Chapter 3: VECTORS

- 1. We say that the displacement of a particle is a vector quantity. Our best justification for this assertion is:
 - A. displacement can be specified by a magnitude and a direction
 - B. operating with displacements according to the rules for manipulating vectors leads to results in agreement with experiments
 - C. a displacement is obviously not a scalar
 - D. displacement can be specified by three numbers
 - E. displacement is associated with motion ans: B
- 2. The vectors \vec{a} , \vec{b} , and \vec{c} are related by $\vec{c} = \vec{b} \vec{a}$. Which diagram below illustrates this relationship?

E. None of these

ans: D

- 3. A vector of magnitude 3 CANNOT be added to a vector of magnitude 4 so that the magnitude of the resultant is:
 - A. zero
 - B. 1
 - C. 3
 - D. 5
 - E. 7

ans: A

- 4. A vector of magnitude 20 is added to a vector of magnitude 25. The magnitude of this sum might be:
 - A. zero
 - B. 3
 - C. 12
 - D. 47
 - E. 50

ans: C

Chapter 3: VECTORS 27

- 5. A vector \vec{S} of magnitude 6 and another vector \vec{T} have a sum of magnitude 12. The vector \vec{T} :
 - A. must have a magnitude of at least 6 but no more than 18
 - B. may have a magnitude of 20
 - C. cannot have a magnitude greater than 12
 - D. must be perpendicular to \vec{S}
 - E. must be perpendicular to the vector sum ans: A
- 6. The vector $-\vec{A}$ is:
 - A. greater than \vec{A} in magnitude
 - B. less than \vec{A} in magnitude
 - C. in the same direction as \vec{A}
 - D. in the direction opposite to \vec{A}
 - E. perpendicular to \vec{A}

ans: D

7. The vector \vec{V}_3 in the diagram is equal to:

- A. $\vec{V}_1 \vec{V}_2$ B. $\vec{V}_1 + \vec{V}_2$ C. $\vec{V}_2 \vec{V}_1$ D. $\vec{V}_1 \cos \theta$
- E. $\vec{V}_1/(\cos\theta)$ ans: C
- 8. If $|\vec{A} + \vec{B}|^2 = A^2 + B^2$, then:
 - A. \vec{A} and \vec{B} must be parallel and in the same direction
 - B. \vec{A} and \vec{B} must be parallel and in opposite directions
 - C. either \vec{A} or \vec{B} must be zero
 - D. the angle between \vec{A} and \vec{B} must be 60°
 - E. none of the above is true

ans: E

Chapter 3: VECTORS $\mathbf{28}$

STUDENTS-HUB.com

- 9. If $|\vec{A} + \vec{B}| = A + B$ and neither \vec{A} nor \vec{B} vanish, then:
 - A. \vec{A} and \vec{B} are parallel and in the same direction
 - B. \vec{A} and \vec{B} are parallel and in opposite directions
 - C. the angle between \vec{A} and \vec{B} is 45°
 - D. the angle between \vec{A} and \vec{B} is 60°
 - E. \vec{A} is perpendicular to \vec{B} ans: A
- 10. If $|\vec{A} \vec{B}| = A + B$ and neither \vec{A} nor \vec{B} vanish, then:
 - A. \vec{A} and \vec{B} are parallel and in the same direction
 - B. \vec{A} and \vec{B} are parallel and in opposite directions
 - C. the angle between \vec{A} and \vec{B} is 45°
 - D. the angle between \vec{A} and \vec{B} is 60°
 - E. \vec{A} is perpendicular to \vec{B}

ans: B

11. Four vectors $(\vec{A}, \vec{B}, \vec{C}, \vec{D})$ all have the same magnitude. The angle θ between adjacent vectors is 45° as shown. The correct vector equation is:

A.
$$\vec{A} - \vec{B} - \vec{C} + \vec{D} = 0$$

B. $\vec{B} + \vec{D} - \sqrt{2}\vec{C} = 0$
C. $\vec{A} + \vec{B} = \vec{B} + \vec{D}$
D. $\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$
E. $(\vec{A} + \vec{C})/\sqrt{2} = -\vec{B}$
ans: B

