I Chapter 6

Semantics

weall -

Wa/ra ming Language syntax means what the language constructs look like.
" mming Language semantics means what those language constructs actually
g

ﬂ(meaning)-

,ogramming language semantics are much more complex to express than the

rogramming language semantics can be specified by :

ﬁntax. P

. The Programming language reference manual (most common and simple).

\ Translator (Compiler or Interpreter).
By Experiment. Execute programs to find out what they do.

Machine dependent (generally it is not portable).
 Formal Definition (mathematical model). It is complex and abstract.

le will mainly be using the first method.
le will also use ALGOL-like languages in our discussion

Binding

Using names or identifiers in a programming language is a basic, fundamental
abstraction - variable names, constant names, procedure and function names

are all examples of this.

Related to names is the concept of:

location. Simply put, the location is the address of the name in memory.
Value. Another thing related to the name is the value, which is the storable

{uantity in memory.

But how is the meaning of names determined?

A"sWer: It is determined by its attributes (properties associated with it).

-l

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

i\ e.
,orexam | .
7" onst M= 15

declaration: we associated 2 attributes :
his

it has @ value of 15.

b

mother exam le :

@
x.integer;

gain, 2 attributes are associated with the name X:

It is a variable name.

; Itis of integer type.

inother example :

inction compute (n:integer, x:Real):Real;

Segin

ind;

kssociated with the name compute (function name)is :

L. It's type : a function name.
2. i
Number and type of parameters : it takes 2 parameters, one of type |

nteger .

and one of type Real .
3 '
It's return value : The function returns Real .

The code body of the function.

)

$Halmaste Wity Camseameinat

>
STUDENTS-HUB.com

her example :

po
v
y: Ainteger; = int ¥y
b4
Associated with the name y is:

It's a variable name.

.
It is of a pointer to an integer type

2.

er, we can assign attributes outside the declaration.

HoweV
for example :
xX=2;

fis means that we add a new attribute to the name X, which is the value

i the example,

ar

y : Ninteger;

fwe say,

New(y);
Then, in this case, Wé add a third attribute to the variable y which is the location.
). When we used

ointed to junk (something random 1
d changed the |

When we first declared ¥, itp
mory the size of an integer an

lace in the me

rew(y) , pascal reserved a p
me it, unlike C)-

wference to it (without having to na

The process of associating attributes to names is called Binding. This happens at
Binding Time.
e time during the translation(compilation) process when the

Sinding Time : Th
Wribute is computed and associated 10 the name.

STUDENTS-HUB.com st
e ity CARSEAMm@mat

gre are 2 kinds of binding times.
static Binding : binding which occurs before execunon We call those attributes

statlc attributes.

2. pynamic Binding : binding which occurs during execution.

gxam les :
4. const n=15;
s a static attribute. This is because the attributes constant name and value=15

are assigned during compilation.

2. x:integer
the attributes variable name & integer type are also static attributes

However, when we say x:=2 , the attribute value=15is a dynamic attribute because

tis assigned during execution.

3. yXinteger;
the attributes variable name & pointer to integer type are static attributes , while
location is a dynamic attribute.

new(y) , the added attribute

Binding can be performed prior to translation

As an examples in Pascal:
- Binding reserved words(names), Data structure types, and Array storage layout

are predetermined at language definition time

- Binding the values for the integer type (Range of integers) and the values for
maxint in Pascal are defined at

the Boolean type (true, false), The constant
a Censtont valng Avalh

eq,\mQJ o WaXwnuw
weler o i wadning.

In short, Binding can be performed at : s vt is dgdermined
R Uty \N% \m‘)\Q\W\Q\\\ QLN
e .

implementation time.

o Language definition time.

¢ Language implementation time. Q\ <
v sk cttrbrian are dvoad A

¢ Translation time.
> at lexical analysis.

> at syntax analysis.

> at code generation.
All the above bindings are static.

This binding is dynamic.

