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Two Non-Commutative Binomial Theorems

Walter Wyss

Abstract

We derive two formulae for (A 4+ B)", where A and B are elements in
a non-commutative, associative algebra with identity.

1 Introduction

Let A be an associative algebra, not necessarily commutative, with identity. For
two elements A and B in A, that commute, i.e.

AB = BA (1)
the well-known Binomial Theorem reads

n

(A+B)" =3 (Z) AFpn—k (2)

k=0

If A and B do not commute, we find the first formula for (A + B)™ that
retains the binomial coefficient. It also gives a representation of e(45) that is
different from the Campell-Baker-Hausdorff representation [3]. The first formula
is then applied to a problem in non-commutative geometry. The second formula
for (A+ B)"™ complements the first one. We apply it to a problem in quantum
mechanics.

2 The First Non-Commutative Binomial Theo-
rem

Let A be an associative algebra, not necessarily commutative, with identity 1.
L(A) denotes the algebra of linear transformations from A to A.

Definition 1
Let A and X be elements of 2.

1. A can be looked upon as an element in L(A) by
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A(X) = AX (3)
i.e. leftmultiplication

2. The element d4 in L(A) is defined by

da(X)=[4,X]=AX - XA (4)
We now have the following trivial relations:

Statements

1. As elements in L(%A), A and d4 commute, i.e.

Ada(X) = daA(X) ()

2. d4 is a derivation on A, i.e.

dA(XY) = (daX)Y + X(daY) (6)
3.
(A—d)X =XA (7)
4. Jacobi identity
dadp(C) + dpdc(A) +dcda(B) =0 (8)

These simple statements are sufficient to prove the following non-commutative
Binomial Theorem [1], [2].

Theorem 1
For A and B elements in A, and 1 being the identity in A
n = (1 e
A+Br =% <k> (A + dp)*1}Br* )

k=0

Proof. The formula holds true for n=1. We now proceed by induction.

(A+B)""' = (A+ B)(A+B)" = (A+dg + B —dp)(A+ B)"
=(A+dp+ B —dp) i <Z> {(A+dp)F1}yB"*

k=0

Using the previous Statements, we get
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n

(A + B)n+1

(Z) [A{(A+dp)" 1} B"* + {dp(A +dp) 1} B" ™ + {(A + dp)* 1} B" "]

=
Il
<]

P”ﬂﬁ

<Z> {(A+dp)"1}B"* + {(A+dp)*1} B+

o

S

(=)

(Z) {(A‘i’dB)kl}BnikH»l +BnJrl
k=1

2 (’f . 1) {(A+dp)*1}B" " + {(A +dp)" "1}

k=1

From the identity

+

we then get

n+1
(A+B)"t =% (” Z 1> {(A+dg)F1yBrti=+
k=0
O
3 The Essential Non-Commutative Part
We write
(A+dp)"1l = A" + D, (B, A) (10)

For a commutative algebra, D, (B, A) is identically zero. We thus call
D, (B, A) the essential non-commutative part.
D, (B, A) satisfies the following recurrence relation

Dyi1(B, A) = dgA™ + (A + dg) D (B, A) (11)

with
Dy(B,A)=0

Definition 2
1.

M, = kz: (Z) Akpn—k (12)

We now have the following obvious corollary.
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Corollary 1
(A+B)" = M, + kz_o (Z) DyB"* (14)
4 Exponentials

We have as a consequence of the first non-commutative Binomial Theorem

Corollary 2

eAB = [eAtde]]eB (15)
Proof.
1
eAJrB _ Z E(A_‘_B)n
n=0

FH18 MR
s ==
z

(1) tca+am oy (16)

Il
o

!{(A +dg)*1}B"k

k)
k=0n=k
eATE = [Atds)B
O
By splitting of the essential non-commutative part we get
Corollary 3
— 1
eATB = e4eP Z HDkeB (17)
n=0
This is different from the Campell-Baker-Hausdorff formula.
5 Application of Theorem 1 for
dpA = hA? (18)
Definition 3
For h a scalar and n an integer we introduce
Tn(h) = [L+h][1+2h] - [L+ (n = 1A, vo(h) =1 (19)
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Lemma 1

The following properties hold

1.
71(h) = 1,7,(0) = 1,7, (1) = n!

Yet1(h) = (14 kh)yi(h)

Proof. Direct verification

Now, from Corollary 1 (14)

(A+B)" =M, + > (Z) D, B"*
k=2

Dy =dp A" 4 (A+dp)Dy_1, Dy =dpA

we find
Lemma 2
1.
dpAF = khAF!
2.
Dy, = {y(h) — 1} A
Proof.

dpA = hA?

