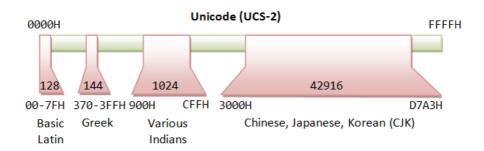


Data Representation

Computer Science Department

Data Representation

❖Computer understand two things: on and off .


- ❖Data represented in binary form.
- ♦Bit is the basic unit for storing data 0→off ,1→on .
- **♦ Byte** is a group of 8 bits. That is, each byte has 256(28) possible values.
- ❖Two bytes form a word

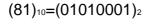
Text: ASCII Characters

 ASCII: Maps 128 characters to 7-bit code

	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
1	0	00	Null	32	20	Space	64	40	0	96	60	*
	1	01	Start of heading	33	21	į.	65	41	A	97	61	a
	2	02	Start of text	34	22	"	66	42	В	98	62	b
	3	03	End of text	35	23	#	67	43	С	99	63	c
	4	04	End of transmit	36	24	\$	68	44	D	100	64	d
	5	05	Enquiry	37	25	*	69	45	E	101	65	e
	6	06	Acknowledge	38	26	ھ	70	46	F	102	66	£
	7	07	Audible bell	39	27	1	71	47	G	103	67	g
	8	08	Backspace	40	28	(72	48	H	104	68	h
	9	09	Horizontal tab	41	29)	73	49	I	105	69	i
	10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
	11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
	12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
	13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
	14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
	15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
	16	10	Data link escape	48	30	0	80	50	P	112	70	p
	17	11	Device control 1	49	31	1	81	51	Q	113	71	q
	18	12	Device control 2	50	32	2	82	52	R	114	72	r
	19	13	Device control 3	51	33	3	83	53	ສ	115	73	s
	20	14	Device control 4	52	34	4	84	54	Т	116	74	t
	21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
	22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
	23	17	End trans, block	55	37	7	87	57	W	119	77	w
	24	18	Cancel	56	38	8	88	58	X	120	78	×
	25	19	End of medium	57	39	9	89	59	Y	121	79	У
	26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
	27	1B	Escape	59	3B	;	91	5B	[123	7B	{
	28	1C	File separator	60	3 C	<	92	5C	١	124	7C	I
	29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
	30	1E	Record separator	62	3 E	>	94	5E	٨	126	7E	~
	31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

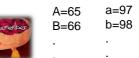
UCS-2 (Universal Character Set - 2 Byte)

Interesting Properties of ASCII Code

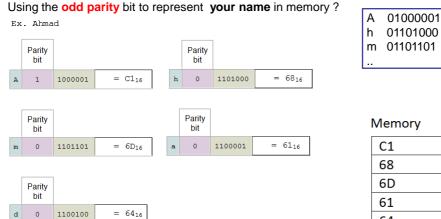

- What is relationship between a decimal digit ('0', '1', ...) and its ASCII code?
- What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough? (http://www.unicode.org/)

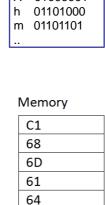
Parity bit

- · Used for error detection
- Two types: 1. Odd parity (number of 1's are odd)
 - 2. Even parity (number of 1's are even)


Characters Representation

Using the even parity bit to represent the character Q (Q = 81 in ASCII) in memory (Hexadecimal)?





Note: ASCII for American Standard Code for Information Interchange

Characters Representation

Integers Representation

Represent the following integer in memory using 2 byte?

92 ~ °V 92 = 1011100 Answer

0000 0000 01011100

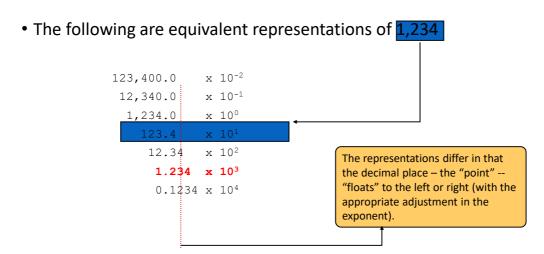
0 0 5 C

Memory

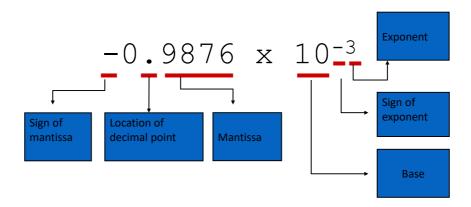
5C
00

Integers Representation

Represent the following integer in memory using 2 byte?

