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BasIC Elements OoT electronic
Circults

Transistor — is the switch

Diode — is the rectifier
Resistor - slows down electricity

Capacitor - stores electricity
Inductor - determines the magnitude
of the electromagnetic force

Connecting them with interconnects,
an IC is obtained.

*The elements, being prepared by discrete technology, are shown.
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Types of IC Elements

Useful

Parasitic
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Bipolar Transistors Resistances Capacitances Inductances
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Line model (RC Model)

R
Vin — AN/ . 7S
_ \ V(1)

« V()=VO0et'" +Vin (1-et/rc)

V(Y)

VO

Vin
VO-Vin
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Interconnect Parasitics

- Parasitic = unwanted natural electrical elements

« Metal Resistance
— metals have a linear resistance and obey Ohm’s law
*V=IR
— generate parasitic interconnect resistance, Riine

’ Rline: L = -Q—/
cA A $ £

- A= wt w N //
- p = resistivity, 6 = conductivity
- defined by sheet resistance
*+ Rs= 1 = p ,resistance per unit square [ohms, Q]

of
* Rline = Rs_/ , Rs determined by process, /& w by designer
w
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Line Resistance Simple Model

T T S > A
4

R=Rho*L /(W*D)

* "D” Is a process fixed number per layer

* We can set the Length "L", and Width
“W” of each segment

* This model does not include any
temperature effect !!!
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Segment Resistance Model

R =_Rho * SOR * Tscal

Resistor per square
given in process 1+(te * (Temp-25))
File (include D) Temperature Coefficient

hen/(gVid+fdg) _ Process file parameters
umber of Squares in are given for “25C”

segment.
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Segment Resistance Model

Example

* The process files has two models for each metal layer
— Undegraded: A model for normal operation mode

— Degraded: A model of the line after 100,000 Hours of work under
the Worst RV conditions

Metal layer Rho t, dir
Metal 6 over Metal 5 4.22000e-05 5.53000e-01 -1.46800e-01
Metal 4 over Metal 3 8.35000e-05 3.64000e-01 -1.03000e-01
Metal 2 over Metal 1 1.08200e-04 2.92000e-01 -6.48000e-02
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Wire Resistance

+ _ (length x resistivity)
resistance = : ,
Heightl Lengthl (height x width)
o « bulk aluminum 2.8x10°8 O-m
Wid+hi + bulk copper 1.7x10°% Q-m
+ bulk silver 1.6x10°% Q-m

+ Height (Thickness) fixed in given manufacturing process
+ Resistances quoted as Q/square

+ TSMC 0.18um 6 Aluminum metal layers
- M1-5 0.08 Q/square (0.5 pm x 1mm wire
- Mé6 0.03 Q/square (0.5 um x 1mm wire

160 Q)
60 Q)
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L ocal Interconnect

« Use contact material (tungsten) to provide extra
layer of connectivity below metal 1

« Can also play same trick with silicided poly to
connect gates to diffusion directly in RAMs

« Typically used to shrink memory cells or standard
cells

« Contacts directly to poly gate or diffusion

Contact plug

Local Wire
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Via Resistance

* Via resistance significant
- TSMC 0.18um 6-Al

Vias made from Tungsten Diff-Mm1 11.0 0
in Aluminum processes, Poly-Mm1 10.4 0
Vias are Copper in Copper M2-M1 450
processes M3-M1 9.5 0

P— M4-M1 15.0 0

M5-Mm1 19.6 O

/ M6-M1 21.8 0

+ Resistance of two via stacks at each end of M1 wire
equivalent to about 0.1 mm wire (~20 Q)

+ Resistance of two via stacks at each end of Mé wire about
the same as 1 mm narrow Mé wire (~60 Q)!!

« Use multiple vias in parallel to reduce effective contact

resistance

« Copper processes have lower via resistance
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Via Resistance Model

! T R=res *(1+ (te * (Temp - 25)))

te,res : Are process file parameters
given for a specified Via model
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Parasitic Line Capacitances

» Capacitor Basics
- Q= CV, Cinunits of Farads [F]

-~ Tt e
» Parallel plate capacitance U
= Ciine = 8ox W/ [F], wl= Area e JLTOX
TOX T
= &yx = permittivity of oxide s
o I B— 1ot o
¢ RC Time Cons.ran'r Of te (a) Physical structure gt
ah interconnect line
v(t)
R €
- 1= I:Qlima Cfina /{\V\/:‘/\/\/\/_T T ”_,(_U‘_“ _____
vs (1) Clme_—? U(t) /’
4 i : -
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Capacitance Scaling

width

arallel plate capacitance = length
P P P spucingx "d
M | ngth
P
width

* Capacitance/unit length ~constant with feature
size scaling (width and spacing scale together)

- Isolated wire sees approx. 100 fF/mm
- With close neighbors about 160 fF/mm

* Need to use capacitance extractor to get
accurate values
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Capacitance: The Parallel Plate Model

Current fl ow

WJ

Electricakfi eld linet
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RC Delay Estimates

R1 R2 RI
J;W—_EW__I:_ “““ Wj:—_,_

) g T

Penfield-Rubenstein model estimates:

j=i
Delay = Z{ZR]-J(";-
j=1 -

|
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Capacitance

Interconnect Capacitance

CF —— CA CA ﬁ——
— . | I——\
CF —L— CB CLL

CLL Line to Line Capacitance.
CA, CB Capacitance to Other Plane.
CF Fringing Capacitance.
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Solving a speed path.