* Execution time.
STUDENTS-HUB.com SHARREE Wity CAmSEAmF@mat

pol Table
gbel Teve

syl .
gymbol Table is a special data structure used to maintain the binding during the
;rﬂf's'aﬁon process

Enviroﬂme"t
fhe Environment is the memory allocation part of the execution process. ie, binding
rlames to the storage locations is called Environment. ;

\n " N 3
M/efDﬂ G\l n
emory is the binding the storage locations to values. Qaxaian is an
M attdoure aded
YO Kne nosne N -

peclarations and Blocks
/—__—_——-___

peclarations are the principle method to establish binding. There are 2 types of
declarations:

1- Explicit Declaration:
35-5—9@—"'
Var
X:integer;
Ok:Boolean;
Algg@&:
Begin
Integer x;
Boolean ok;
End
Ada:
Declare
X:integer;

Ok:Boolean:;

I

Int x;

/
1\ T (i) PRSCAL Ahwres

SaxaHon

2. e T
Implicit Declaration: o e -

The variable is declared when it is used.

for example, in C: int n = 10

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

Y

Declarations are associated with blocks. There are 2 types of blocks:
4- Main Program Block.

2- Procedure or function block.

for Example in Pascal:

Program Test;
var

procedure P;
et
var

Begin - .
[T

- !
F.‘nld.'-—-JI

functicn g: integer;
e
var

Begin

J bl
End; Y
oy
TN
Begin (*main*)” gy ?‘2' -B
,«‘\\,\--\ ¥ \
g . A ‘E};ﬁJ ¢
Ené. et
In Algol:
LN
55
Begin -"\6‘ W
Integer X:} bd_—){,'ﬁﬂ' \ \ac,'f’— ‘
Boolean Y; \3),, W a
i

X := 2;
Y ;= True

—

End

In Ada:

Declare
X : Integeri
Y : Boolean;

[ad

Begin
X := 2;
Y := 0;
End;

ttributes to names especially the static type of attributes.
has an attribute, which is the position of the declaration
e the scopelvisibility of the variable.

Declarations bind different a

Note that the declaration itself

in the program. This is important to

determin

STUDENTS-HUB.com SHaaéE Wity Camsea
i mrfginat

Y

sc0pe of Declaration

he SCcope of declaration is :

T

ne region of the program over which the declaration covers. In block structured languages, such
e pASCAL , the scope of declaration is limited to the block in which is declared/appears and all

Jner nested blocks. Contained within this block.

i fact, a language like PASCAL has the following scope rule :

The sCOPE of declaration extends from the point it is declared to the end of the block.

for example :

program scope;
VAR X : Integer; ...__.d__T

procedure P;
VAR X:Real;. x
BEGIN o

END;

- '?z.‘\- :
Xobadb X .

[

Procedure q;
VAR Z:BOO1Ean jume N
BEGIN \l

(a7

sF

G.
<
()

. 13 2
End; O

BEGIN (*main#*)

S @
P

END.

In Algol 60:

A:BEGIN
Integer X;
Boolean Y;
X:=2;

B:BEGIN
Integer c,d;

End;
End

X, y have scope both in blocks A & B, while ¢, d have scopé in block B only.

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

p Modula—Z:
ule EX;

N
Procedure P;

pegin
x:=2;

end P;

l\“r‘.{)\\‘ C\\-\LO'
oot

var
xiinteger, 3

Degin

gnd Ex.

in Modula-2 the declaration extends all over the block backward & forward not just from the

point of declaration.
the scope of x extend all over the program block.

important Note:
in block structured languages such as Pascal is that:
rations in nested blocks takes precedence over previous declarations.

The decla
E%
Program €x;
var x:integer;
Procedure P;

Var x:Real; (*x localto P =
Begin
¥X-=3.5; V;s;b'\\ﬁj S¥
: gichals X.

End; ~
Begin

X:=2; (* x is the global *)

¥

End.

't be accessed inside P, we say the “global X" has a scope hole
weeel ——=——m

That is, the global x can

inside P.
That is—why we differentiate between Scope and visibility.
(excluding holes).

Visibility: The area where the name apply

STUDENTS-HUB.com SHAMAEE Wity CARISEANTH @
| iat

W R

- Including holes.

