
ENCS3340 - Artificial Intelligence

Informed Search

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Informed Search

• relies on additional knowledge about the problem or domain

• frequently expressed through heuristics (“rules of thumb”)

• Idea: give the algorithm “hints” about the desirability of different states

• Use an evaluation function to rank nodes and select the most promising one for
expansion

• used to distinguish more promising paths towards a goal

• may be mislead, depending on the quality of the heuristic

• in general, performs much better than uninformed search

• but frequently still exponential in time and space for realistic problems

• Traditional Informed Search Strategies
• Greedy best-first search

• A* search

1
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Heuristic Function

• Heuristic function h(n) estimates the cost of reaching goal from node n

• Example:
• the aerial (straight line distance) between n and goal in a maze problem

2

Goal
state

Start
state

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Best-First Search

• Expand the node that has the lowest value of the heuristic function h(n)

• Example:

3

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75118

111

h (n) = straight-line distance heuristic

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

140

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

4

A
Start

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

5

A

B
C

E

Start

75118

140 [374][329]

[253]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

6

A

B
C

E

F

99

G
A

80

Start

75118

140 [374][329]

[253]

[193]

[366]

[178]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

7

A

B
C

E

F

I

99

211

G
A

80

Start

Goal

75118

140 [374][329]

[253]

[193]

[366]

[178]

E
[0][253]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

8

Path cost(A-E-F-I) = dist(A-E-F-I) = 140 + 99 + 211 = 450

A

B
C

E

F

I

99

211

G
A

80

Start

Goal

75118

140 [374][329]

[253]

[193]

[366]

[178]

E
[0][253]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Optimal ?

9

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75118

111

h (n) = straight-line distance heuristic

dist(A-E-G-H-I) =140+80+97+101= 418

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

140

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Complete ?

10

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75118

111

h (n) = straight-line distance heuristic

State Heuristic: h(n)

A 366

B 374

** C 250

D 244

E 253

F 178

G 193

H 98

I 0

140

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

11

A
Start

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

12

A

B
C

E

Start

75118

140 [374][250]

[253]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

13

A

B
C

E

D

111

Start

75118

140 [374][250]

[253]

[244]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

14

A

B
C

E

D

111

Start

75118

140 [374][250]

[253]

[244]

C[250]

Infinite Branch !

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

15

A

B
C

E

D

111

Start

75118

140 [374][250]

[253]

[244]

C

D

[250]

[244]

Infinite Branch !

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Greedy Search: Tree Search

16

A

B
C

E

D

111

Start

75118

140 [374][250]

[253]

[244]

C

D

[250]

[244]

Infinite Branch !

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Properties of Greedy Best-First Search

• Complete?

• No – can get stuck in loops

• Optimal?

• No

• Time?

• Worst case: O(bm)

• Best case: O(bd) – If h(n) is 100% accurate

• Space?

• Worst case: O(bm)

17
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

How can we fix the greedy problem?

18
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* search

• Idea: avoid expanding paths that are already expensive

• Combines greedy and uniform-cost search to find the
(estimated) cheapest path through the current node

• The evaluation function f(n) is the estimated total cost of
the path through node n to the goal:

f(n) = g(n) + h(n)

g(n): cost so far to reach n (path cost)

h(n): estimated cost from n to goal (heuristic)

19
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search Example

20
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search Example

21
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search Example

22
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search Example

23
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search Example

24
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search Example

25
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Another example

26

f(n) = g(n) + h (n)

g(n): is the exact cost to reach node n from the initial
state.

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75118

111

140

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

27

A Start

State Heuristic:
h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

28

A

BC E

Start

75118
140

[393] [449]
[447]

State Heuristic:
h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

29

A

BC E

F

99

G

80

Start

75118
140

[393] [449]
[447]

[417][413]

State Heuristic:
h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

30

A

BC E

F

99

G

80

Start

75118
140

[393] [449]
[447]

[417][413]

H

97

[415]

State Heuristic:
h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

31

A

BC E

F

I

99

G

H

80

Start

97

101

75118
140

[393] [449]
[447]

[417][413]

[415]

Goal [418]

State Heuristic:
h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

32

A

BC E

F

I

99

G

H

80

Start

97

101

75118
140

[393] [449]
[447]

[417][413]

[415]

Goal [418]

I [450]

State Heuristic:
h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

33

A

BC E

F

I

99

G

H

80

Start

97

101

75118
140

[393] [449]
[447]

[417][413]

[415]

Goal [418]

I [450]

State Heuristic:
h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

34

A

BC E

F

I

99

G

H

80

Start

97

101

75118
140

[393] [449]
[447]

[417][413]

[415]

Goal [418]

I [450]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Admissible Heuristics

• A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is
the true cost to reach the goal state from n

• An admissible heuristic never overestimates the cost to reach the goal, i.e., it
is optimistic

• Example: straight line distance never overestimates the actual road distance

• Theorem: If h(n) is admissible, A* is optimal

35
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Consistent Heuristics

• A heuristic h(n) is consistent if, for every node n and every successor n’ of n
generated by an action a we have:

• This is a form of the triangle inequality, If the heuristic h is consistent, then
the single number h(n) will be less than the sum of the cost c(n, a, n’) of the
action from n to n’ plus the heuristic estimate h(n’)

• Consistency is a stronger property than admissibility. Every consistent
heuristic is admissible (but not vice versa).