What happened to R?
What happened to C?
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Fringe Capacitance

* As the process dimensions get smaller, the
iInterconnect ratio (T/W) and (T/H)
Increases, since T has to increase to get a
better resistance. Therefore Fringe
capacitance becomes more and more

significant.
a B

W " | H
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Line Capacitance Calculation

Cll td3i Cll

—T— Cs
U

| -l
|

T
L O i L cf
|

Pizza model Sandwich model

Ctotal = Cal + Ca2 + 2*Cll + 2*Cf + 2*Cs
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Cross Capacitance
< ———— attacking

* Cross Capacitance is any capacitance
petween nets, which are non DC nets.

* In the worst case all the capacitance
petween nets can be cross capacitance.

* We call the signal that we are analyzing the
victim, and all the signals that have cross
capacitance to it we will call them attacking
signals.
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Cross Capacitance &« Miller
Effect

- Remembering the current-voltage equation for a capacitor
i(t) = C *dv(t)/dt
* In case that the attacking signal is also switching, then the
dv(t)/dt is actually bigger or smaller than the DC case,
depending on the switching directions of the victim and
attacking signals.

« In verification tools we always calculate the voltage referenced
to the Ground “Vss” which is a DC signal.

 We can see this effect as if the effective capacitance between
the line and the Ground changes, this is called the Miller
Effect.

« Miller Coefficient is the factor that we use to multiply the Xcap
in order to model the Miller Effect.
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Miller Coupling Mathematics

i J V1= Vg,
C1
C2
C3
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Distributed Line Model

R/n R/n

vin C;FD C/n C/n C/n C/n

 The distributed line model iIs a more accurate
model which assumes that the line i1s built out

of many segments, when each segment is
modeled as a lumped RC model.

* For calculating the RC delay using the
distributed model a simulation is needed
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Lumped Line Model

R

AT
Vin (ﬂ? C \Vout(t) = Vin (1 - e'/RO)

* A lumped model Is a pessimistic one, which
assumes that all the capacitance, line and
load, Is located at the end of the line, Iin other
words that the driver “sees” the total load
through the total line resistance.

* As the RC delay increases the lumped RC
model is less and less accurate.
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Impact of Interconnect Parasitics

Classes of Parasitics

. Capacitive
. Resistive
. Inductive

26
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Simplified Model: EImore Delay

Vin R R; Rs 7 oy

Tomore = RC, +(R +R,)C, +(R + R, + R,)C,
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Wire Delay Example

+ In 0.18um TSMC, 5x minimum inverter with effective
resistance of 3 kQ, driving FO4 load (25fF)

+ Delay = Rdriver x Cload = 75 ps

Now add 1mm M1 wire, 0.25um wide
— Rw = 3200 wire + 220 vias = 3440
— Cw = 160fF

Cw

Delay = Rdriverx C—: + (Rdriver+ Rw) x +Cload l

= 3kQ x 80fF + (3kQ + 3440) [BOfF+ 25fF)
=991ps
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Elmore Delay - Extended
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Another EImore Delay Example

Vip AR '\/R\7» Vi
ToF T
T

T —

Elmore

STUDENTS-HUB.com Uploaded By: anonymous



Consider RC network shown in Figure below connected in the form of RC segments.

Cy Cs

oW
+y v

Rg

8 A 7 8
T
RC tree network

Now, here the Elmore delay at node 7 is calculated as,

ED7 R1 Cl+R1C2+R1C3+R1C4+R1LC5+ (RL+ R6) Ch

+ (RL + R6 + R7) C7 + (R1 + R6 + R7) (8

In the same manner, the Elmore delay at node 5 is calculated as,
ED5 = RL C1 + (RL +R2) C2 + (R1 + R2) C3 + (R1 + R2 + R4) 4

+ (R1 +R2 + R4 +R5) C5 +R1C6 +R1L C7 + Rl C8

31
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Calculate Elmore delay from In to outl and from In to out2?

R R R R

In - _LCNV\ _LCAM__(?:utl
T T

=C —

3C
Voo

Solution:
Elmore to outl is 15RC
Elmore to out2 is 16RC
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Delay from Ato Y
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Resistance, Capacitance & Inductance

RESISTOR
Vit)=R*i(t) , R=V/I=V/A=Q N/ R
t t
Pt =1°R=V?/R , W(to,t1)=Rj|20’t:1jv20’t
to RtO
CAPACITOR
Qt)=CV , C=Q/V =A*Sec/V =FARAD
1(t)=Q/Aa=3(CV@E)/a&=CNIa I
t
V () =V (t0) +1/c*j ()& P({t)=CV{)eV /A
t0
INDUCTOR
dO(t)=L*I(t), L=D/I| =webber/ A=V *Sec/ A= Henry
\ANAN L

Vi)=ab/a=a(L)/a=L*Ala

| (t) = I(tO)+%jV(t)0’t CP() = L*I*A [ &
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