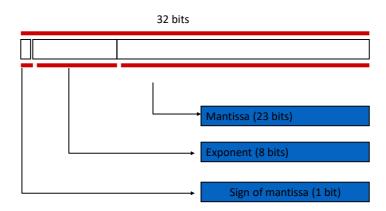

Byte Order - Big and Little Endian

- Endian refers to the order in which bytes are stored.
- Little Endian: If the hardware is built so that the lowest, least significant byte of a multi-byte scalar is stored "first", at the lowest memory address.
- Big Endian: If the hardware is built so that the highest, most significant byte of a multi-byte scalar is stored "first", at the lowest memory address.
- Example: four-byte integer 0x44332211.


Memory Address	Big-Endian byte value	Little-Endian byte value
104	11	44
103	22	33
102	33	22
101	44	11

Floating Point Numbers

Exponential Notation


Parts of a Floating Point Number

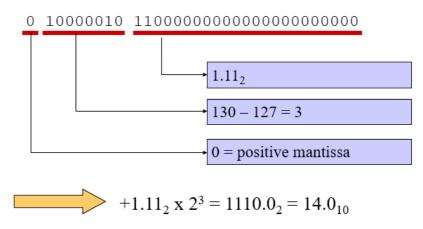
IEEE 754 Standard

- Most common standard for representing floating point numbers
- Single precision: 32 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (23 bits)
- Double precision: 64 bits, consisting of...
 - Sign bit (1 bit)
 - Exponent (11 bits)
 - Mantissa (52 bits)

Single Precision Format

Normalization

- The mantissa is *normalized*
- Has an implied decimal place on left
- Has an implied "1" on left of the decimal place
- E.g.,


 - Represents... 1.101₂ = 1.625₁₀

Excess Notation

- To include +ve and –ve exponents, "excess" notation is used
- Single precision: excess 127
- Double precision: excess 1023
- The value of the exponent stored is larger than the actual exponent
- E.g., excess 127,
 - Exponent → 10000111
 - Represents... 135 127 = 8

Example 1:

• Single precision

Hexadecimal

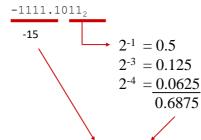
- It is convenient and common to represent the original floating point number in hexadecimal
- The preceding example...

Example 2: Converting from Floating Point

• E.g., What decimal value is represented by the following 32-bit floating point number?

C17B0000₁₆

- Step 1
 - $\bullet\,$ Express in binary and find S, E, and M


• Step 2

```
• Find "real" exponent, n
• n = E - 127
    = 10000010_2 - 127
    = 130 - 127
    = 3
```

- Step 3
 - Put S, M, and *n* together to form binary result
 - (Don't forget the implied "1." on the left of the mantissa.)

$$-1.1111011_2 \times 2^n =$$
 $-1.1111011_2 \times 2^3 =$
 -1111.1011_2

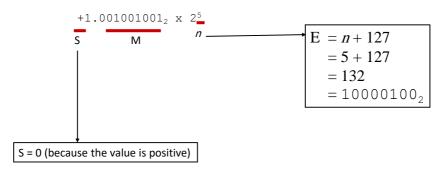
- Step 4
 - · Express result in decimal

Answer: -15.6875

Example 3: Converting to Floating Point

 E.g., Express 36.5625₁₀ as a 32-bit floating point number (in hexadecimal)

- Step 1
 - Express original value in binary


$$36.5625_{10} =$$

- Step 2
 - Normalize

$$100100.1001_2 =$$

$$1.001001001_2 \times 2^5$$

- Step 3
 - Determine S, E, and M

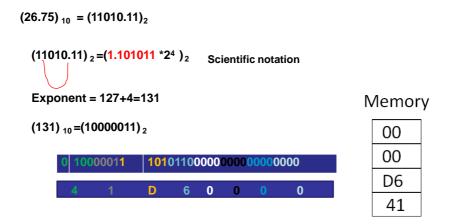
- Step 4
 - Put S, E, and M together to form 32-bit binary result

- Step 5
 - · Express in hexadecimal

Answer: 42124000₁₆

Example4: Floating point in Memory

Use the 32-bit floating representation to represent the following the binary number and show how it will represented in the memory?


 $(26.75)_{10}$

Answer:

Convert the number from decimal to binary

Floating Point Representation

H.W

Lab 1. P8,9

Q.5,6,7,9,11

