PRINCIPLES OF FINANCIAL

MANAGEMENT 2

2025

FINN2300

Mohammed Haj Mohammed

Chapter 8
Risk and Return

CHAPTER 8 RISK AND RETURN

العائد والخطر

The goal of the firm or the corporation is to maximize shareholder's wealth.

In order to achieve this goal, Corporation's wealth should do the following:

الهدف من الشركة هو تعظيم ثروة المساهمين.

ومن أجل تحقيق هذا الهدف، يجب على الشركة القيام بما يلي:

1. Investment Decisions قرارات استثماریة

2. Financing Decisions

3. Dividends Policy الأرباح

Assets = Liabilities + Stockholders' Equity

حقوق المساهمين + الإلتزامات = الأصول

Assets are considered as an investment. While Liabilities and Stockholders' Equity are considered as a source of financing.

تُعتبر الأصول استثمارًا، بينما تُعتبر الالتزامات و حقوق المساهمين مصادر للتمويل.

Investment could be in:

يمكن أن يكون الاستثمار في:

1. Single Asset أصل واحد

2. Portfolio "Number of assets" مجموعة من الأصول) محفظة استثمارية

To make an investment decision, we measure risk and expected return. But what do "risk" and "expected return" mean?

لإتخاذ قرار استثماري، نقيس المخاطر و العائد المتوقع. لكن ماذا يعني كلٌّ من "المخاطر" و "العائد المتوقع"؟

Before answering, we will first understand the two types of return (including expected return) and their meaning. We will also explain risk and the types of risk preferences.

قبل الإجابة، سنفهم أولًا نوعي العائد (بما في ذلك العائد المتوقع) ومعناهما، كما سنشرح المخاطر و أنواع تفضيلات المخاطرة

Types of returns:

- 1. Expected Return: The rate of return the investor *expects* to receive for holding an asset over a certain period.
 - 1. **العائد المتوقع**: هو معدل العائد الذي يتوقع المستثمر الحصول عليه مقابل الاحتفاظ بأصل لفترة زمنية معينة.
- 2. Actual Return: The rate of return the investor *actually* receives for holding an asset over that period.
- 2. العائد الفعلي: هو معدل العائد الذي يحصل عليه فعليًا المستثمر مقابل الاحتفاظ بالأصل خلال تلك الفترة.

Important: Expected Return \neq Actual Return, unless the asset is risk-free.

Example: If you expect a stock to give you 8% in one year, but it actually gives you 5%, then the expected return is 8% and the actual return is 5%

مثال: إذا توقعت أن يحقق سهم ما عائدًا بنسبة 8% خلال سنة، لكنه حقق فعليًا 5%، فإن العائد المتوقع هو 8% والعائد الفعلى هو 5.%

Risk and types of risks:

Risk: uncertainty (variability return)

المخاطر: هي عدم اليقين أو تذبذب العائد.

Risk preferences: تفضيلات المستثمرين تجاه المخاطر:

1. Risk Averse: Investor required an increase in the expected return for an increase in risk. They try to avoid the risk as much as possible, with higher return.

- 1. المستثمر المتحفظ:(Risk Averse) يطلب عائدًا متوقعًا أعلى مقابل زيادة في مستوى المخاطرة.
 - 2. Risk Neutral: Investors make their decision based on expected return. They choose the asset with the highest expected return.
 - 3· المستثمر المحايد: (Risk Neutral) يتخذ قراراته بناءً على العائد المتوقع فقط، ويختار الأصل ذو العائد الأعلى.
 - 4. Risk seekers: investor make their decision based on risk they would choose the asset with the highest the risk, and even for lower the returns.
- 5· المستثمر الباحث عن المخاطر: (Risk Seeker) يفضل الأصل ذو المخاطرة الأعلى حتى وإن كان عائده أقل.

We don't observe returns in the market. Instead, we observe prices first and then we calculate returns.

ملاحظة: في السوق لا نلاحظ العائد مباشرة بل نلاحظ الأسعار أولاً ثم نحسب العوائد.

$$r = \frac{P_{t} - P_{t-1} + CF}{P_{t-1}}$$

Pt= price at the end of the period (selling price)

 P_{t-1} = Price at the beginning of the period (purchase price)

CF = Cash Flow → Distributed Dividends

r= Actual Return

Example:

Apple Stock: $P_{t-1} = \$105.35 / CF = \$2.37 / P_t = \$115.82$

Walmart Stock: $P_{t-1} = \$61.46 / CF = \$2.00 / P_t = \$69.12$

$$r_{Apple} = \frac{\$115.82 - \$105.35 + \$2.37}{\$105.35} = 0.1219 \text{ or } 12.19\%$$

$$\$69.12 - \$61.46 + \$2.00$$

$$r_{Walmart} = \frac{\$69.12 - \$61.46 + \$2.00}{\$61.46} = 0.1572 \text{ or } 15.72\%$$

We choose Walmart because it has higher actual rate of return than Apple.

