
Test and Verification Solutions

System-on-Chip (SoC)

Verification

STUDENTS-HUB.com

https://students-hub.com

2Test and Verification Solutions

What is SoC level?

•Top level
Looking at the complete design

•System Level
Putting the complete design in a

wider context …

System architecture

Partner IP

Software

STUDENTS-HUB.com

https://students-hub.com

3Test and Verification Solutions

What does a simple SoC look like?

7-stages

Integer pipeline

3-Port Register File

Debug Support Unit

Interrupt

Controller

AMB AHB Master (32 bit)

Trace Buffer

Debug Support

Interrupt Port

IEEE-754 FPU

Co-Processor

HW Mul/Div

Local I-RAM I-Cache Local D-RAM

AHB Master I/F

D-Cache

Interconnects
IP

Peripherals

 register map

Memory

 memory map

Debug

support • ResetClocks • Interrupts

‘Infrastructure’:

CPU

STUDENTS-HUB.com

https://students-hub.com

4Test and Verification Solutions

Why write SoC level tests?

 Some top level functionality not visible at unit level

 Allows verification to focus on actual use model

 Missing system level functionality & compliance testing

• Imported IP

• Signal connectivity

• Register / address mapping

• Power on / reset• Power management

• Clocking strategy

• Performance verification

• Benchmarking• Coherence?

• Configurability / parameterized blocks instantiated!

• Testing restricted to real use model

• Generate typical/worst case waveforms for power analysis!

• Partner IP
• Software

• System architecture

STUDENTS-HUB.com

https://students-hub.com

5Test and Verification Solutions

Why bother doing unit level testing?

 Controllability at top level vs. unit level?

 REDUCED

 Visibility at top level vs. unit level?

 REDUCED

 Overhead on testing at top level vs. unit level?

 INCREASED

• Harder to hit corner case and longer run times

• Harder to debug fails

• Need to propagate block level fixes/changes to

top level before they can be tested

• Need to understand the complete SoC to test

and debug a single block

• Need working top level integration before testing

STUDENTS-HUB.com

https://students-hub.com

6Test and Verification Solutions

Barriers to top level testing

 Barriers to top level verification?

 Solutions?

Complexity of building the complete top level design

Late availability of key blocks / functionality

Size of full top level design

Limited controllability of the design from outside

Limited visibility inside design

Difficulty of anyone understanding the complete design

S1:

S2:

S3:

S4:

S5:

S6:

B1:

B2:

B3:

B4:

B5:

B6:

Require changes to be co-ordinated between dependent blocks

A schedule defining milestones for delivering features

Regression testing before changes are committed

Ensure major interfaces are stable and well defined

Black box some components

Replace components with abstract models or BFMs (eg: CPU, memories)

STUDENTS-HUB.com

https://students-hub.com

7Test and Verification Solutions

Reuse from unit level?

 VIP

– BFMs

– Monitors and scoreboards

– Protocol checkers

 Assertions

 Functional coverage points

 Tests

– Integration tests

 Connectivity, address mapping

– Stress tests

 Cross cutting concerns such as interrupts or power management

 Shared resources or ‘convergence points’ (eg: memory synchronisation)

– Right level of abstraction

 Transactions and/or bus accesses

 Relative address map

Need to

plan for

reuse!

STUDENTS-HUB.com

https://students-hub.com

8Test and Verification Solutions

What do our top level tests contain?

 Halt mechanism

main(){

report_start();

leon3_test(1, 0x80000200, 0);

irqtest(0x80000200);

gptimer_test(0x80000300, 8);

gpio_test(0x80000700);

report_end();}

int gpio_test(int addr)

{

pio = (int *) addr;

int mask;

int width;

report_device(0x0101a000);

pio[3] = 0; pio[2] = 0; pio[1] = 0;

pio[2] = 0xFFFFFFFF;

/* determine port width and mask */

mask = 0; width = 0;

while(((pio[2] >> width) & 1) && (width <= 32)) {

mask = mask | (1 << width);

width++;}

pio[2] = mask;

if((pio[0] & mask) != 0) fail(1);

pio[1] = 0x89ABCDEF;

if((pio[0] & mask) != (0x89ABCDEF & mask)) fail(2);

pio[2] = 0;

return width;}

 Trace and error reporting

 Interrupt handling

 Result checking

 Register / address map

 Component tests

 Tests are typically C

programs running on an

SoC CPU

 Loaded into SoC memory

STUDENTS-HUB.com

https://students-hub.com

9Test and Verification Solutions

How to check the test results

 Fail causes test to hang

 Dump results to memory and compare to

reference results from model

– mpeg decoder video stream

– reference simulator

 Explicit checks in the test

– Observe and count interrupts

– Check data values

 Trace comparison

– Compare simulation state to a reference model cycle

by cycle during the simulation

 Use of monitors, scoreboards or assertions

Sensitive to accuracy

of reference model

(especially timing)

Need error propagated

to end of test

STUDENTS-HUB.com

https://students-hub.com

10Test and Verification Solutions

Methodology for top level testing

1. Pipe cleaning flow with regression tests

 to verify basic functionality is not broken

2. Incremental test set verifying the subsets of functionality

 scope grows with successive builds

3. Architectural (not implementation specific) and conformance tests

4. Micro-architectual tests

5. Soak testing (otherwise known as endurance,

Capacity, or longevity testing)

6. Performance testing and benchmarking

STUDENTS-HUB.com

https://students-hub.com

11Test and Verification Solutions

Adding Coverage

Instruction

Set

Simulator

(ISS)

Coverage

Database

Tests

Parse &

Decode

Coverage Base

Classes
(ISA view of resources)

Coverage

Grids

Execution

Trace

Coverage Model

Why add coverage?