• The straight line distance is a consistent heuristic for routing problems.

36
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: h not admissible !

37

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75118

111

f(n) = g(n) + h (n) – (H-I) Overestimated

g(n): is the exact cost to reach node n from the initial state.

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 138>101

I 0

140

h() overestimates the cost to reach the goal state

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

38

A Start

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

39

A

BC E

Start

75118
140

[393] [449]
[447]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

40

A

BC E

F

99

G

80

Start

75118
140

[393] [449]
[447]

[417][413]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

41

A

BC E

F

99

G

80

Start

75118
140

[393] [449]
[447]

[417][413]

H

97

[455]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

42

A

BC E

F

99

G

H

80

Start

97

75118
140

[393] [449]
[447]

[417][413]

[455] Goal I [450]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

43

A

BC E

F

99

G

H

80

Start

97

75118
140

[393] [449]
[447]

[417][413]

[455] Goal I [450]

D[473]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

44

A

BC E

F

99

G

H

80

Start

97

75118
140

[393] [449]
[447]

[417][413]

[455] Goal I [450]

D[473]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

45

A

BC E

F

99

G

H

80

Start

97

75118
140

[393] [449]
[447]

[417][413]

[455] Goal I [450]

D[473]

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Tree Search

46

A

BC E

F

99

G

H

80

Start

97

75118
140

[393] [449]
[447]

[417][413]

[455] Goal I [450]

D[473]

A* not optimal !!!, h not admissible

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Search: Analysis

• A* is complete except if there is an infinity of nodes with f < f(G).

• A* is optimal if heuristic h is admissible.

• Time complexity depends on the quality of heuristic but is still exponential.

• For space complexity, A* keeps all nodes in memory. A* has worst case O(bd)
space complexity, but an iterative deepening version is possible (IDA*).

47
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Properties

• with consistent heuristics, the first time we reach a state (add it to fringe) it
will be on an optimal path. But with inconsistent heuristics, we may end up
with multiple paths reaching the same state, and if the new path has a lower
cost than the previous one, then we will end up with multiple nodes for that
state in the frontier, costing us both time and space.

• the value of f never decreases along any path starting from the initial node
• also known as monotonicity of the function

• All consistent heuristics show monotonicity

• those that don’t can be modified through minor changes

• this property can be used to draw contours
• regions where the f-cost is below a certain threshold

• with uniform cost search (h = 0), the contours are circular

• the better the heuristics h, the narrower the contour around the optimal path

48
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Snapshot with Contour f=11

49

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9
Initial

Visited

Fringe

Current

Visible

Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics

9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13 14 25 31 2513

f-cost 10

21

14

Contour

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

A* Snapshot with Contour f=13

50

77 6 5 4 3 2 1 0 1 3 5 6

2

48

65 4 2 4 537

65 56

77

9
Initial

Visited

Fringe

Current

Visible

Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

26

27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics

9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13

14

25 31 2513

f-cost 10

21

14

Contour

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Optimality of A*

• A* will find the optimal solution

• the first solution found is the optimal one

• A* is optimally efficient

• no other algorithm is guaranteed to expand fewer nodes than A*

• A* is not always “the best” algorithm

• optimality refers to the expansion of nodes, other criteria might be more relevant

• it generates and keeps all nodes in memory

• improved in variations of A*

51
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Complexity of A*

• the number of nodes within the goal contour search space is still exponential

• with respect to the length of the solution

• better than other algorithms, but still problematic

• frequently, space complexity is more severe than time complexity

• A* keeps all generated nodes in memory

52
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Properties of A*

• Complete?

• Yes – unless there are infinitely many nodes with f(n) ≤ C*.

(C* is the cost of the optimal solution)

• Optimal?

• Yes

• Time?

• Number of nodes for which f(n) ≤ C* (exponential)

• Space?

• Exponential

53
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Designing Heuristic Functions

• Heuristics for the 8-puzzle

h1(n) = number of misplaced tiles

h2(n) = total Manhattan distance (number of squares from desired
location of each tile)

h1(start) = 8

h2(start) = 3+1+2+2+2+3+3+2 = 18

• Are h1 and h2 admissible?

54
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Heuristics from relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem

• The cost of an optimal solution to a relaxed problem is an admissible heuristic
for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then
h2(n) gives the shortest solution

55
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Heuristics from subproblems

• Let h3(n) be the cost of getting a subset of tiles
(say, 1,2,3,4) into their correct positions

• Can precompute and save the exact solution cost for every possible
subproblem instance – pattern database

56
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Dominance

• If h1 and h2 are both admissible heuristics and
h2(n) ≥ h1(n) for all n, then h2 dominates h1

• Which one is better for search?