Risk of a single asset

مخاطر أصل واحد

Method 1: (Range)

الطريقة الأولى: (المدي)

Scenario analysis: A process that asset risk under different scenarios.

A. Optimistic متفائل

B. Pessimistic

C. Most likely الأكثر احتمالًا

Range is a measure of risk

المدى هو مقياس الخطر

The higher the range, the higher the risk.

كلما كان المدى أكبر، كانت المخاطرة أعلى.

Example page 366:

	Asset "A"	Asset "B"
Initial investment	\$10,000	\$10,000
Annual Rate of return		
Pessimistic متشائم	13%	7%
Most likely الأكثر احتمالاً	15%	15%
Optimistic متفائل	17%	23%
Range المدى	4%	16%

$$Range_A = 17\% - 13\% = 4\%$$

$$Range_B = 23\% - 7\% = 16\%$$

Asset B is risker because it has higher range than asset A.

Method 2: Probability Distribution

الطريقة الثانية: التوزيع الاحتمالي

1. Probability distribution: Is a model that relates possibilities to associated outcomes.

تُعد هذه الطريقة أكثر دقة لأنها تأخذ بالاعتبار الاحتمالات المرتبطة بكل نتيجة ممكنة.

$$\bar{\mathbf{r}} = \sum r * Pr$$

 $\bar{r} = Expected return.$

r= outcome.

Pr= probability to happen.

2. Variance " σ^2 ": Measure of risk.

التباين: ويعتبر مقياس للمخاطرة.

$$\sigma^2 = \sum (r - \bar{r})^2 * Pr$$

3. Standard Deviation " σ ": is the square root of variance, and it is also a measure of risk.

الانحراف المعياري: هو عبارة عن الجذر التربيعي للتباين، وهو يقيس أيضا المخاطرة.

$$\sigma = \sqrt{\sum (r - \bar{r}) * Pr}$$

The higher the variance, the higher the standard deviation => the higher the risk.

كلما كان التباين والانحراف المعياري أكبر، كلما كانت المخاطرة أعلى.

	As	set A	As	set B
Possible outcomes	r	Pr	r	Pr
متشائم Pessimistic	13%	0.25	7%	0.25
محاید Most likely	15%	0.50	15%	0.50
متفائل Optimistic	17%	0.25	23%	0.25
Total		1		1

$$\overline{r}_A = ?$$
, $\overline{r}_B = ?$, $\sigma_A = ?$, $\sigma_B = ?$

Step 1: Find \overline{r}_A and \overline{r}_B

$$\overline{r}_A = \sum (r * Pr) = (13\%*0.25) + (15\%*0.50) + (17\%*0.25) = 0.15 \text{ or } 15\%$$

$$\overline{r}_{\mathrm{B}} = \sum (r * \mathrm{Pr} \)$$
 = (7%*0.25) +(15%*0.50) +(23%*0.25) =0.15 or 15%

Step 2: Find σ_A and σ_B

STEP 1 $(r-ar{r})$	STEP 2 $(r-ar{r})^2$	STEP 3 $(\mathbf{r} - \bar{\mathbf{r}})^2 * \mathbf{Pr}$
13%-15%=-2.0%	(-2%)2=0.0004	(0.0004) *(0.25) = 0.0001
15%-15%=0%	(0%)2=0	(0) *0.50= <mark>0</mark>
17%-15%=2.0%	$(2\%)^2$ =0.0004	(0.0004) *0.25=0.0001

$$\sigma_A^2=\sum \bigl(r-\overline{r}\bigr)^2*Pr$$
 = 0.0001+0+0.0001=0.0002 => Variance of asset A
$$\sigma_A=\sqrt{\sum (r-\overline{r})}*pr$$
 = $\sqrt{0.0002}=0.014$ or 1.4% => Standard deviation of asset A

$(r-\overline{r})$	$(r-\overline{r})^2$	$(\mathbf{r} - \bar{r})^2 * Pr$
7%-15%=-8.0%	$(-8\%)^2 = 0.0064$	(0.0064) *(0.25) = 0.0016
15%-15%=0%	$(0\%)^2=0$	(0) *0.50= <mark>0</mark>
23%-15%=8.0%	(8%)2=0.0064	(0.0064) *0.25=0.0016

$$\sigma_B^2 = \sum \left(r - \overline{r}\right)^2 * Pr = 0.0016 + 0 + 0.0016 = 0.0032 \Rightarrow \text{Variance of asset B}$$

$$\sigma_B = \sqrt{\sum (r - \overline{r})} * pr = \sqrt{0.0032} = 0.0566 \text{ or } 5.66\% \Rightarrow \text{Standard deviation of asset B}$$

Asset B is risker than asset A

As an investor I would choose asset A (same expected rate of return but different risk).

