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Time Analysis: Examples 
Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to 
be given as an input.  

public int sumOfSquares(int n) { 
   if (n==1)  
         return 1; 

     return   (n*n) + sumOfSquares(n-1); 
} 

 
Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do. 

Example 2: Fibonacci sequence: 
 F(n)  =   n  if  n=0, 1   ;   F(n) = F(n-1) + F(n-2)  if n > 1  

0 1 1 2 3 5 8 13 .. 
F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) .. 

Solution 1: Iterative        O(n) 
public static int fib1(int n){ 
        if(n<=1) return n; 
        int f1 = 0,   f2 = 1,   res=0; 
        for(int i=2; i<=n; i++){ 
            res =f1+f2; 
            f1=f2; 
            f2=res; 
        } 
        return res; 
} 

Solution 2: Recursion 
public static int fib2(int n){ 
        if(n<=1) return n; 
        return (fib2(n-1) + fib2(n-2)); 
 } 

Test for n=6 and n=40 
Why recursive solution is taking much time? 

Do analyze the 2 algorithms in term of calculating F(n) 
In Solution 1: 
We have F(0) and F(1) given 
Then we calculate  F(2) using F(1) and F(0) 
   F(3) using F(2) and F(1) 

F(4) using F(3) and F(2) 
: 
F(n) using F(n-1) and F(n-2) 
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In Solution 2: 
F(5) 

F(4)     F(3) 
F(3)  F(2)   F(2)  F(1) 

F(2) F(1) F(1) F(0)  F(1) F(0)   
F(1) F(0)         

 
Note: we are calculating the same value multiple times!! 

n F(2) F(3) .. 
5 3 2  
6 5   
8 13   
:    

40 63245986   
 

Exponential growth 
  
 
Time and Space complexity Analysis of recursion 
Example: recursive factorial 
 
 
  fact(n){ 
   If (n==0)   return 1; 
   return n *  fact(n-1); 

} 
 
 

 Calculate operation costs: 
o If statement takes 1 unit of time 
o Multiplication (*)   takes 1 unit of time 
o Subtraction (-) takes 1 unit of time 
o Function call 

 So   T(0)  =   1    
T(n)  =  3 +  T(n-1)    for n > 0 

 
To solve this equation, reduce T(n) in term of its base conditions. This called recurrence equation1 analysis 
that describes the running time of an algorithm. 
                                                           
1 A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function 
of the previous term(s).  
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T(n)  = T(n-1)  + 3      T(n-1) = T(n-2)+3 
 = T(n-2)  + 6   T(n-2) = T(n-3)+3 
 = T(n-3)  + 9 
 : 
 = T(n-k)  + 3k 
For    T(0)      n-k = 0    n = k 
Therefore    T(n)  =  T(0)  +  3n  

   =  1   + 3n         O(n) 
 

Space analysis: 
 Recursive Tree 
  Fact(5)   Fact(4)   Fact(3)   Fact(2)   Fact(1)   Fact(0) 
 Each function call will cause to save current function state into memory (call stack, push): 

 
 

Fact(1) 
Fact(2) 
Fact(3) 
Fact(4) 
Fact(5) 

 Each return statement will retrieve previous saved function state from memory (pop): 

So needed space is proportional to n       O(n) 
 

Fibonacci sequence time complexity analysis 
public static int fib2(int n){ 
        if(n<=1) return n; 
        return (fib2(n-1)  +  fib2(n-2)); 
 } 

 Calculate operation costs: 
o If statement takes 1 unit of time 
o 2 subtractions (-) takes 2 unit of time 
o 1 addition (+) takes 1 unit of time 
o 2 recursive function calls 

 So   T(0)  = T(1)  =  1    
T(n)  =  T(n-1) + T(n-2) + 4    for n > 1 
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To solve this equation, reduce T(n) in term of its base conditions. 
For approximation assume   T(n-1) ≈ T(n-2)         in reality T(n-1) > T(n-2)  

