
 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

30

Time Analysis: Examples
Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to
be given as an input.

public int sumOfSquares(int n) {
 if (n==1)
 return 1;

 return (n*n) + sumOfSquares(n-1);
}

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do.

Example 2: Fibonacci sequence:
 F(n) = n if n=0, 1 ; F(n) = F(n-1) + F(n-2) if n > 1

0 1 1 2 3 5 8 13 ..
F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) ..

Solution 1: Iterative  O(n)
public static int fib1(int n){
 if(n<=1) return n;
 int f1 = 0, f2 = 1, res=0;
 for(int i=2; i<=n; i++){
 res =f1+f2;
 f1=f2;
 f2=res;
 }
 return res;
}

Solution 2: Recursion
public static int fib2(int n){
 if(n<=1) return n;
 return (fib2(n-1) + fib2(n-2));
 }

Test for n=6 and n=40
Why recursive solution is taking much time?

Do analyze the 2 algorithms in term of calculating F(n)
In Solution 1:
We have F(0) and F(1) given
Then we calculate F(2) using F(1) and F(0)
 F(3) using F(2) and F(1)

F(4) using F(3) and F(2)
:
F(n) using F(n-1) and F(n-2)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

31

In Solution 2:
F(5)

F(4) F(3)
F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)
F(1) F(0)

Note: we are calculating the same value multiple times!!

n F(2) F(3) ..
5 3 2
6 5
8 13
:

40 63245986

Exponential growth

Time and Space complexity Analysis of recursion
Example: recursive factorial

 fact(n){
 If (n==0) return 1;
 return n * fact(n-1);

}

 Calculate operation costs:
o If statement takes 1 unit of time
o Multiplication (*) takes 1 unit of time
o Subtraction (-) takes 1 unit of time
o Function call

 So T(0) = 1
T(n) = 3 + T(n-1) for n > 0

To solve this equation, reduce T(n) in term of its base conditions. This called recurrence equation1 analysis
that describes the running time of an algorithm.

1 A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function
of the previous term(s).

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

32

T(n) = T(n-1) + 3  T(n-1) = T(n-2)+3
 = T(n-2) + 6  T(n-2) = T(n-3)+3
 = T(n-3) + 9
 :
 = T(n-k) + 3k
For T(0)  n-k = 0  n = k
Therefore T(n) = T(0) + 3n

 = 1 + 3n  O(n)

Space analysis:
 Recursive Tree
 Fact(5)  Fact(4)  Fact(3)  Fact(2)  Fact(1)  Fact(0)
 Each function call will cause to save current function state into memory (call stack, push):

Fact(1)
Fact(2)
Fact(3)
Fact(4)
Fact(5)

 Each return statement will retrieve previous saved function state from memory (pop):

So needed space is proportional to n  O(n)

Fibonacci sequence time complexity analysis
public static int fib2(int n){
 if(n<=1) return n;
 return (fib2(n-1) + fib2(n-2));
 }

 Calculate operation costs:
o If statement takes 1 unit of time
o 2 subtractions (-) takes 2 unit of time
o 1 addition (+) takes 1 unit of time
o 2 recursive function calls

 So T(0) = T(1) = 1
T(n) = T(n-1) + T(n-2) + 4 for n > 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

33

To solve this equation, reduce T(n) in term of its base conditions.
For approximation assume T(n-1) ≈ T(n-2)  in reality T(n-1) > T(n-2)

 T(n) = 2 T(n-2) + 4  assume c = 4
 = 2 T(n-2) + c  T(n-2) = 2 T(n-4) + c
 = 2 { 2 T(n-4) + c } + c
 = 4 T(n-4) + 3c = 22 T(n-4) + (22-1)c
 = 23 T(n-6) + (23-1)c
 = 24 T(n-8) + (24-1)c
 :
 = 2k T(n-2k) +(2k-1)c
For T(0)  n-2k = 0  k = n/2

Therefore T(n) = 2n/2 T(0) + (2n/2 - 1) c  2n/2 (1+c) - c

 T(n) is proportional to 2n/2  O(2n/2)  lower bound analysis

Similarly, for approximation assume T(n-2) ≈ T(n-1)  in reality T(n-2) < T(n-1)
 T(n) = 2 T(n-1) + c  T(n-1) = 2 T(n-2) + c
 = 2 { 2 T(n-2) + c } + c
 = 4 T(n-2) + 3c
 = 23 T(n-3) + (23-1)c
 = 24 T(n-4) + (24-1)c
 :
 = 2k T(n-k) +(2k-1)c
For T(0)  n-k = 0  k = n

Therefore T(n) = 2n T(0) + (2n - 1) c  2n (1+c) - c

T(n) is proportional to 2n  O(2n)  upper bound analysis  worst case analysis

While for iterative solution  O(n)

Recursion with memorization
Solution: Do not calculate something already has been calculated.
Algorithm:

 fib(n){
 If (n<=1) return n
 If(F[n] is in memory) return F[n]
 F[n] = fib(n-1) + fib(n-2)
 Return F[n]
 }

