Chapter 5 Authentication Mechanisms

STUDENTS-HUB.com

Hashing vs encryption

- Hashing: The process of converting plaintext into ciphertext (one-way encryption).
- There is no decoding in hashing
- the purpose of Hashing protects data in storage.

Encryption : The process of converting plaintext into ciphertext and from cipher to plaintext(two- way encryption) . the purpose of Encryption protects data during transmission

Storing passwords

A password could be stored in a system as:

- Plain password
- Encrypted password
- Hashed password
- Salted password
- Hashed password are stored in separate

file(shadow password file) from the user IDs

Have stronger, hash/salt variants

• Many systems now use MD5

<u>– with 48-bit salt</u>

- password length is unlimited
- is hashed with 1000 times inner loop

– produces 128-bit hash

STUDENTS-HUB.com

Password choices/concerns

- users may pick short passwords
 - e.g. 3% were 3 chars or less, easily guessed
 - system can reject choices that are too short
- users may pick guessable passwords
 - so crackers use lists of likely passwords
 - e.g. one study of 14000 encrypted passwords guessed nearly 1/4 of them
 - would take about 1 hour on fastest systems to compute all variants, and only need 1 break!

Using Better Passwords

- Clearly have problems with passwords
- Goal to eliminate guessable passwords
 - Still easy for user to remember
- Techniques
 - user education
 - computer-generated passwords
 - reactive password checking (periodic checking)
 - proactive password checking (at the time of selection)

Proactive Password Checking

- Rule enforcement plus user advice, e.g.
 - 8+ chars, upper/lower/numeric/punctuation
 - may not suffice
- Password cracker
 - list of bad passwords
 - time and space issues
- Markov Model
 - generates guessable passwords
 - hence reject any password it might generate
- Bloom Filter
 - use to build table based on dictionary using hashes
 - check desired password against this table

STUDENTS-HUB.com

Have stronger, hash/salt variants

• Many systems now use MD5

- <u>– with 48-bit salt</u>
- password length is unlimited
- is hashed with 1000 times inner loop

– produces 128-bit hash

STUDENTS-HUB.com

Token-based authentication

– Memory Card

-Smart card

-Magnetic stripe

STUDENTS-HUB.com

Magnetic stripe & Memory Card

-Store but do not process data

-Used only for physical access

-some memory card with passwords

Disadvantages :

Need special reader

www.iconexperience.com

-Store and process data

STUDENTS-HUB.com

www.jconexperjence.com

Static : uses a specific authenticator .It is called static because

the authenticator is reused multiple times and stays the same until

you change it

dynamic: passwords created every minute; entered manually by user

or electronically.

challenge-response: computer creates a random number; smart card

<u>provides its hash</u>

STUDENTS-HUB.com

Smart card/reader exchange

Uploaded By: Mohammad ElRimawi

STUDENTS-HUB.com

Remote User Authentication

- Authentication over network more complex
 Problems of envoydropping, replay
 - Problems of eavesdropping, replay
- Generally use challenge-response
 - user sends identity
 - host responds with random number r
 - user computes f(r,h(P)) and sends back
 - host compares value from user with own computed value, if match user authenticated
- Protects against a number of attacks

STUDENTS-HUB.com

Multi – Factor Authentication (MFA)

users provide two types of authentication Such as smartcard with Pin

<u>code.</u>

Authentication types :

Something you know - something you have - something you are

MFA is more secure than passwords alone but can be more

complicated for users

STUDENTS-HUB.com

Single sign-on (SSO) is a technology that allows users to

authenticate once and access multiple applications or systems.

STUDENTS-HUB.com

single action of signing out terminates access to

multiple software systems.

STUDENTS-HUB.com

Benefits Single Sign-On (SSO)

Single sign-on (SSO) improve security in our system :

In SSO, the user focuses on creating one strong, random password, the user will put all his effort into making this password strong.

Increased Productivity:

<u>SSO saves time by reducing the number of times users have to enter their</u>

<u>credentials.</u>

Simplified Administration:

SSO eliminates the need to manage multiple user accounts and

passwords.

STUDENTS-HUB.com

Web-Based SSO:

Authenticates users for web applications.

Enterprise SSO:

Authenticates users for desktop applications and systems.

Federated SSO:

Authenticates users across multiple organizations or domains.

STUDENTS-HUB.com

Implementation Complexity:

SSO can be complex to implement, especially for legacy applications

<u>or systems.</u>

Integration with Legacy Systems:

<u>Legacy systems may not support SSO, requiring additional work to</u> <u>integrate them.</u>

• Security Risks:

SSO can create a single point of failure, making it a prime target for

attackers.

STUDENTS-HUB.com

eavesdropping

• replay

• trojan horse

STUDENTS-HUB.com

Eavesdropping

- Eavesdropping: attacker attempts to learn passwords by
- observing the user, finding written passwords, keylogging

Countermeasures

- diligence to keep passwords
- multifactor authentication

admin revoke compromised passwords

• Replay: attacker repeats a previously captured

<u>user response</u>

- Countermeasure

• Challenge-response

• 1-time passcodes

STUDENTS-HUB.com

• Trojan horse:

an application or physical device masquerades as an authentic application or

Device

- Countermeasure:
- authentication of the client
- within a trusted security environment

• Denial of service:

attacker attempts to disable user authentication service (via flooding)

- Countermeasure:

a multifactor authentication with a token STUDENTS-HUB.com

Best Practices for Authentication

- Use strong passwords and enforce password policies.
- Implement MFA whenever possible.

 Keep authentication systems up to date with the latest security patches.

• Monitor and audit authentication logs regularly.

STUDENTS-HUB.com

Authentication challenges

• User education and adoption

Interoperability across systems and applications

• Balancing security with user convenience

STUDENTS-HUB.com