• A* search expands every node with f(n) < C* or
h(n) < C* – g(n)

• Therefore, A* search with h1 will expand more nodes

57
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for
different solution depths): d:depth

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

• d=24 IDS ≈ 54,000,000,000 nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes

58
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Combining heuristics

• Suppose we have a collection of admissible heuristics h1(n), h2(n), …, hm(n),
but none of them dominates the others

• How can we combine them?

h(n) = max{h1(n), h2(n), …, hm(n)} ???

59
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Memory-Bounded Search

• search algorithms that try to conserve memory

• most are modifications of A*

• iterative deepening A* (IDA*)

• Recursive best-first search, simplified memory-bounded A* (SMA*)

• Forget some subtrees but remember the best f-value in these subtrees and regenerate them later if
necessary

• Problems: memory-bounded strategies can be complicated to implement,
suffer from “thrashing”: keep needing things thought irrelevant!

60
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Iterative Deepening A* (IDA*)

• IDA* is to A* what iterative-deepening search is to depth- first.

• IDA* gives us the benefits of A* without the requirement to keep all reached
states in memory, at a cost of visiting some states multiple times.

• IDA* is commonly used for problems that do not fit in memory.

• In standard iterative deepening the cutoff is the depth, which is increased by
one each iteration. In IDA* the cutoff is the f-cost (g+h); at each iteration, the
cutoff value is the smallest f-cost of any node that exceeded the cutoff on the
previous iteration.

• In other words, each iteration exhaustively searches an f-contour, finds a
node just beyond that contour, and uses that node’s f-cost as the next
contour.

61
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

Iterative Deepening A* (IDA*)

• IDA* is similar to iterative-deepening search.

62
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

IDA* Algorithm

• In the first iteration, we determine a “f-cost limit” – cut-off value

f(n0) = g(n0) + h(n0) = h(n0),

where n0 is the start node.

• We expand nodes using the depth-first algorithm and backtrack whenever
f(n) for an expanded node n exceeds the cut-off value.

• If this search does not succeed, determine the lowest f-value among the
nodes that were visited but not expanded.

• Use this f-value as the new limit value – cut-off value and do another depth-
first search.

• Repeat this procedure until a goal node is found.
63

Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

IDA* Example

64
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

IDA* Example

65
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

IDA* Example

66
Uploaded By: Malak Dar ObaidSTUDENTS-HUB.com

	Slide 0: ENCS3340 - Artificial Intelligence Informed Search
	Slide 1: Informed Search
	Slide 2: Heuristic Function
	Slide 3: Greedy Best-First Search
	Slide 4: Greedy Search: Tree Search
	Slide 5: Greedy Search: Tree Search
	Slide 6: Greedy Search: Tree Search
	Slide 7: Greedy Search: Tree Search
	Slide 8: Greedy Search: Tree Search
	Slide 9: Greedy Search: Optimal ?
	Slide 10: Greedy Search: Complete ?
	Slide 11: Greedy Search: Tree Search
	Slide 12: Greedy Search: Tree Search
	Slide 13: Greedy Search: Tree Search
	Slide 14: Greedy Search: Tree Search
	Slide 15: Greedy Search: Tree Search
	Slide 16: Greedy Search: Tree Search
	Slide 17: Properties of Greedy Best-First Search
	Slide 18: How can we fix the greedy problem?
	Slide 19: A* search
	Slide 20: A* Search Example
	Slide 21: A* Search Example
	Slide 22: A* Search Example
	Slide 23: A* Search Example
	Slide 24: A* Search Example
	Slide 25: A* Search Example
	Slide 26: A* Search: Another example
	Slide 27: A* Search: Tree Search
	Slide 28: A* Search: Tree Search
	Slide 29: A* Search: Tree Search
	Slide 30: A* Search: Tree Search
	Slide 31: A* Search: Tree Search
	Slide 32: A* Search: Tree Search
	Slide 33: A* Search: Tree Search
	Slide 34: A* Search: Tree Search
	Slide 35: Admissible Heuristics
	Slide 36: Consistent Heuristics
	Slide 37: A* Search: h not admissible !
	Slide 38: A* Search: Tree Search
	Slide 39: A* Search: Tree Search
	Slide 40: A* Search: Tree Search
	Slide 41: A* Search: Tree Search
	Slide 42: A* Search: Tree Search
	Slide 43: A* Search: Tree Search
	Slide 44: A* Search: Tree Search
	Slide 45: A* Search: Tree Search
	Slide 46: A* Search: Tree Search
	Slide 47: A* Search: Analysis
	Slide 48: A* Properties
	Slide 49: A* Snapshot with Contour f=11
	Slide 50: A* Snapshot with Contour f=13
	Slide 51: Optimality of A*
	Slide 52: Complexity of A*
	Slide 53: Properties of A*
	Slide 54: Designing Heuristic Functions
	Slide 55: Heuristics from relaxed problems
	Slide 56: Heuristics from subproblems
	Slide 57: Dominance
	Slide 58: Dominance
	Slide 59: Combining heuristics
	Slide 60: Memory-Bounded Search
	Slide 61: Iterative Deepening A* (IDA*)
	Slide 62: Iterative Deepening A* (IDA*)
	Slide 63: IDA* Algorithm
	Slide 64: IDA* Example
	Slide 65: IDA* Example
	Slide 66: IDA* Example