Time complexity  O(n)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

34

Calculate Xn using recursion

Iterative solution: O(n)
Xn = X * X * X * X * …. * X

n-1 multiplication

Recursive solution 1: O(n)
Xn = X * Xn-1 if n > 0

X0 = 1 if n = 0

Recursive solution 2: O(log n)
Xn = Xn/2 * Xn/2 if n is even

Xn = X * Xn-1 if n is odd
X0 = 1 if n = 0

res = 1
for i1 to n
 res = res * x

pow(x, n){
 if n==0 return 1
 return x * pow(x, n-1)
}

pow(x, n){
 if n==0 return 1
 if n%2 == 0 {
 y  pow(x, n/2)
 return y * y
 }
 return x * pow(x, n-1)
}

Recursive solution 1: Time analysis

T(1) = 1
T(n) = T(n-1) + c
 = (T(n-2) + c) + c  T(n-2) + 2c
 = T(n-3) + 3c
 :
 = T(n-k) + kc
For T(0)  n-k = 0  n = k

T(n) = T(0) + nc  1 + nc  O(n)

Recursive solution 2: Time analysis

 Xn = Xn/2 * Xn/2 if n is even
 Xn = X * Xn-1 if n is odd
 Xn = 1 if n == 0
 Xn = X * 1 if n == 1

If even  T(n) = T(n/2) + c1
If odd  T(n) = T(n-1) + c2
If 0  T(0) = 1
If 1  T(1) = c3

If odd, next call will become even:
T(n) = T((n-1)/2) + c1 + c2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

35

If even
T(n) = T(n/2) + c
 = T(n/4) + 2c
 = T(n/8) + 3c = T(n/23) + 3c
 :
 = T(n/2k) + k c
For T(1)  T(0) + c  1
n/2k = 1  n = 2k  k = log n

 = c3 + c log n  O(log n)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

36

Big-O Exercises

Exercise 1:

void fun(int n, int[] arr) {
 int i = 0, j = 0;
 for(; i < n ; ++i)
 while(j < n && arr[i] < arr[j])
 j++;

}

Solution 1:

T(n) = O(n) , since the inner while loop will run n times during the entire outer for loop. Outer loop will run n
times as well. So T(n) = O(2n) , 2 is constant.

Exercise 2:

int fun(int n) {
 if (n <= 1)

return n;
 return fun (n-1) + fun (n-1); // 2 f(n-1)
 }

Solution 2:

 d n <= 1
T(n) =
 2T(n-1) + c n > 1

T(n) = 2T(n-1) + c

T(n-1) = 2T(n-2) + c
T(n) = 22T(n-2) + 2c

 T(n-2) = T(n-3) + c
T(n) = 23T(n-3) + 3c

:
T(n) =2k T(n-k) + k c

Let n-k = 0  n = k

T(n) = 2nT(0) + nc  T(n) =2n d + nc  T(n) = O(2n)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

37

Exercise 3:
int fun(int n) {
 if (n <= 0)
 return 1;
 return 1 + fun(n-5);
 }

Solution 3:

 d n <= 0
T(n) =
 T(n-5)+c n > 0

T(n) = T(n-5) + c
 T(n-5) = T(n-10) + c
T(n) = T(n-10) + 2c
 T(n-10) = T(n-15) + c
T(n) = T(n-15) + 3c

T(n-15) = T(n-20) + c
T(n) = T(n-20) + 4c

T(n-20) = T(n-25) + c
…
T(n-(n-5)) = T(0) + c

T(n) = T(0) + n/5 c  T(n) = d + n/5 c  T(n) = O(n)

Exercise 4:

int fun(int n) {
 if (n <= 0)
 return 1
 return 1 + fun(n/5);
 }

Solution 4:

 d n <= 0
T(n) =
 T(n/5)+c n > 0

T(n) = T(n/5) + c

T(n/5) = T(n/25) + c
T(n) = T(n/25) + 2c

T(n/25) = T(n/125) + c
T(n) = T(n/125) + 3c = T(n/53) + 3c
…
T(n) = T(n/5k) + k c

Let n/5k = 1  n = 5k  k = log5(n)

T(n) = T(1) + log5 (n) c  T(n) = d + log5(n) c  T(n) = O(log5 n)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2022 Prepared by: Dr. Mamoun Nawahdah

38

Exercise 5:
int isIn(int A[], int k, int x) {
 if (k >= A.length)
 return 0;
 if (A[k] == x)
 return 1;
 return isIn(A, k+1, x)
}

Solution 5:
 d n <= 1
T(n) =
 T(n-1)+c n > 1

T(n) = T(n-1)+c

T(n-1) = T(n-2)+2c
:
T(n-(n-1)) = T(1)+nc

T(n) = T(1)+nc
T(n) = d+nc  T(n) = O(n)

Exercise 6:

int fun(int n) {
 int count = 0;
 for (int i = n; i > 0; i /= 2)
 for (int j = 0; j < i; j++)
 count += 1;
 return count;
}

Solution 6:
For input integer n, the innermost statement of fun() is executed following times.

n + n/2 + n/4 + … + 1
So time complexity T(n) can be written as

T(n) = O(n + n/2 + n/4 + … 1)  O(n)
The value of count is also n + n/2 + n/4 + .. + 1

 T(n) = n + T(n/2)  n + n/2 + T(n/4)  n + n/2 + n/4 + T(n/8) + …+ 1  n + n-1  2n -1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