→ If the expected return was different, then in order to select an asset we need to calculate coefficient of variation and choose the asset with the lowest coefficient of variation "CV".

يستخدم معامل التباين (Coefficient of Variation CV) عندما تختلف العوائد المتوقعة، إذ يقيس مستوى المخاطرة لكل وحدة عائد. وكلما ارتفع هذا المعامل، دلّ على خطورة أكبر.

$$CV = \frac{\sigma}{\bar{r}}$$

$$CV_A = \frac{1.4\%}{15\%} = 0.093 \text{ or } 9.3\% \text{ , } CV_B = \frac{5.66\%}{15\%} = 0.377 \text{ or } 37.7\%$$

We choose A because it has lower CV than B

The Higher the CV, the higher the risk.

الطريقة الثالثة: المتوسط الحسابي Method 3: Arithmetic Average (Mean)

According to corporate finance theory "FINN3300", return is assumed to be normally distributed. The normal distribution can be characterized by mean (arithmetic average) and variance.

تفترض النظرية أن العوائد تتوزع توزيعًا طبيعيًا، لذا يمكن وصفها بالمتوسط والتباين.

$$\mu = \frac{\sum r}{n}$$

u= Mean الوسط

n= number of years عدد السنوات

Both variance and standard deviation are measurement of risk.

If we have data about the whole population then:

Variance of a population

التباين للمجتمع الاحصائي

$$\sigma^2 = \frac{\sum (r - \bar{r})^2}{n}$$

Standard deviation of a population

الانحراف المعياري للمجتمع الاحصائي

$$\sigma = \sqrt{\frac{\sum (r - \bar{r})^2}{n}}$$

FINN2300 CHAPTER 8 FINANCE 2

If we have data about one sample of the population then:

$$(n-1)$$
 اذا کانت تمثل عینه فقط \rightarrow نقسم علی

Variance of one sample of the population

التباين على عينة من المجتمع

$$\sigma^2 = \frac{\sum (r - \bar{r})^2}{n - 1}$$

الانحراف المعياري على العينة. . . Standard deviation of one sample of the population

$$\sigma = \sqrt{\frac{\sum (r - \bar{r})^2}{n - 1}}$$

Example Page 372:

The CV should be less than 0.75, sample of the population.

We use Method 3 because there is no probability (pr)

Year	Beginning price	Ending price	Dividends Paid
2013	35	36.5	3.5
2014	36.5	34.5	3.5
2015	34.5	35	4

Step 1: Find the expected return

$$r_{2013} = \frac{\$36.5 - \$35 + \$3.5}{\$35} = \frac{\$5}{\$35} = 0.1428 \text{ or } 14.28\%$$

$$r_{2014} = \frac{\$34.5 - \$36.5 + \$3.5}{\$36.5} = \frac{\$1.5}{\$36.5} = 0.04109 \text{ or } 4.109\%$$

$$r_{2015} = \frac{\$35 - \$34.5 + \$4}{\$34.5} = \frac{\$4.5}{\$34.5} = 0.1304 \text{ or } 13.04\%$$

$$\overline{r} = \frac{0.1428 + 0.04109 + 0.1304}{3} = 10.5\%$$

جد التباين والانحراف المعياري Step 2: Find the variance and standard deviation

Year	$(r-\overline{r})$	$(r-\overline{r})^2$
2013	0.1428 - 0.105 = 0.0378	$(0.0378)^2 = 0.0014$
2014	0.04109 - 0.105 = -0.06391	$(-0.06391)^2 = 0.0040$
2015	0.1304 - 0.105 = 0.0254	$(0.0254)^2 = 0.0006$

$$\sigma^2 = \frac{\sum (r - \overline{r})^2}{n - 1} = \frac{0.00608}{3 - 1} = 0.00304 \Rightarrow \sigma = \sqrt{0.00304} = 0.0551 \approx 5.5\%$$

STEP 3: Calculate Coofecient of Variation, and determine whether to invest or not.

$$CV = \frac{\sigma}{\overline{r}} = \frac{0.055}{0.105} = 0.5251 \cong 53\%$$

53%<75%, she should include the stock in her portfolio.