 T(n)   =   2 T(n-2)  + 4          assume c = 4 
  =  2 T(n-2)  + c          T(n-2) =  2 T(n-4) + c     
  = 2 { 2 T(n-4) + c } + c 
  = 4  T(n-4) + 3c  =  22  T(n-4) + (22-1)c   
  = 23  T(n-6) + (23-1)c 
  = 24  T(n-8) + (24-1)c 
  : 
  = 2k  T(n-2k) +(2k-1)c 
For T(0)     n-2k  = 0       k = n/2 

Therefore  T(n) =  2n/2 T(0) + (2n/2 - 1) c        2n/2  (1+c)  -  c 

  T(n) is proportional to   2n/2                  O(2n/2)            lower bound analysis 
 

Similarly, for approximation assume   T(n-2) ≈ T(n-1)         in reality T(n-2) < T(n-1)  
 T(n)   =   2 T(n-1)  + c          T(n-1) =  2 T(n-2) + c     
  = 2 { 2 T(n-2) + c } + c 
  = 4  T(n-2) + 3c 
  = 23  T(n-3) + (23-1)c 
  = 24  T(n-4) + (24-1)c 
  : 
  = 2k  T(n-k) +(2k-1)c 
For T(0)     n-k  = 0       k = n 

Therefore  T(n) =  2n T(0) + (2n - 1) c        2n  (1+c)  -  c 

T(n) is proportional to   2n                  O(2n)            upper bound analysis  worst case analysis 
 

While for iterative solution    O(n) 
 

Recursion with memorization 
Solution: Do not calculate something already has been calculated. 
Algorithm: 
 
 fib(n){ 
  If (n<=1)   return n 
  If(F[n] is in memory) return F[n] 
  F[n] =  fib(n-1) + fib(n-2) 
  Return F[n] 
 } 

Time complexity     O(n) 
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Calculate Xn using recursion 

Iterative solution:    O(n) 
Xn  =  X * X * X * X * …. * X 

n-1 multiplication 

Recursive solution 1:  O(n) 
Xn  =  X * Xn-1  if n > 0   

X0  = 1     if n = 0   

Recursive solution 2:  O(log n) 
Xn  =  Xn/2 * Xn/2 if n is even  

Xn  =  X * Xn-1  if n is odd  
X0  = 1     if n = 0   

res = 1 
for i1 to n 
    res = res * x 

pow(x, n){ 
    if n==0   return 1 
    return  x  *   pow(x, n-1) 
} 
 

pow(x, n){ 
    if n==0   return 1 
    if  n%2 == 0 { 
        y  pow(x, n/2) 
        return y * y 
    } 
    return  x  *   pow(x, n-1) 
} 

 
  
Recursive solution 1: Time analysis 
 
T(1)   =  1  
T(n) =  T(n-1) +  c 
 =  (T(n-2) + c) + c     T(n-2) + 2c 
 =  T(n-3)  + 3c 
 : 
 =  T(n-k)  + kc 
For T(0)     n-k = 0      n = k 

T(n) =  T(0)  + nc       1 + nc       O(n) 

 
Recursive solution 2: Time analysis 
 

 Xn   =   Xn/2  *  Xn/2        if n is even 
 Xn   =   X  *  Xn-1               if n is odd 
 Xn   =   1                      if n == 0 
 Xn   =   X  *  1        if n == 1 

 
If  even  T(n)   =   T(n/2)  + c1 
If odd  T(n)  =  T(n-1)  + c2 
If  0  T(0)  =   1 
If   1        T(1)  =  c3 
 
If odd, next call will become even: 
T(n)   =   T((n-1)/2) + c1 + c2 
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If even 
T(n)    =  T(n/2) + c 
 =  T(n/4) + 2c 
 =  T(n/8) + 3c   =  T(n/23) + 3c    
 : 
 =  T(n/2k) + k c        
For T(1)    T(0)  +  c     1 
n/2k = 1        n  =  2k        k  = log n  

             = c3  +  c  log  n        O(log n) 
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Big-O Exercises  

Exercise 1: 

void fun(int n, int[] arr) {  
      int i = 0, j = 0;  
      for(    ; i < n ;  ++i)  
           while( j < n   &&   arr[i] < arr[j])  
                j++;  

} 
 

Solution 1:  

T(n) = O(n) ,   since the inner while loop will run n times during the entire outer for loop. Outer loop will run n 
times as well. So T(n) = O(2n)  , 2 is constant. 