12. Vectors \vec{A} and \vec{B} lie in the xy plane. We can deduce that $\vec{A} = \vec{B}$ if:

A.
$$A_x^2 + A_y^2 = B_x^2 + B_y^2$$

B. $A_x + A_y = B_x + B_y$
C. $A_x = B_x$ and $A_y = B_y$
D. $A_y/A_x = B_y/B_x$
E. $A_x = A_y$ and $B_x = B_y$
ans: C

Chapter 3: VECTORS 29

STUDENTS-HUB.com

- 13. A vector has a magnitude of 12. When its tail is at the origin it lies between the positive x axis and the negative y axis and makes an angle of 30° with the x axis. Its y component is:
 - A. $6/\sqrt{3}$
 - B. $-6\sqrt{3}$
 - C. 6
 - D. -6
 - E. 12
 - ans: D
- 14. If the x component of a vector \vec{A} , in the xy plane, is half as large as the magnitude of the vector, the tangent of the angle between the vector and the x axis is:
 - A. $\sqrt{3}$
 - B. 1/2
 - C. $\sqrt{3}/2$
 - D. 3/2
 - E. 3
 - ans: D

15. If $\vec{A} = (6 \text{ m})\hat{i} - (8 \text{ m})\hat{j}$ then $4\vec{A}$ has magnitude:

- A. 10 m
- B. 20 m
- C. 30 m
- $D. \quad 40\,\mathrm{m}$
- E. 50 m
 - ans: D
- 16. A vector has a component of 10 m in the +x direction, a component of 10 m in the +y direction, and a component of 5 m in the +z direction. The magnitude of this vector is:
 - A. zero
 - B. 15 m
 - C. 20 m
 - $D. \quad 25\,\mathrm{m}$
 - E. 225 m
 - ans: B

17. Let $\vec{V} = (2.00 \text{ m})\hat{i} + (6.00 \text{ m})\hat{j} - (3.00 \text{ m})\hat{k}$. The magnitude of \vec{V} is:

- A. 5.00 m
- B. 5.57 m
- C. 7.00 m
- D. 7.42 m
- E. 8.54 m
 - ans: C

30 Chapter 3: VECTORS

STUDENTS-HUB.com

- 18. A vector in the xy plane has a magnitude of 25 m and an x component of 12 m. The angle it makes with the positive x axis is:
 - A. 26°
 - B. 29°
 - C. 61°
 - D. 64°
 - E. 241°
 - ans: C

19. The angle between $\vec{A} = (25 \text{ m})\hat{i} + (45 \text{ m})\hat{j}$ and the positive x axis is:

- A. 29°
- B. 61°
- C. 151°
- D. 209°
- E. 241°
 - ans: B

20. The angle between $\vec{A} = (-25 \text{ m})\hat{i} + (45 \text{ m})\hat{j}$ and the positive x axis is:

- A. 29°
- B. 61°
- C. 119°
- D. 151°
- E. 209°
 - ans: C

21. Let $\vec{A} = (2 \text{ m}) \hat{i} + (6 \text{ m}) \hat{j} - (3 \text{ m}) \hat{k}$ and $\vec{B} = (4 \text{ m}) \hat{i} + (2 \text{ m}) \hat{j} + (1 \text{ m}) \hat{k}$. The vector sum $\vec{S} = \vec{A} + \vec{B}$ is:

- A. $(6 \text{ m})\hat{i} + (8 \text{ m})\hat{j} (2 \text{ m})\hat{k}$
- B. $(-2m)\hat{i} + (4m)\hat{j} (4m)\hat{k}$
- $C. \ \ (2\,m)\,\hat{i} (4\,m)\,\hat{j} + (4\,m)\,\hat{k}$
- D. $(8\,\mathrm{m})\,\hat{\mathrm{i}} + (12\,\mathrm{m})\,\hat{\mathrm{j}} (3\,\mathrm{m})\,\hat{\mathrm{k}}$
- E. none of these ans: A
- 22. Let $\vec{A} = (2 \text{ m})\hat{i} + (6 \text{ m})\hat{j} (3 \text{ m})\hat{k}$ and $\vec{B} = (4 \text{ m})\hat{i} + (2 \text{ m}\hat{j} + (1 \text{ m})\hat{k}$. The vector difference $\vec{D} = \vec{A} \vec{B}$ is:
 - A. $(6 \text{ m})\hat{i} + (8 \text{ m})\hat{j} (2 \text{ m})\hat{k}$
 - B. $(-2\,m)\,\hat{i} + (4\,m)\,\hat{j} (4\,m)\,\hat{k}$
 - C. $(2m)\hat{i} (4m)\hat{j} + (4m)\hat{k}$
 - D. $(8 \text{ m})\hat{i} + (12 \text{ m})\hat{j} (3 \text{ m})\hat{k}$
 - E. none of these ans: B