• Conformance testing:
•Need complete coverage of cases

• Targeting specific scenarios:
•Hitting required corner cases

•Soak testing
• Ensure testing is not becoming

repetitive

STUDENTS-HUB.com

https://students-hub.com

12Test and Verification Solutions

How to further increase the ‘stress’

 Build multiple configurations (set at build time)

– Increase stress by maximising corner cases

eg: small memories or FIFOs

– Increase stress my maximising ‘synchronisation points’

eg: shared resources or coherent memories

 Hot load (set at start of test)

– Can force states of part of the design into conditions that maximise

chance of hitting corner conditions early (most often hot load

caches but can also leave holes or create dirty entries)

STUDENTS-HUB.com

https://students-hub.com

15Test and Verification Solutions

Time

Cost of

bugs

Initial Design Chip System Customer

Number of

bugs found

How do

you

decided

when you

are done?
How do

you find

the

remaining

bugs?

Cost of bugs over time (revisited)

STUDENTS-HUB.com

https://students-hub.com

16Test and Verification Solutions

Being pro-active to improve verification

 Achieving the best possible test plan

– Methodical analysis of design specifications and extraction of features

– Brainstorming and reviewing within the development team

– Refinement and maintenance throughout the development process

– Tracking and sign-off of verification deliverables against the test plan

 Make the design ‘verification friendly’ (design for verification)
(High quality products are a combination of robust and extensive verification with good design practices)

– Ensure good visibility of architectural and micro-architectural corner cases

– Avoid unnecessary functional complexity eg: excessive configurability, irregular structures

– Understand the verification impact of design changes (eg: code churn during optimization)

– Designers document their intent and assumptions, especially at interface between units

– Ensure the architecture, specifications and design are as stable as possible

Communicate!
(Verification is not just the responsibility of verification Engineers)

– Engage closely with the designers

– Be an active participant in reviews

– Take every opportunity to get the widest possible input into verification planning

Verification Requirements

Specification

STUDENTS-HUB.com

https://students-hub.com

17Test and Verification Solutions

Is block and top level verification sufficient?

 Is block level and top level verification sufficient?

– Verification of IP in System context

– Verifying correct operation with related IP

– Verification of complete systems (both HW and SW)

 Software conformance testing

 Soak testing

 Soak testing at system level?

– Focus at system level is shared resources

eg: coherent memory system

– Running irritator software in parallel on multiple threads or

multiple CPUs (minimal OS)

– Switching CPUs (eg: swapping big/LITTLE)

– Virtualisation
STUDENTS-HUB.com

https://students-hub.com

18Test and Verification Solutions

What goes wrong at system level?

 Integration bugs
– Connecting a big-endian subsystem to a little-endian

sub-system

 Clocks and power
– System hangs following mode change

 Concurrency and shared resources
– Concurrent memory gets corrupted

 Performance
– Bus bandwidth and latency is much worse than predicted

STUDENTS-HUB.com

https://students-hub.com

19Test and Verification Solutions

How to go faster!

Compute Farm, Emulators, FPGA and test chips

STUDENTS-HUB.com

https://students-hub.com

20Test and Verification Solutions

The ‘tradeoffs’ for different platforms

Compute farm Emulator FPGA Test chip

Speed 10Hz - 100Hz

…per machine

1MHz 2MHz – 50MHz GHz

Observability Total Trace window +

host debug

Probes +

host debug

Host debug

Behavioural

testbench?

Yes Co-emulation

(speed penalty)

Co-emulation

(speed penalty)

No

Test in ‘real world’

systems

No Host debug +

ICE with speed

bridges

Mostly Yes

Are fails easily

reproducible in

simulation?

Yes Yes No No

Bring-up time Minutes Weeks  hours Weeks  Days Months

Partitioning!

Favours lots of

short tests!

Depends on

process maturity

Complex timing dependencies

… but also need to load tests

and dump test results!

STUDENTS-HUB.com

https://students-hub.com

21Test and Verification Solutions

Top Level Test Generation

 Bias tests to hit interesting

corner cases

– Scenario interleaving

– Target shared resources/’points

of convergence’

 Non-repetitive useful tests

 There should be an efficient

workflow

– Generation performance

– Target diverse platforms

– Ease of use

– Maintainability

– Reuse (of testing knowledge)

– Effective result checking:

 Propagation of results

 Trace comparison

Testbench

SoC

CPU

A

Mem.

B C

FABRIC
FABRIC

BFM BFM

Scenario
Test

Compiler

flow

Observe

results

Test

generator

C
o

v
e
ra

g
e

E
x
p

e
c
te

d

re
s
u

lts

STUDENTS-HUB.com

https://students-hub.com

22Test and Verification Solutions

Summary

 What is SoC level verification? (Top v System)

 Looked at structure of a simple SoC

 Why do both ‘SoC level’ & ’unit level’ verification?

 A methodology for SoC level verification

 System level verification

STUDENTS-HUB.com

https://students-hub.com