Exercise 2: 

int fun(int n) { 
              if (n <= 1)  

return n;  
  return fun (n-1) + fun (n-1);   //  2 f(n-1) 
 } 

 

Solution 2: 

 
  d  n <= 1 
T(n) =  
  2T(n-1) + c n > 1 
 
T(n) =  2T(n-1) + c 

T(n-1) = 2T(n-2) + c 
T(n) = 22T(n-2) + 2c  

 T(n-2) = T(n-3) + c 
T(n) = 23T(n-3) + 3c 

: 
T(n) =2k T(n-k) + k c 
________________ 
 
Let n-k = 0   n = k  
 
T(n) = 2nT(0) + nc     T(n) =2n d +  nc     T(n) = O(2n) 
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Exercise 3: 
int fun(int n) { 
    if (n <= 0) 
        return 1; 
    return 1 + fun(n-5); 
 } 

 
Solution 3: 

  d  n <= 0 
T(n) =  
  T(n-5)+c n > 0 
 
T(n) = T(n-5) + c 
 T(n-5) = T(n-10) + c 
T(n)  = T(n-10) + 2c 
      T(n-10) = T(n-15) + c 
T(n)  = T(n-15) + 3c 

T(n-15) = T(n-20) + c  
T(n) = T(n-20) + 4c 

T(n-20) = T(n-25) + c 
… 
T(n-(n-5)) = T(0) + c 

___________________ 
T(n) = T(0) + n/5 c    T(n) = d + n/5 c     T(n) = O(n) 

 
Exercise 4: 

int fun(int n) { 
    if (n <= 0) 
        return 1 
    return 1 + fun(n/5); 
 } 

 
Solution 4: 

  d  n <= 0 
T(n) =  
  T(n/5)+c n > 0 
 
T(n) = T(n/5) + c 

T(n/5) = T(n/25) + c 
T(n) = T(n/25) + 2c  

T(n/25) = T(n/125) + c 
T(n) = T(n/125) + 3c  =  T(n/53) + 3c   
… 
T(n) = T(n/5k) + k c 
________________ 
 
Let n/5k = 1  n = 5k   k = log5(n) 
 
T(n) = T(1) +  log5 (n)  c     T(n) = d +   log5(n) c    T(n) = O(log5 n)         
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Exercise 5: 
int isIn(int A[], int k, int x) { 
 if (k >= A.length ) 
  return 0; 
 if (A[k] == x) 
  return 1; 
 return isIn(A,  k+1,  x) 
} 

Solution 5:  
  d  n <= 1 
T(n) =  
  T(n-1)+c n > 1 
 
T(n) = T(n-1)+c 

T(n-1) = T(n-2)+2c 
: 
T(n-(n-1)) = T(1)+nc 

T(n) = T(1)+nc 
T(n) = d+nc       T(n) = O(n) 

 
Exercise 6:  

int fun(int n) { 
 int count = 0; 
 for (int i = n; i > 0; i /= 2) 
  for (int j = 0; j < i; j++) 
   count += 1; 
 return count; 
} 

Solution 6:  
For input integer n, the innermost statement of fun() is executed following times. 

n + n/2 + n/4 + …  + 1 
So time complexity T(n) can be written as 

T(n) = O(n + n/2 + n/4 + … 1)  O(n) 
The value of count is also n + n/2 + n/4 + .. + 1 

 
  T(n) = n + T(n/2)   n + n/2 + T(n/4)  n + n/2 + n/4 + T(n/8) + …+ 1  n + n-1  2n -1 
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