
Strings

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

2

Constructing Strings
String newString = new String(stringLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a

shorthand initializer for creating a string:

String message = "Welcome to Java";

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

3

Strings Are Immutable
 A String object is immutable; its contents
cannot be changed.

 Does the following code change the contents of
the string s? String s = "Java";

s = "HTML";

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

4

Interned Strings

 Since strings are immutable and are
frequently used, to improve efficiency and

save memory, the JVM uses a unique
instance for string literals with the same
character sequence.

 Such an instance is called interned.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

5

Example

Display:

s1 == s2 is false

s1 == s3 is true

 A new object is created if you use
the new operator.

 If you use the string initializer, no

new object is created if the

interned object is already created.

String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");
String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));

System.out.println("s1 == s3 is " + (s1 == s3));

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

6

String Comparisons

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

7

String Comparisons

String s1 = new String("Welcome");

String s2 = “Welcome";

if (s1.equals(s2)){

// s1 and s2 have the same contents
}

if (s1 == s2) {

// s1 and s2 have the same reference

}
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

8

String Comparisons
compareTo(Object object)

String s1 = new String("Welcome");

String s2 = “Welcome";

if (s1.compareTo(s2) > 0) {

// s1 is greater than s2
}

else if (s1.compareTo(s2) == 0) {

// s1 and s2 have the same contents
}

else {

// s1 is less than s2
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

9

String Length, Characters,
and Combining Strings

Finding String Length
Finding string length using the length() method:

message = "Welcome to Java";

message.length(); // returns 15
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

10

Retrieving Individual
Characters in a String
 Do not use message[0]

 Use message.charAt(index)

 Index starts from 0

 W e l c o m e t o J a v a

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

message

Indices

message.charAt(0) message.charAt(14) message.length() is 15

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

11

String Concatenation

String s3 = s1.concat(s2);

String s3 = s1 + s2;

s1 + s2 + s3 + s4 + s5

same as

(((s1.concat(s2)).concat(s3)).concat(s4)).concat(s5);

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

12

Extracting Substrings

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

13

Extracting Substrings
 You can extract a single character from a string using
the charAt method.

 You can also extract a substring from a string using the
substring method in the String class.

String s1 = "Welcome to Java";

String s2 = s1.substring(0, 11) + "HTML";

 W e l c o m e t o J a v a

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

message

Indices

message.substring(0, 11) message.substring(11)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

14

Converting, Replacing, and
Splitting Strings

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

15

Examples
"Welcome".toLowerCase()

returns a new string, welcome

"Welcome".toUpperCase()

returns a new string, WELCOME

" Welcome ".trim()

returns a new string, Welcome

"Welcome".replace('e', 'A')

returns a new string, WAlcomA

"Welcome".replaceFirst("e", "AB")

returns a new string, WABlcome

"Welcome".replaceAll("e", "AB")

returns a new string, WABlcomAB

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

16

Splitting a String

String s1 = "Java#HTML#Perl“;

String[] tokens = s1.split("#" , 0);

for (int i = 0; i < tokens.length; i++)

System.out.println(tokens[i]);

Java

HTML

Perl

Displays:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

17

Matching, Replacing and
Splitting by Patterns
 You can match, replace, or split a string by
specifying a pattern.

 This is an extremely useful and powerful feature,

commonly known as regular expression.

"Java".matches("Java")

"Java".equals("Java")

"Java is fun".matches("Java.*")

"Java is cool".matches("Java.*")
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

18

Matching, Replacing and
Splitting by Patterns
 The replaceAll, replaceFirst, and split methods can be used
with a regular expression.

 For example, the following statement returns a new string
that replaces $, +, or # in "a+b$#c" by the string NNN.

String s = "a+b$#c".replaceAll("[$+#]", "NNN");

System.out.println(s);

Here the regular expression [$+#] specifies a pattern that
matches $, +, or #.

So, the output is aNNNbNNNNNNc

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

19

Matching, Replacing and
Splitting by Patterns
 The following statement splits the string into an
array of strings delimited by some punctuation
marks:

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)

System.out.println(tokens[i]);
Java
C
C#
C++

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

20

Finding a Character or a
Substring in a String

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

21

Finding a Character or a
Substring in a String

String s = "Welcome to Java”;

s.indexOf('W') returns 0

s.indexOf('x') returns -1

s.indexOf('o', 5) returns 9

s.indexOf("come") returns 3

s.indexOf("Java", 5) returns 11

s.indexOf("java", 5) returns -1

s.lastIndexOf('a') returns 14
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

22

Convert Character and
Numbers to Strings
 The String class provides several static valueOf
methods for converting a character, an array of
characters, and numeric values to strings.

 These methods have the same name valueOf
with different argument types char, char[],
double, long, int, and float.

 For example, to convert a double value to a
string, use String.valueOf(5.44). The return value
is string consists of characters ‘5’, ‘.’, ‘4’, and ‘4’.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

24

The Character Class

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

25

Examples
Character c = new Character('b');

c.compareTo(new Character('a')) returns 1

c.compareTo(new Character('b')) returns 0

c.compareTo(new Character('c')) returns -1

c.compareTo(new Character('d') returns -2

c.equals(new Character('b')) returns true

c.equals(new Character('d')) returns false

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

26

StringBuilder and StringBuffer
 The StringBuilder/StringBuffer class is an
alternative to the String class.

 In general, a StringBuilder/StringBuffer can be
used wherever a String is used.

 StringBuilder/StringBuffer is more flexible
than String.

 You can add, insert, or append new

contents into a string buffer, whereas the value of
a String object is fixed once the string is created.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

27

StringBuilder Constructors

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

28

Modifying Strings in the Builder

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

29

Examples
StringBuilder sb = new StringBuilder(“Welcome to “);

sb.append("Java");
sb.insert(11, "HTML and ");
sb.delete(8, 11) ;

// changes the builder to Welcome Java
sb.deleteCharAt(8) ;

// changes the builder to Welcome o Java
sb.reverse() ;

// changes the builder to avaJ ot emocleW
sb.replace(11, 15, "HTML") ;

// changes the builder to Welcome to HTML
sb.setCharAt(0, 'w') ;

// sets the builder to welcome to Java

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

30

The toString, capacity, length,
setLength, and charAt Methods

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