W | Tabl
SSE-"bo able

All the declarations and binding are established by a structure called the symbol
jable. In addition, the symbol table must maintain the scope of declaration. Different

structures can be used in the symbol table :

data
. Hash Table —-> static.
, Linked List —> dynamic.
3 Tree Structure —> dynamic.
To maintain the scope of declarations correctly, the declarations should be processed
using the stack concept(FILO). When entering a block, declarations are processed

and attributes are added/bound to the symbol table (pushed to stack). When exiting
fom the block, the binding (the attributes) provided in the block are removed/popped

from the stack.

Think of the symbol table as a set of names, each of which has a stack of declarations
associated with it. The top of the stack is the current active declaration.

For example, consider the following pascal program :

Program symbol_table;
Var X:integer,
Y:boolean;

Procedure P; Lyt i &
Var x:boolean; q:‘ig@e‘"{ R
Procedure Q; SR

Var y:integer;
Begin

End; (*Q*)
Begin

End; (*P*)
Begin (*main*)

End.
6\\"\"&) Cocals “Hp
AU O :
There are 4 names declared in the program, XY, P, Q

_4 ‘

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

|

ol processing the global variables X, Y and procedure P, the symbol table
ons like:

:/”__1 " Rl‘)g
(" poolean -l
| |pcalto P }y P

ﬂgge’r—— Boolean Procedure
: Global ¥ Global Global
e

}

%] [¥) 7]

After processing procedure Q inside P,

-
Boolean Integer
localto P localto Q

Integer Boolean Procedure Procedure

Global Global Global localto P

[x] [v] (o] 2]

After exiting from the body of procedure Q

Boolean

localto P
Integer Boolean Procedure Procedure
Global Global Global localto P

i | ‘ !
I U I LY I O]
After exiting from the body of procedure P

—

Integer Boolean Procedure
Global Global Global

K (e

.

This scheme of scoping is called Lexical scoping or Static Scoping.

STUDENTS-HUB.com SHaaéE ditly Camseanminat

rhere are two types of scoping:
1- Lexical (static) scoping. Joat, i e S gmbol e ,“8

: ‘able accardd
o dedoxians. "Huilt on scnrml\-.ﬂ Yha ssUkta

2- Dynamic scoping.
Coda. -}‘5\" - CLT'NT) ™

gxample:
" Syl Rble 15 buily Wi < yeiiey

program Scoping;

var X:integer;
_‘/N c SQ \
procedure P;

Begin
write(X);
End; (*P*)

Procedure Q;
Var X:integer,;
Begin
X:=2;
P,
End; (*Q*)

Begin (*main*)
X:=1;
Q;

End.

Now using the Lexical Scoping, the symbol table looks like:

Integer
Global Global

{ Procedure

[x] 7]
The value 1 is printed.

Using Dynamic Scoping, the symbol table processes declarations as they are

encountered in the ECXECUTION.

Integer
localto P
Integer Boolean Procedure
Global Global Global
7] [a]

[x]

The value 2 is printed. Most block structured languages perform Lexical scoping. LISP

Dynamic scoping.

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

v

Allocation and Environment
Mae Q“O(Iﬁlﬂm 4%% Q ;_’x- ‘QD .

. Symbol table maintains in the declaration the binding of attributes to names.

Environment is binding names (or associating names) to locations.

. Environment may be constructed :

1. Statically (at load time) - Fortran.

2. Dynamically (at execution time) - Lisp-

3. Mixture (block structured languages such as Pascal, C, Modula-2, Ada, . . .)

Some allocations are performed statically and some dynamically.

Global variables: statically.
Local variables: dynamically.

Some names are not bound to locations at all, for example:

const n=1 b) N

The compiler replaces all occurrences of n by 10 in the block during execution with no need

N
&

to allocate space for n.

« Environment in block structured languages binds locations to local variables in a
stack-based fashion.

* Durin : 3
- blg ixecutron, on entering each block, the variables declared at the beginning of
o .
ck are allocated. On exit from that block, the same variables are deallocated.

