

Chapter 1

Introduction and Background

Nature of the Course

There are 4 different views to teach the programming languages course:

1- How to program in several programming languages.

2- Survey of the history and nature of several programming languages.

3- How to implement programming languages.

4- The conceptual issues of programming languages (concepts & paradigms).

We will study the nature of PL, What they can do and what they should do,

Instead of what they are and how to use them.

Simply, we will study the structural issues of PL, in two words:

 “Concepts & Paradigms”

- Concepts: The basic structure of PL, syntax, semantics, data types, control
structures, …etc.

- Paradigms: the model, an approach or the way of reasoning to solve the problem.

Programming Languages Views

There are 3 different views to consider a PL:

1- Designer: (The inventor of the language)

2- Implementer: (The one who build the compiler or the interpreter)

3- User. (The one writes programs in the language)

The course deals with all 3 views with a little emphasis on (3).

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Reasons to study Programming Language Concepts

1. To increase the capacity to express programming ideas.

2. Knowing the structure of a programming language makes it easier to learn and
understand programming languages.

3. To increase the ability to design new languages. for example it is known that

the if...else structure is ambiguous. This means that the compiler does not

know which direction to take when parsing it. In a case like this, the designer

must take into consideration ambiguity when putting down production rules

4. It is an overall advancement in computing

What is a Programming Language?

A language is a system of signs used to communicate.

(This definition also includes spoken language). All languages have grammar

and vocabulary.

Grammar is how we express a language. It is a specific set of rules(with some

exceptions in some cases).

Programming languages are the same, they have a set of rules, called

“Production Rules”, which represent the grammar of the programming language.

The main difference between spoken languages and written languages is that

the rules are strict, that is, there are no exceptions to rules.

This leads us to a general definition:

A Programming language is a system of signs used by a person to
communicate with the computer machine.

Or a more specific definition:

A Programming language is a notational system for describing

COMPUTATION in MACHINE READABLE and HUMAN READABLE

form.

There are three Key concepts in this definition:

 Uploaded By: Ayham NobaniSTUDENTS-HUB.com

1. Computation.

This is what computers about. This is everything that happens in a computer

on a low level regardless of the application. Everything we know in

programming is eventually simplified into small computational

operations(Arithmetic operations).

2. Machine Readable.

There must be an algorithm to translate the programming language code in an

unambiguous and finite way. The algorithm must be simple and straight-

forward, and usually takes time proportional to the size of the program. Machine

Readability is ensured by restricting the structure of the programming

language(syntax) to a context-free grammar(CFG) which is a system/model to

express the syntax of the programming language. Because of such a system,

we can create algorithms for translators in a way that produce something

machine readable.

3. Human Readable.

A Very important aspect of a program is to be readable. This began with high-

level languages. A Programming Language must provide abstraction as Data

Abstraction : Which means giving variables and data types such names.

(a) Data abstraction:

Simple : such as "integer" or "int" or "char"

Structured : such as arrays or strings

(b) Control Abstraction :

Simple: assignment statement, X = X + 3; meaning:

 Fetch memory location X, add 3 to it, and store the result back to X.

 All this in one simple statement.

Structured: divide the program into groups of instructions such as,

 If…else stmt, case stmt, while stmt, procedures, functions,

 blocks, …etc.

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

For a more precise and complete definition of programming languages, A

Programming language can be divided into two parts:

1. Syntax, or the structure.

2. Semantics, or the meaning.

This is considered a concrete definition of a programming language.

Programming Language Concepts

Syntax

The Syntax is the grammar of the programming language. It describes the

different structures such as expressions, statements, and blocks.

The Syntax is formally described using a Context Free Grammar (CFG), which is
a set of static algorithms and frameworks.

Semantics

The Semantics describe or gives the Syntax structure a meaning. It is more

complex and difficult to describe precisely unlike syntax. For example, the

meaning of the "if/else" statement must be programmed correctly by the

implementer so that the compiler generates the correct code.

Unfortunately, there is no clear formal to describe Semantics analysis unlike

Syntax. However, there is a framework called Syntax Directed

Translation(SDT) which is used to express the semantic analysis.

Code -> Scanner(Lexical Structure) -> Tokens -> Syntax analyzer -> Object Code

the Scanner takes the statements and analyzes them, creating tokens, Then the

Syntax analyzer takes the tokens and tries to create Syntax structures. If a

group of tokens creates a valid expression, it moves to the next set of tokens.

For example, let us look at this small segment of code:

the tokens in this code would be "if","(","x","!=", “1”,

if(x!=1)

{ n++;}

}

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

")","{","n","++",";","}" . This is very important for parsing. After the

Scanner has tokenized the statement in the above section, the

Syntax analyzer first checks:

if(x!=10)

if it is correct, then

it checks n++;

if it is correct, then it checks the whole statement to see if the whole if statement

is correct.

