ENCS4130 Computer Networks Laboratory

EXP#7 Switching and VLANs 1 Router on Stick

Slides By: Eng.Tariq Odeh

Uploaded By: anonymous

Objectives

- Learn how to configure a Cisco IOS Switch using the IOS command-line interface (CLI).
- Learn how to use switch simulator.
- Learn how to split Cisco router interface into sub interfaces.
- Learn how to split Cisco switches into multiple virtual ones and create VLANS.

Introduction

- What is LAN?
 - A LAN (Local Area Network) connects devices within a small area for sharing resources and communication (Single Broadcast Domain).
- What is VLAN?
 - VLANs (Virtual Local Area Networks) create isolated networks within the same physical network for better management and security.
- Router on a Stick:
 - A technique where a single router port handles traffic between multiple VLANs, enabling inter-VLAN communication.

Uploaded By: and

How Does a Switch Work?

- Powering On:
 - A switch begins working as soon as it's plugged into a power source.
- Learning MAC Addresses:
 - When a device sends a frame, the switch extracts the device's MAC address from the frame.
 - The switch links this MAC address to the specific port the device is connected to.
- Building the MAC Address Table:
 - The switch creates a table that maps each MAC address to its corresponding port.
 - This table allows the switch to efficiently forward packets to the correct destination.

Understand the VLANs

- **1.** Decrease broadcast traffic.
- **2.** Separate broadcast domain.
- **3.** Enhance network performance.
- 4. Scalable.
- 5. Security.

-0

IEEE 802.1Q VLAN Protocol

- What is IEEE 802.1Q?
 - Purpose: IEEE 802.1Q is a protocol for carrying VLAN traffic on Ethernet.
 - How it Works: Encapsulates VLAN traffic, allowing multiple logical VLANs to share the same physical LAN infrastructure.
 - Use Case: VLANs are ideal for segregating traffic at the link layer.
- Best Practices for VLANs in IP Networks:
 - Assign separate VLANs for each IP subnet to enhance security and reduce broadcast traffic.
 - Benefits:
 - Prevents devices from joining unintended subnets by simply changing IPs.
- Reduces unnecessary broadcast traffic between subnets. STUDENTS-HUB.com

Uploaded By: ano

IEEE 802.1Q VLAN Tagging

• What is VLAN Tagging?

- Purpose: VLAN tagging allows VLAN frames to be distinguished from standard Ethernet frames by adding a 4-byte VLAN tag to the Ethernet header.
- Placement: This tag is inserted between the source MAC address and the EtherType fields.

• VLAN Tag Structure (4 Bytes):

- TPID (2 bytes): 0x8100, identifies the frame as tagged.
- TCI (2 bytes): Contains:
 - PCP (3 bits): Priority Code Point.
 - CFI (1 bit): Canonical Format Indicator.
 - VID (12 bits): VLAN ID.

o

IEEE 802.1Q VLAN Tagging (Cont.)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Destination address							Source address					VLAN tag			EtherType		Pavload	
													100	T	CI	LuiciType		1 uj louu

Uploaded By: anonym

VLAN Numbering (802.1Q)

- VLAN Identifier (VID):
 - Each VLAN is identified by a 12-bit VID in the range 1 to 4094.
 - Reserved Values: 0 and 4095 are reserved and cannot be used.
- Default VLAN:
 - VID 1 is the default VLAN for unconfigured ports.
 - Best Practice: Move traffic off the default VLAN for better security and segmentation.
- Usage Limits:

STUDENTS-HUB.com

- Although 4094 VIDs are available, many devices limit the number of configurable VLANs.

Uploaded By: ano

Trunk and Access Ports

• Trunk Port (tagged port):

- Purpose: Manages VLAN traffic with tagging.
- Usage: Connects switches and routers, between switches.
- Traffic: Carries 802.1Q-tagged frames.
- Access Port (untagged port):
 - Function: Connects end devices.
 - Traffic: Sends untagged frames.
- Hybrid Mode:

STUDENTS-HUB.com

- Combines access and trunk functions.
- Caution: Risk of VLAN hopping; not recommended.

Uploaded By: anonymous

Creating a VLAN & Switch Port Initialization

- Creating a VLAN:
 - Switch(config)# VLAN <VLAN-NUMBER>
 - Switch# show VLAN
- Switch Port as Trunk:
 - Switch(config-if)# switchport mode trunk
 - (Other end automatically switches to trunk mode)
- Switch Port as Access:
 - Switch(config-if)# switchport access VLAN <VLAN-NUMBER>
 - Assigning a Range of Interfaces:

- Switch(config)# interface range <TYPE> <SLOT>/<START-PORT> - <END-PORT> 12 Uploaded By: anon Uploaded By: anon

Sub-interfaces on Routers

• What is a Sub-interface?

- A virtual interface on a router's main interface.
- Has its own IP address and encapsulation for tagged traffic.
- Initializing a Sub-interface:
 - Router(config)# interface <TYPE> <\$LOT>/<PORT>.<\$UB-INTERFACE-NUMBER>
- Setting IP Address for Sub-interface:
 - Router(config-subif)# encapsulation dot1Q <VLAN-ID>
 - Router(config-subif)# ip address <IP-ADDRESS> <SUBNET-MASK>

Procedure

STUDENTS-HUB.com

σ

b

-0

Topology

Steps of Configurations

1. Build the topology.

2. Add an extra interface physically.

Steps of Configurations (Cont.)

3. Configuring Routers Sub Interfaces.

- Turn on the interface
- Router(config)# interface Fa0/0.10
- Router(config-subif)# encapsulation dot1Q 10
- Router(config-subif)# ip address 192.X.10.1 255.255.255.0

Steps of Configurations (Cont.)

4. Assign the IPs: To Routers & PCs.

5. Configuring OSPF Routing.

- Router(config)# router ospf 1
- Router(config-router)# network 192.X.10.0 0.0.255 area 0
- **6.** Creating a VLAN.
 - Switch(config)# VLAN 10
 - Switch(config-vlan)# exit

Steps of Configurations (Cont.)

7. Configuring Switch Access.

- Switch(config)# interface Fa2/1
- Switch(config-if)# switchport access VLAN 10
- **8.** Configuring Switch Trunk.
 - Switch(config)# interface Fa1/1
 - Switch(config-if)# switchport mode trunk

Saving Configurations

- Don't forget to save the configurations on your router and switch.
 - → Router# write
 - → Switch# write

ENCS4130 - Computer Networks Laboratory

0

Video explaining the experiment

--Soon--

o

References

• Manual for ENCS4130 Computer Networks Laboratory.

