 = 3 + 2 + 1. The next is 28 = 14 + 7 + 4 + 2 + 1. There are
four perfect numbers 6 10,000. Write a program to find all these four numbers.

	***5.34	 (Game: scissor, rock, paper) Programming Exercise 3.17 gives a program that
plays the scissor–rock–paper game. Revise the program to let the user continu-
ously play until either the user or the computer wins more than two times than its
opponent.

	 *5.35	 (Summation) Write a program to compute the following summation:

1

1 + 22
+

122 + 23
+

123 + 24
+ c +

12624 + 2625

	**5.36	 (Business application: checking ISBN) Use loops to simplify Programming
Exercise 3.9.

	**5.37	 (Decimal to binary) Write a program that prompts the user to enter a decimal
integer then displays its corresponding binary value. Don’t use Java’s Integer.
toBinaryString(int) in this program.

	**5.38	 (Decimal to octal) Write a program that prompts the user to enter a decimal
integer and displays its corresponding octal value. Don’t use Java’s Integer.
toOctalString(int) in this program.

M05_LIAN9966_12_SE_C05.indd 200 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   201

	 *5.39	 (Financial application: find the sales amount) You have just started a sales job
in a department store. Your pay consists of a base salary and a commission. The
base salary is $5,000. The scheme shown below is used to determine the commis-
sion rate.

Sales Amount Commission Rate

$0.01–$5,000 8%

$5,000.01–$10,000 10%

$10,000.01 and above 12%

	 Note this is a graduated rate. The rate for the first $5,000 is at 8%, the next
$5,000 is at 10%, and the rest is at 12%. If the sales amount is 25,000, the com-
mission is 5,000 * 8 + 5,000 * 10 + 15,000 * 12 = 2,700

	 Your goal is to earn $30,000 a year. Write a program that finds out the mini-
mum number of sales you have to generate in order to make $30,000.

	 5.40	 (Simulation: heads or tails) Write a program that simulates flipping a coin one
million times and displays the number of heads and tails.

	 *5.41	 (Occurrence of max numbers) Write a program that reads integers, finds the larg-
est of them, and counts its occurrences. Assume the input ends with number 0.
Suppose you entered 3 5 2 5 5 5 0; the program finds that the largest is 5 and
the occurrence count for 5 is 4. If no input is entered, display "No numbers are
entered except 0".

	 (Hint: Maintain two variables, max and count. max stores the current max
number and count stores its occurrences. Initially, assign the first number to
max and 1 to count. Compare each subsequent number with max. If the num-
ber is greater than max, assign it to max and reset count to 1. If the number is
equal to max, increment count by 1.)

Enter numbers: 3 5 2 5 5 5 0

The largest number is 5

The occurrence count of the largest number is 4

	 *5.42	 (Financial application: find the sales amount) Rewrite Programming Exercise
5.39 as follows:

■■ Use a for loop instead of a do-while loop.
■■ Let the user enter COMMISSION_SOUGHT instead of fixing it as a constant.

	 *5.43	 (Math: combinations) Write a program that displays all possible combinations
for picking two numbers from integers 1 to 7. Also display the total number of
all combinations.

1 2
1 3
...
...

The total number of all combinations is 21

M05_LIAN9966_12_SE_C05.indd 201 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

202 Chapter 5   Loops

	 *5.44	 (Computer architecture: bit-level operations) A short value is stored in 16 bits.
Write a program that prompts the user to enter a short integer and displays the 16
bits for the integer. Here are sample runs:

Enter an integer: 5

The bits are 0000000000000101

Enter an integer: –5

The bits are 1111111111111011

	 (Hint: You need to use the bitwise right shift operator (>>) and the bitwise AND
operator (&), which are covered in Appendix G, Bitwise Operations.)

	**5.45	 (Statistics: compute mean and standard deviation) In business applications, you
are often asked to compute the mean and standard deviation of data. The mean is
simply the average of the numbers. The standard deviation is a statistic that tells
you how tightly all the various data are clustered around the mean in a set of data.
For example, what is the average age of the students in a class? How close are the
ages? If all the students are the same age, the deviation is 0.

	 Write a program that prompts the user to enter 10 numbers and displays the
mean and standard deviations of these numbers using the following formula:

mean =
a

n

i=1
xi

n
=

x1 + x2 + g + xn

n
 deviation = ca

n

i=1
xi

2 -
aa

n

i=1
xib

2

n

n - 1

Here is a sample run:

Enter 10 numbers: 1 2 3 4.5 5.6 6 7 8 9 10

The mean is 5.61

The standard deviation is 2.99794

	 *5.46	 (Reverse a string) Write a program that prompts the user to enter a string and
displays the string in reverse order.

Enter a string: ABCD

The reversed string is DCBA

M05_LIAN9966_12_SE_C05.indd 202 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

Programming Exercises   203

	 *5.47	 (Business: check ISBN-13) ISBN-13 is a new standard for identifying books. It
uses 13 digits d1d2d3d4d5d6d7d8d9d10d11d12d13. The last digit d13 is a checksum,
which is calculated from the other digits using the following formula:

10 - (d1 + 3d2 + d3 + 3d4 + d5 + 3d6 + d7 + 3d8 + d9 + 3d10 + d11 + 3d12),10

	 If the checksum is 10, replace it with 0. Your program should read the input as a
string. Display “invalid input” if the input is invalid. Here are sample runs:

Enter the first 12 digits of an ISBN-13 as a string: 978013213080

The ISBN-13 number is 9780132130806

Enter the first 12 digits of an ISBN-13 as a string: 978013213079

The ISBN-13 number is 9780132130790

Enter the first 12 digits of an ISBN-13 as a string: 97801320

97801320 is an invalid input

	 *5.48	 (Process string) Write a program that prompts the user to enter a string and dis-
plays the characters at odd positions. Here is a sample run:

Enter a string: Beijing Chicago

BiigCiao

	 *5.49	 (Count vowels and consonants) Assume that the letters A, E, I, O, and U are vow-
els. Write a program that prompts the user to enter a string, and displays the
number of vowels and consonants in the string.

Enter a string: Programming is fun

The number of vowels is 5

The number of consonants is 11

	 *5.50	 (Count uppercase letters) Write a program that prompts the user to enter a string
and displays the number of the uppercase letters in the string.

Enter a string: Welcome to Java

The number of uppercase letters is 2

M05_LIAN9966_12_SE_C05.indd 203 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

204 Chapter 5   Loops

	 *5.51	 (Longest common prefix) Write a program that prompts the user to enter two
strings and displays the largest common prefix of the two strings. Here are some
sample runs:

Enter the first string: Welcome to C++

Enter the second string: Welcome to programming

The common prefix is Welcome to

Enter the first string: Atlanta

Enter the second string: Macon

Atlanta and Macon have no common prefix

M05_LIAN9966_12_SE_C05.indd 204 28/09/19 4:15 PM

Uploaded By: 1210711@student.birzeit.eduSTUDENTS-HUB.com