Risk of a portfolio

Portfolio is a group of assets.

Diversification-> minimizes risk.

Correlation: is a statistical measure of the relationship between 2 assets.

الارتباط: هو مقياس إحصائي للعلاقة بين 2 أصول.

$-1 \le Correlation Coefficient \le +1$

→ If the correlation coefficient = +1, then two assets are perfectly positive correlated. (The return on both assets moves in the same direction and by the same amount).

- → If the 0 < correlation coefficient < 1, then two assets are positively correlated. (The return on both assets moves in the same direction, but on different amount).
 - → إذا كان بين 0 و 1+ → يتحركان في الاتجاه ذاته لكن بمبالغ مختلفة.
- \rightarrow If the correlation coefficient = 0, then two assets are uncorrelated.
 - → إذا كان = 0 → لا توجد علاقة بينهما.
- → If the -1 < correlation coefficient < 0, then two assets are negatively correlated. (The return on both assets moves in the opposite direction and different amount).

→ If the correlation coefficient = -1, then two assets are perfectly negative correlated. (The return on both assets moves in the opposite direction, but on same amount).

Here is a table that summarize above:

Correlation Coefficient	Description
-1	Perfectly negative correlated assets الأصول المرتبطة السلبية تماما
-1 < Correl < 0	Negatively correlated assets الأصول المرتبطة سلبا
0	Uncorrelated assets الأصول غير المترابطة
0 < <i>Correl</i> < +1	Positively correlated assets الأصول ذات الارتباط الإيجابي
+1	Perfectly positive correlated assets أصول مرتبطة إيجابية تماما

وهذا يوضح أن التنويع بين أصول غير مترابطة أو ذات ارتباط سلبي يقلل مستوى المخاطرة الكلية.

Example:

	Asset A		Asset B	
Possible outcomes	r	Pr	r	Pr
Pessimistic	13%	0.25	7%	0.25
Most likely	15%	0.50	15%	0.50
Optimistic	17%	<u>0.25</u>	23%	<u>0.25</u>
Total		1		1

Example: If we construct a portfolio 50% weight "w" in Asset A, and 50% Weight "w" in Asset B, what is \overline{r}_P =?

$$\overline{r}_P$$
 = Expected return on portfolio

$$\overline{r}_{P} = \sum W_{\text{of each asset}} * \overline{r}_{\text{of each asset}}$$

$$\bar{r}_P = W_A * \bar{r}_A + W_B * \bar{r}_B$$

$$\bar{r}_P = (0.5 * 0.15) + (0.5 * 0.15) = 0.075 + 0.075 = 0.15$$

To calculate the covariance "COV" probability distribution, you have 2 equations to solve with:

1.
$$COV(r_a, r_b) = \sum (r_a - \bar{r}_a) * (r_b - \bar{r}_b) * Pr$$

2. $COV(r_a, r_b) = corell * \sigma_A * \sigma_B$

And then you can choose one of them based on the information given on the question, and then substituting into this equation:

$$\sigma_{p}^{2} = W_{A}^{2} * \sigma_{A}^{2} + W_{B}^{2} * \sigma_{B}^{2} + 2 * W_{A} * W_{B} * COV_{(r_{A}, r_{B})}$$

Or أو نفس المعادلة لما تعوض لمعادلة (COV) الأولى

$$\sigma_{\rm p}^2 = W_{\rm A}^2 * \sigma_{\rm A}^2 + W_{\rm B}^2 * \sigma_{\rm B}^2 + 2 * W_{\rm A} * W_{\rm B} * \sum (r_a - \bar{r}_a) * (r_b - \bar{r}_b) * Pr$$

Or أو نفس المعادلة لما تعوض لمعادلة (COV) الثانية

$$\sigma_{p}^{2} = W_{A}^{2} * \sigma_{A}^{2} + \ W_{B}^{2} * \sigma_{B}^{2} + 2 * W_{A} * W_{B} * \ \textbf{corell} \ * \ \sigma_{A} \ * \ \sigma_{B}$$

$(r_a-\overline{r}_a)$	$(r_b - \overline{r}_b)$	Pr	Total
(13%-15%) =-2.0%	(7%-15%) =-8.0%	0.25	0.0004
(15%-15%) =0%	(15%-15%) =0%	0.50	0
(17%-15%) =2.0%	(23%-15%) =8.0%	0.25	0.0004

