Chapter 7.1, Problem 21E

Problem

If *b* is any positive real number with $b \neq 1$ and *x* is any real number, b-x is defined as follows: $b^{-x} = \frac{1}{b^x}$. Use this definition and the definition of logarithm to prove that $\log_b \left(\frac{1}{u}\right) = -\log_b(u)$ for all positive real numbers *u* and *b*, with $b \neq 1$.

Step-by-step solution

Step 1 of 1

Let b be a positive real number, and x be a real number with

b ≠1.

Define the value of b^{-x} , as follows:

$$b^{-x} = \frac{-1}{b^x}$$

The objective is to prove, $\log_b \left(\frac{1}{u}\right) = -\log_b (u)$.

Let
$$v = \log_b \left(\frac{1}{u}\right)$$
.

By the definition of a logarithm,

$$b^{v} = \frac{1}{u}$$
. (1)

Multiply both sides of equation (1), by u, and dividing by b^{v} , obtained as,

 $u = b^{-v}$.

Thus, $-v = \log_{b}(u)$ [by the definition of a logarithm]

Now, multiply both sides by -1, obtained as,

 $v = -\log_b(u).$

Therefore,

$$\log_{b}\left(\frac{1}{u}\right) = -\log_{b}(u)$$

Since, $v = \log_{b}\left(\frac{1}{u}\right)$.

STUDENTS-HUB.com