Example;

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat

w

ram Test;
var %Y integer;

Procedure A(x:integer);

Begin
end; (A°)

procedure B(n:boolean);
var v, z:real;

Procedure C(h,p:real);
Var xy: integer,

Begin
End; (*C")
Begin
End; (*B*)

Begin (*main®)
Enc] ;

Then the stack will look like:

After Entry to procedure A:
> 0 Z
I 1
BOA X
N y
. oGt GO
j\i‘wpﬂfﬁr Q ?- X

After Exit from A:

h

STUDENTS-HUB.com SHalmaee Wilthy Camsearieinat
ina

W_t_ryB&C:

y
X
p
h
Z v
n
y
X
Exit from C:
y
n
y
X

Generally,
1) Static — Global variables.

2) Automatic — Local variables.

3) Dynamic — Pointers.

Static- Global variables

Automatic-Stack

Local Variables

4
Both stack & heap
grow in opposite
direction

T

Dynamic- Heap
Pointers

h
STUDENTS-HUB.com

ot

x| < |3 |« \\1:'-0744

|

J

|

|

|

xX|< 5—‘4?]

in block structured languages, there are 3 kinds of allocation in the Environment:

* Paromdiers § varidble
oF procadsasen X- Quaedicn
Me Stock.

SRl ity Camseaminat

Chapter 7
Syntax Directed Translation

- syslemalic algorithms exist —> Finite State Automata.

Le:tiﬁaI Structur

e -—> Systematic algorithms exist > Push Down Aulomata.

¢)m{ax structur

clure > Unfortunately, N0 systematicalgomhm.

Semamic Stru
, ; termediate code generation, which is an extension of th '

er, there 1$ a framework for in , Q‘w\»{p\ 7 e

ux-directed translation. G ARC 5}‘
. :

ed translation the algorithm allows whatis called 8 semantic action, which is simply a
in SY“lax-dufed effunction) attached to some of the production rules of the context-free grammar.
_cubromme(prooed“f - .
cton or 8 semante rule is simply an output action added(associated) to the production rule of the grammar. For

§ semantic 2 iof :
example. given the produdmn ———

A->0 ,.)\\So

3 (Qégﬂf?“/
the semantic action is simply . s o
AN
A-—>a#B Moo
axe funckiens -
where B is the semantic action. (v 8 ,6 ; ‘ C
Taachat ol 32’ aadvwe RO
W

Take the production }

A-->XYZ#a ?
assume that a is the semantic action/rule, then in the syntax-direcled translation scheme, the semantic action a is

recognizes or accepts a sentence w derived from A in top-down parsing.

called/executed whenever the parser

A=>XYZ-->WE L(G)

In bottom-up parsers, the semantic action a is called whenever XYZ is reduced.

ranslate source code into another format which is easier for the compiler to

Generally, compilers generate/t
d intermediate code. There aré different kinds of intermediate code:

understand(evaluate). This code is calle

1. Postfix Code : for example,
J1\ e GorF Sharsip- Hhe srdor < RerondS -
gC B ox ‘X,

in postfix.,

Another example :

if a
%
else
Y

would become

axy? -
in posteiy,

or another example

.
A

STUDENTS-HUB.com SHAMAEE Wity CARISEANTH @
| iat

else

becomes

[3) +.¥:2
(4) o,l?).l3)

in TAC.

if (x > ¥)
z

else
z

would be

(1) -.x.Y¥

(3) +,y.1
(&) =,2z,(3)
(s) JwpP, (7)
(6) =,2,%x
L 1

in TAC.

would be ;

w
. R1
! y
s R2

STUDENTS-HUB.com

operation operand 1

ifa

if(c - D)
a +« C
else

whsgoDsaCraCTT DY

in postfix.

Another Example :

= X

=y +1

{2) 3Gz, (1), (6)

3. Quadruples : Anather form of intermediate code, which has at most 4 components. for example :

X
z

R3

operand 2

e

2 Three Address Code (TAC): Each instruction has at most 3 components.

for example : S

>) rcﬂ‘ym

-yt xe LY?* 1N 2

z_be b b\o}" &6\'
M_‘ s o

'a] S0 .

b - v ‘ oxY AU‘G-S‘\

(2 *. (1% upeT

-wnx-..(y-o!’

result | fh’} A
T e & Quodcod

R2

R3
R4

SHalmaste ity Cimseimeinat