COV $(r_a, r_b) = 0.0004+0+0.0004=0.0008$

Find The correlation Coefficient "CORREL"

COV (
$$r_a$$
, r_b) = correl * σ_A * σ_B

0.0008= Correl* 1.4%* 5.6%

0.0008= Correl*0.000784

Correl= $1.0204081 \approx +1 \Rightarrow$ perfect positive

Find the risk of a portfolio

$$\begin{split} \sigma_p^2 &= W_A^2 * \sigma_A^2 + W_B^2 * \sigma_B^2 + 2 * W_A * W_B * COV_{(r_a, r_b)} \\ \sigma_p^2 &= 0.5^2 * 0.014^2 + 0.5^2 * 0.0566^2 + 2 * 0.5 * 0.5 * 0.0008 \\ \sigma_p^2 &\cong 0.00125 \Rightarrow \sigma_p \cong 3.54\% \end{split}$$

Example:

Asset	r	σ
low	6%	3%
high	8%	8%

Based on book information that: $6\% \le r_P \le 8\%$

If Correl = -1, then $0\% \le \sigma_P$ "risk" $\le 8\%$

If Correl = 0, then $0\% < \sigma_P \le 8\%$

If Correl = +1, then $3\% \le \sigma_P \le 8\%$

Variance: is the measure of total risk

التباين مقياس الخطر

الخطر يمكن أن يكون: "Risk can be:

- 1. Diversifiable, Unsystematic, Firm, or unique risk.
- 2. Non- diversifiable, systematic, or market risk.

Diversifiable risk: is a portion of assets that is attributable to firm specific random causes and can be eliminated through diversification.

Non-diversifiable risk: is a portion of an asset's risk that is attributable to market factors (unexpected changes in macroeconomics variables). This portion of risk cannot be eliminated through diversification.

To measure non-diversifiable risk, we will do the following: لقياس المخاطر غير

- 1. Using the scatter plot ينرسم العلاقة بين عوائد الأصل وعوائد السوق
- 2. Draw the best fit line "characteristic line" نستخرج خط الانحدار

3. Make a best fit line equation "Slope equation"

عمل أفضل معادلة خط ملاءمة.

FINANCE 2

Slope equation mathematically $\rightarrow Y = m * x + a$

Asset Return = Beta * Market Return + Intercept

Slope equation in financial terms $ightarrow r_i = oldsymbol{eta} * r_m + lpha$

 $Y \rightarrow Asset Return \rightarrow r_i$

 $m \rightarrow Beta \rightarrow \beta$

 $x \rightarrow Market Return \rightarrow r_m$

 $a \rightarrow Intercept \rightarrow \alpha$

Beta (β): slope of the best fit line could be:

A. Positive: the asset and market return move in the same direction.

B. Zero: no relationship between the asset and market return.

C. Negative: the asset and market return move in the opposite direction.

Beta of a portfolio:

$$\beta_p = \sum W_{Asset} * \beta_{Asset}$$

 β_m : beta for the market $\rightarrow \beta = 1$

The higher the beta, the higher the risk.

4th method: Capital asset pricing model: CAPM

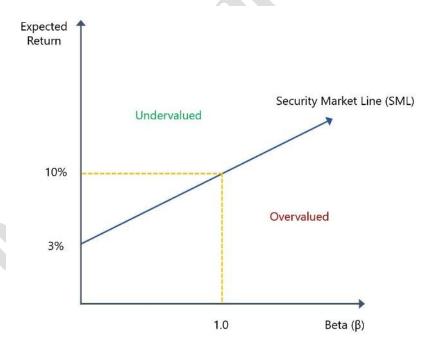
الطريقة الرابعة: نموذج تسعير الأصول الرأسمالية

It is a model that links return and risk for all assets.

يربط هذا النموذج بين العائد المتوقع للأصل ومستوى المخاطرة (الممثلة بمعامل بيتا).

CAPM:
$$\overline{r} = R_f + b (\overline{r}_m - R_f)$$

R_f: risk free rate.


 \overline{r}_m : expected return on the market.

 $(\overline{r}_m - R_f)$: market risk premium "Greater than zero'=> positive

SML: Security Market Line: the graphical depiction of CAPM.

كل أصل يجب أن يرتبط بخط يسمى خط سوق الأوراق المالية.

الفكرة الأساسية: المستثمر لا يقبل المخاطرة الإضافية إلا إذا حصل على عائد إضافي يعوضه عنها.

END OF THE CHAPTER