Since dp is a derivation we have by induction
dpA¥ = (dgA¥ 1A + AF"1(dpA)

= (k — 1)hAFTL 1 AF=1p A2 = Ep AR+

2. By induction and Dy = hA2, we find

Dy, = dpA* ' + (A + dp){ve_1(h) — 1}A"!
= dp A" + {yp1(h) — 1}AF 4y 1 (h)dp APt —dp AR
= {ye-1(h) = 13A* + y1 (h)(k = 1)h A"
= {[1+ (k= Dhly-a(h) — 1348

Dy, = {yx(h) — 1} A"
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Finally,

The result can also be found in [4]

Note: For h =1, i.e. dgA = A?, we find

(A+B)" =) ( ) k1A pnk

k=0

Akpn-k (21)

M=

(A+B)" =

(n—k)!

k=0

Also, if on the vector space of infinitely often differentiable function on R we
introduce the operators

A=z, B—xQ% (22)

we have dg A = A%. Thus the representation (21) applies.

6 The Second Non-Commutative Binomial The-
orem

Let A and B be in A. With

M, = zn: (Z) AkBrk ¢ (23)

k=0

we have

[=p}
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Lemma 3

1.
My=1,M,=A+B (24)
2.
MiM,, = M, +1 +dpM, (25)
Proof.
1. Obvious
2.
MM, =(A+B)) ( ) Akpnk
k=0
_ Z <k:> AR+l pgn- k+z (Z) BAkgn—k
k=0
_Z< >Ak;+an k+2<z> {dBAk+AkB}Bn k
k=0
n+1 n n n n
_ +1- k pn+l—k ky pn—k
_2(51>ASB" S ()AB” +Z(k>{dBA }B"
s=1 k= k=0
_ An+1 n+1 . n n k pnt+l—k - n k pn—k
=AM e Bty D) )| 4B +dsy |, )A"B
k=1 k=0
_ Antl | ognil Z (n—;l) AR BRIk 4 g
k=1
MM, = MnJrl +dpM,
O
Lemma 4
n—2
M = M, + Z MFEdgM, 14, (26)
k=0

Proof. This is true for n = 2,

M? = MM, = M, + dgM;
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Now by induction

n—3
Mt =Myoy+ ) MfdpMy-a-y,
k=0
n—3
M = MM}~ = MyMy,_y + Y M dpM, oy,
k=0

n—2
= M, +dpMu_1+ ) MidpM,_1-

s=1

n—2
M} = My + Y MfdgM,_i_y
k=0
O
Theorem 2
n—2
(A+B)" =M, + Y (A+ B)*dpgMy, 1 (27)
k=0
Proof. This is lemma 4 with M; = A+ B
7 Application of Theorem 2 for the case
dBA:dBMl :C, and dAC:dBCZO (28)
Then
dpAF = kCA*= dg M, = nCM,_, (29)
and
n—2
(A+B)" =M, + Y (n—1—k)CM{ M,
k=0
Ansatz
(%]
(A+B)" =) Mu orAnk (30)
k=0
with
Apo=1 (31)

and A, commuting with A and B.

[5] denotes the greatest integer less than

5"
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From

(A+B)"* = My (A+ B)"

we have
(4] 3]
Z Mn+1—2kAn+1,k = Ml ZMn—ZkAn,k
k=0 k=0
or
(242 (5]
Mn+1 + Z Mn+1—2kAn+1,k: - Ml{Mn + ZMn—2kAn,k}
k=1 k=1

From (25) and (23) we find
Man = Mn+1 + nCMn_l

resulting in

(23] (3] (3]
Z Mysi—okAnt1 e = nCMn—1+Z My 1ok An g+ ) (n—=2k)CM, 1 2pAp
k=1 k=1 k=1
(32)
For n even, n = 2N, (32) reads
N N N-1
Z Mont1—orAoNy1k = 2NCM2N-1+Z Moni1—2kAan k1 + Z (2N —2k)CMan_1_2kA2N
k=1 k=1 =1
or
N N
Mon_1Aani11 + Z Mont1—okAant1k = 2NCMon_1 + Man_1Aan1 + Z Mon1—2kAan i
k=2 k=2

N
+3 " Mani1-ok(2N +2 — 2k) Ay i
k=2

Comparing coefficients gives the recurrence relation

Aong1 s = Aan g + (2N +2 — 2k)CAan k-1

or

AnJrLk = An,k + (n +2— 2]€)C’An7k,1, k>1 (33)

Note, that for n odd, n = 2N + 1, we get the same relation O
9
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Lemma 5

The recurrence relation (33) with A,, o = 1 has the solution

Ap gy = m_;ﬂ')%mck (34)
and (30) becomes
(3] nl
(A+B)" = 2 Mn72kmck (35)

Proof. by direct verification
This result can also be found in [5]

Note: On the vector space of infinitely often differentiable function on R we
introduce the operators

d
A=z,B= )\d—,where A is a scalar. (36)
T
Then dgA = A, or C = Al. Thus the above representation (35) applies.
O
In particular
(%]
d n!
2\ _ M. 7}\]{5
(@+Ag) 2 G o kI
where
B n n . dan—r .
resulting in
d (5] nl
A—)"1 = nm2k__ L \k 37
(@+Ag) 24— 2k) k12 (37)
For A = —1, we get
d (7] X 2k
D Y ) L 38
(- gg)t=n ;;)( U P TRTTAT: (38)
10
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The right-hand side are the Hermite polynomials.

Thus
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