System-on-Chip (SoC)
Verification

Tast.and Verification Solutions

https://students-hub.com

What is SoC level?

*Top level
Looking at the complete design

*System Level
Putting the complete design in a
wider context ...

System architecture

Partner IP

Software

Tast.and Verification Solutions

https://students-hub.com

What does a simple SoC look like?

-Port Register File (1 7.
|IEEE-754 FPU SRR Trace Buffer Deb u g InfraStru Ctu re L]
] et [T Clocks * Reset ¢ Interrupts
HW Mul/Div Interrupt Port [®= ierupt [J (}
ol Su ort
Local -RAM | I-C:che ||D-c:che| Local D-RAM | USB PHY pRE?EE TAG BHY VDS CAN oCl
AT g et Des
________ _ . I P _ o — -
|
|
Serial JTAG Ethernet | |Spacewire| | CAN 2.0 PCI |
C usB Dbg Link | | Dbg Link MAC Link Link |
Processor, |
|

AMBA AHB

Interconnects
AMBA APB I Fr
AHB Memory AHB/APB I 1 I | 7 I |
Controller Controller Bridge
PS/2 Timers IquiI IO port |
T _ 1 I
8/32-bits memory bus

"u"ldea PSi2 IF RS232 WDOG

° Peripherals
- register map

32-bit 11O port

Memory
- memory map

Tast.and Verification Solutions

https://students-hub.com

Why write SoC level tests?

= Some top level functionality not visible at unit level
* Imported IP * Register / address mapping

» Signal connectivity « Performance verification
* Power management e Power on / reset

« Coherence? -+ Clocking strategy « Benchmarking

= Allows verification to focus on actual use model
» Testing restricted to real use model

» Configurability / parameterized blocks instantiated!
» Generate typical/worst case waveforms for power analysis!

= Missing system level functionality & compliance testing
* Partner IP

* Software » System architecture

Tast.and Verification Solutions

https://students-hub.com

Why bother doing unit level testing?

= Controllability at top level vs. unit level?
- REDUCED

* Harder to hit corner case and longer run times
= Visibility at top level vs. unit level?

- REDUCED
* Harder to debug fails

= Overhead on testing at top level vs. unit level?
= INCREASED
* Need working top level integration before testing

* Need to propagate block level fixes/changes to
top level before they can be tested

* Need to understand the complete SoC to test
and debug asingle block

Tast.and Verification Solutions

https://students-hub.com

Barriers to top level testing

= Barriers to top level verification?
B1l: Complexity of building the complete top level design
B2: Late availability of key blocks / functionality
B3: Difficulty of anyone understanding the complete design
B4: Size of full top level design
B5: Limited controllability of the design from outside

B6: Limited visibility inside design

= Solutions?
S1: Require changes to be co-ordinated between dependent blocks
S2: Regression testing before changes are committed
S3: A schedule defining milestones for delivering features
S4: Ensure major interfaces are stable and well defined
S5: Black box some components

S6: Replace components with abstract models or BFMs (eg: CPU, memories)

Tast.and Verification Solutions

https://students-hub.com

Reuse from unit level?

= VIP
— BFMs
— Monitors and scoreboards
— Protocol checkers

= Assertions
= Functional coverage points

= Tests

— Integration tests
= Connectivity, address mapping

— Stress tests
= Cross cutting concerns such as interrupts or power management
» Shared resources or ‘convergence points’ (eg: memory synchronisation)
— Right level of abstraction

= Transactions and/or bus accesses
» Relative address map

Need to
plan for
reuse!

Tast.and Verification Solutions

https://students-hub.com

What do our top level tests contain?

» Tests are typically C
programs running on an
SoC CPU

* Loaded into SoC memory

= Component tests

= Register / address map
= Result checking

= Trace and error reporting

= Halt mechanism
= Interrupt handling

main () {
report_start() ;
leon3 test(l, 0x80000200, 0);

timer test(0x80000300, 8):
report_end() ;}

int gpio_test(int addr)
{

pio = (int *) addr;
int mask;

int width;

report_device (0x0101a000) ;
pio[3] = 0; pio[2] = 0; pio[l] = O;
pio[2] = OxFFFFFFFF;

/* determine port width and mask */
mask = 0; width = 0;

while(((pio[2] >> width) & 1) && (width <= 32)) {

mask = mask | (1 << width);
width++;}
pio[2] = mask;
if((pio[0] & mask) !'= 0) fail(l);
io[l] = Ox89ABCDEF;
pio[2] = 0;

return width;}

Tast.and Verification Solutions

https://students-hub.com

How to check the test results

» Fail causes test to hang

= Dump results to memory and compare to
reference results from mode
— mpeg decoder video stream ﬁ
— reference simulator

= Explicit checks in the test
— Observe and count interrupts
— Check data values

= Trace comparison

— Compare simulation state to a reference model cycle
by cycle during the simulation

= Use of monitors, scoreboards or assertions

Need error propagated
to end of test

Sensitive to accuracy
of reference model
(especially timing)

Tast.and Verification Solutions

https://students-hub.com

Methodology for top level testing

1. Pipe cleaning flow with regression tests
—> to verify basic functionality is not broken

2. Incremental test set verifying the subsets of functionality
—> scope grows with successive builds

3. Architectural (not implementation specific) and conformance tests
4. Micro-architectual tests

5. Soak testing (otherwise known as endurance,

Capacity, or longevity testing) lBEis
6. Performance testing and benchmarking

2

B ———

Tast.and Verification Solutions

https://students-hub.com

Adding Coverage

Tests

Execution
Trace

Instruction
Set
Simulator
(ISS)

Y
N

-| Coverage
Database

R

Coverage Model

Parse &
Decode

Coverage Base

Classes
(ISA view of resources)

Coverage
Grids

Why add coverage?