Chapter 3: VECTORS 31

STUDENTS-HUB.com

23. If
$$\vec{A} = (2 \text{ m})\hat{i} - (3 \text{ m})\hat{j}$$
 and $\vec{B} = (1 \text{ m})\hat{i} - (2 \text{ m})\hat{j}$, then $\vec{A} - 2\vec{B} =$
A. $(1 \text{ m})\hat{j}$
B. $(-1 \text{ m})\hat{j}$
C. $(4 \text{ m})\hat{i} - (7 \text{ m})\hat{j}$
D. $(4 \text{ m})\hat{i} + (1 \text{ m})\hat{j}$
E. $(-4 \text{ m})\hat{i} + (7 \text{ m})\hat{j}$
ans: A

24. In the diagram, \vec{A} has magnitude 12 m and \vec{B} has magnitude 8 m. The x component of $\vec{A} + \vec{B}$ is about:

- A. $5.5 \,\mathrm{m}$
- B. 7.6 m
- C. 12 m
- D. 14 m
- E. 15 m
 - ans: C
- 25. A certain vector in the xy plane has an x component of 4 m and a y component of 10 m. It is then rotated in the xy plane so its x component is doubled. Its new y component is about:
 - A. 20 m
 - B. 7.2 m
 - C. 5.0 m
 - D. 4.5 m
 - E. 2.2 m
 - ans: B
- 26. Vectors \vec{A} and \vec{B} each have magnitude L. When drawn with their tails at the same point, the angle between them is 30°. The value of $\vec{A} \cdot \vec{B}$ is:
 - A. zero
 - B. L^2
 - C. $\sqrt{3}L^2/2$
 - D. $2L^2$
 - E. none of these

ans: C

32 Chapter 3: VECTORS

STUDENTS-HUB.com

- 27. Let $\vec{A} = (2 \text{ m})\hat{i} + (6 \text{ m})\hat{j} (3 \text{ m})\hat{k}$ and $\vec{B} = (4 \text{ m})\hat{i} + (2 \text{ m})\hat{j} + (1 \text{ m})\hat{k}$. Then $\vec{A} \cdot \vec{B} = (4 \text{ m})\hat{i} + (2 \text{ m})\hat{j} + (1 \text{ m})\hat{k}$.
 - A. $(8 \text{ m})\hat{i} + (12 \text{ m})\hat{j} (3 \text{ m})\hat{k}$
 - B. $(12 \text{ m})\hat{i} (14 \text{ m})\hat{j} (20 \text{ m})\hat{k}$
 - C. 23 m^2
 - $D. \quad 17\,\mathrm{m}^2$
 - E. none of these
 - ans: D
- 28. Two vectors have magnitudes of 10 m and 15 m. The angle between them when they are drawn with their tails at the same point is 65° . The component of the longer vector along the line of the shorter is:
 - A. 0
 - B. 4.2 m
 - C. 6.3 m
 - D. 9.1 m
 - E. 14 m
 - ans: C
- 29. Let $\vec{S} = (1 \text{ m})\hat{i} + (2 \text{ m})\hat{j} + (2 \text{ m})\hat{k}$ and $\vec{T} = (3 \text{ m})\hat{i} + (4 \text{ m})\hat{k}$. The angle between these two vectors is given by:
 - A. $\cos^{-1}(14/15)$
 - B. $\cos^{-1}(11/225)$
 - C. $\cos^{-1}(104/225)$
 - D. $\cos^{-1}(11/15)$
 - E. cannot be found since \vec{S} and \vec{T} do not lie in the same plane ans: D
- 30. Two vectors lie with their tails at the same point. When the angle between them is increased by 20° their scalar product has the same magnitude but changes from positive to negative. The original angle between them was:
 - A. 0
 - B. 60°
 - C. 70°
 - D. 80°
 - E. 90°
 - ans: D
- 31. If the magnitude of the sum of two vectors is less than the magnitude of either vector, then:
 - A. the scalar product of the vectors must be negative
 - B. the scalar product of the vectors must be positive
 - C. the vectors must be parallel and in opposite directions
 - D. the vectors must be parallel and in the same direction
 - E. none of the above