Paradigms of Programming Languages

There are 4 paradigms of programing languages

(1) Imperative or Procedural Paradigm

This is called Von-Neumann model of computing which is based on Single

bProcessor Sequential Execution of instructions. A programming

Language that is based on this model is characterized by:

1. Sequential Execution of Instructions.

2. Using Variables to Represent Memory Locations.

3. Using Assignment Statements to Change the Value of a Variable.

An example of a programming language designed with this paradigm is Pascal

and C. This is an example function (Greatest Common Divisor):

function gcd(x,y:integer):integer;

Begin

If (x = y) then

 gcd:=x

else

if (x > y) then

gcd:=gcd(x-y,y)

else

gcd:=gcd(x,y-x);

End

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

The Same program in C is:

(2) Functional Paradigm

Computation is based on the evaluation or calling functions or application

of functions. That is why the language is sometimes called applicated

language. A programming Language that is based on this model is

characterized by:

1. There is NO Notion of Variables or Assignment Statements in this Paradigm.

2. Repetition is not Expressed in Loops, but is Achieved by Recursive Calls.

As an example,

Let us take LISP (LISt Programming) language. In LISP, everything is a list. In

LISP, a list is defined as:

A List is a Sequence of Things Separated by Blanks and Surrounded by
Parenthesis.

An example of lists

or

int gcd(int n, int m)

{

if(n==m){

return m;

}

else{

if(n>m)

return gcd(n-m,m);

else

return gcd(n,m-n);

}

}

(+ a b)

(+ 2 3)

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

or

which means "if a is true, then the value is b. otherwise , the

value is c". Let us see some small programs in

LISP:

or another program:

GCD in LISP would be

Lets Write a LISP program to simulate the function power x^n(where x belongs to

r and n is an integer)

>(defun f(x)

(+ x 1))

>f

>(f 3)

>4

(if a b c)

>(defun ff(x y)

(+ x y))

>ff

>(ff 3 5)

>5

>(defun gcd(n m)

(if (= n m) n

(if(> n m) (gcd (- n m) m)

(gcd (n (- m n))))))

>gcd

>(gcd 18 16)

>2

>(defun pwr(x n)

(if (= n 0) 1

(* x (pwr x (- n 1))))))

>pwr

>(pwr 2 4)

>16

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

(3) Logical Paradigm

This Paradigm is based on symbolic logic. The Program consists of a set of

statements that describe what is true about these statements. For example, the

Greatest Common Divisor function could be written in a Logical language

called PROLOG (PROgramming LOGical):

(4) Object Oriented Paradigm

In This Paradigm, the notions of Object and Class are introduced. It widely

spread in the 90's. The advantages of Objected Oriented Programming are:

Encapsulation of Data and Functions.

Inheritance.

Polymorphism.

The Chart of Language Evolution

gcd(u,v,u) :- v = 0.

gcd(u,v,x) :- v > 0,

 y is u mode v,

 gcd(v,y,x).

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Functional Logical

Imperative Object Oriented

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

Uploaded By: Ayham NobaniSTUDENTS-HUB.com

	Chapter 1
	Introduction and Background
	Nature of the Course
	There are 4 different views to teach the programming languages course:
	1- How to program in several programming languages.
	2- Survey of the history and nature of several programming languages.
	3- How to implement programming languages.
	4- The conceptual issues of programming languages (concepts & paradigms).
	We will study the nature of PL, What they can do and what they should do,
	Instead of what they are and how to use them.
	Simply, we will study the structural issues of PL, in two words:
	“Concepts & Paradigms”
	- Concepts: The basic structure of PL, syntax, semantics, data types, control structures, …etc.
	- Paradigms: the model, an approach or the way of reasoning to solve the problem.
	Programming Languages Views
	There are 3 different views to consider a PL:
	1- Designer: (The inventor of the language)
	2- Implementer: (The one who build the compiler or the interpreter)
	3- User. (The one writes programs in the language)
	The course deals with all 3 views with a little emphasis on (3).
	Reasons to study Programming Language Concepts
	What is a Programming Language?
	Programming Language Concepts
	Syntax
	Semantics
	Paradigms of Programming Languages
	(1) Imperative or Procedural Paradigm
	(2) Functional Paradigm
	(3) Logical Paradigm
	(4) Object Oriented Paradigm

	The Chart of Language Evolution

	>(defun ff(x y)
	(+ x y))
	>ff
	>(ff 3 5)
	>5