« Conformance testing:
*Need complete coverage of cases

» Targeting specific scenarios:
*Hitting required corner cases

*Soak testing
* Ensure testing is not becoming
repetitive

Tast.and Verification Solutions

https://students-hub.com

How to further increase the ‘stress’

= Build multiple configurations (set at build time)

— Increase stress by maximising corner cases
eg: small memories or FIFOs

— Increase stress my maximising ‘synchronisation points’
eg: shared resources or coherent memories
= Hot load (set at start of test)

— Can force states of part of the design into conditions that maximise
chance of hitting corner conditions early (most often hot load
caches but can also leave holes or create dirty entries)

Tast.and Verification Solutions

https://students-hub.com

Cost of bugs over time (revisited) T

Cost of
bugs

_ Number of
bugs found

—P
Initial Design Chip System Customer

» Time

Tast.and Verification Solutions

https://students-hub.com

Being pro-active to improve verification

Verification Requirements

= Achieving the best possible test plan Specification

Methodical analysis of design specifications and extraction of features
Brainstorming and reviewing within the development team
Refinement and maintenance throughout the development process
Tracking and sign-off of verification deliverables against the test plan

= Make the design ‘verification friendly’ (design for verification)
(High quality products are a combination of robust and extensive verification with good design practices)

Ensure good visibility of architectural and micro-architectural corner cases

Avoid unnecessary functional complexity eg: excessive configurability, irregular structures
Understand the verification impact of design changes (eg: code churn during optimization)
Designers document their intent and assumptions, especially at interface between units
Ensure the architecture, specifications and design are as stable as possible

Communicate!

(Verification is not just the responsibility of verification Engineers)
Engage closely with the designers
Be an active participant in reviews
Take every opportunity to get the widest possible input into verification planning

Tast.and Verification Solutions

https://students-hub.com

Is block and top level verification sufficient?

* |s block level and top level verification sufficient?
— Verification of IP in System context
— Verifying correct operation with related IP

— Verification of complete systems (both HW and SW)
= Software conformance testing
= Soak testing

= Soak testing at system level?

— Focus at system level is shared resources
eg: coherent memory system

— Running irritator software in parallel on multiple threads or
multiple CPUs (minimal OS)

— Switching CPUs (eg: swapping big/LITTLE)
— Virtualisation

Tast.and Verification Solutions

https://students-hub.com

What goes wrong at system level?

" |[ntegration bugs

— Connecting a big-endian subsystem to a little-endian
sub-system

= Clocks and power
— System hangs following mode change

= Concurrency and shared resources
— Concurrent memory gets corrupted

= Performance
— Bus bandwidth and latency is much worse than predicted

Tast.and Verification Solutions

https://students-hub.com

How to go faster!
Compute Farm, Emulators, FPGA and test chips

I

el
- .- ™ ’

LIRS ibsitiiiitstitiadl
e T Y ha
"y

N

o XC3S1600E

LT W R S

https://students-hub.com

The ‘tradeoffs’ for different platforms

Favours lots of ... but also need to load tests

short tests! and dump test results!
Speed 10Hz - 100Hz 1MHz 2MHz — 50MHz GHz
...per machine o
Partitioning!
Observability Total Trace window + Probes + Host debug
host debug host debug
Behavioural Yes Co-emulation Co-emulation No
testbench? (speed penalty) (speed penalty)
Test in ‘real world’ No Host debug + Mostly Yes
systems ICE with speed
bridges
Are fails easily Yes Yes No No
reproducible in .. :
simulation? Complex timing dependencies
Bring-up time Minutes Weeks - hours Weeks - Days Months
Depends on

process maturity

Test.and Verification Solutions

https://students-hub.com

Top Level Test Generation

Scenario

Test

Testbench

abelano)n
S1|nsal
paloadx3

Bias tests to hit interesting
corner cases

Scenario interleaving

Target shared resources/ points
of convergence’

Non-repetitive useful tests

There should be an efficient
workflow

Generation performance
Target diverse platforms
Ease of use

Maintainability

Reuse (of testing knowledge)

Effective result checking:
= Propagation of results
= Trace comparison

Tast.and Verification Solutions

https://students-hub.com

» What is SoC level verification? (Top v System)

= Looked at structure of a simple SoC

= Why do both ‘SoC level’ & 'unit level’ verification?
= A methodology for SoC level verification

= System level verification '

Tast.and Verification Solutions

https://students-hub.com