ans: A

STUDENTS-HUB.com

- 32. If the magnitude of the sum of two vectors is greater than the magnitude of either vector, then:
 - A. the scalar product of the vectors must be negative
 - B. the scalar product of the vectors must be positive
 - C. the vectors must be parallel and in opposite directions
 - D. the vectors must be parallel and in the same direction
 - E. none of the above
 - ans: E
- 33. Vectors \vec{A} and \vec{B} each have magnitude L. When drawn with their tails at the same point, the angle between them is 60°. The magnitude of the vector product $\vec{A} \times \vec{B}$ is:

 - A. $L^2/2$ B. L^2
 - C. $\sqrt{3}L^2/2$ D. $2L^2$

 - E. none of these
 - ans: C
- 34. Two vectors lie with their tails at the same point. When the angle between them is increased by 20° the magnitude of their vector product doubles. The original angle between them was about:
 - A. 0
 - B. 18°
 - C. 25°
 - D. 45°
 - E. 90°
 - ans: B
- 35. Two vectors have magnitudes of $10 \,\mathrm{m}$ and $15 \,\mathrm{m}$. The angle between them when they are drawn with their tails at the same point is 65° . The component of the longer vector along the line perpendicular to the shorter vector, in the plane of the vectors, is:
 - A. 0
 - B. 4.2 m
 - C. 6.3 m
 - D. 9.1 m
 - E. 14 m
 - ans: E
- 36. The two vectors $(3 \text{ m})\hat{i} (2 \text{ m})\hat{j}$ and $(2 \text{ m})\hat{i} + (3 \text{ m})\hat{j} (2 \text{ m})\hat{k}$ define a plane. It is the plane of the triangle with both tails at one vertex and each head at one of the other vertices. Which of the following vectors is perpendicular to the plane?
 - A. $(4 \text{ m})\hat{i} + (6 \text{ m})\hat{j} + (13 \text{ m})\hat{k}$
 - B. $(-4 \text{ m})\hat{i} + (6 \text{ m})\hat{j} + (13 \text{ m})\hat{k}$
 - C. $(4 \text{ m})\hat{i} (6 \text{ m})\hat{j} + (13 \text{ m})\hat{k}$
 - D. $(4 \text{ m})\hat{i} + (6 \text{ m}\hat{j} (13 \text{ m})\hat{k})$
 - E. $(4 \text{ m})\hat{i} + (6 \text{ m})\hat{j}$ ans: A
- $\mathbf{34}$ Chapter 3: VECTORS

- 37. Let $\vec{R} = \vec{S} \times \vec{T}$ and $\theta \neq 90^{\circ}$, where θ is the angle between \vec{S} and \vec{T} when they are drawn with their tails at the same point. Which of the following is NOT true?
 - A. $|\vec{R}| = |\vec{S}| |\vec{T}| \sin \theta$ B. $-\vec{R} = \vec{T} \times \vec{S}$ C. $\vec{R} \cdot \vec{S} = 0$ D. $\vec{R} \cdot \vec{T} = 0$ E. $\vec{S} \cdot \vec{T} = 0$ ans: E
- 38. The value of $\hat{i} \cdot (\hat{j} \times \hat{k})$ is:
 - A. zero
 - B. +1
 - C. -1
 - D. 3
 - E. $\sqrt{3}$
 - ans: B
- 39. The value of $\hat{\mathbf{k}} \cdot (\hat{\mathbf{k}} \times \hat{\mathbf{i}})$ is:
 - A. zero
 - B. +1
 - C. -1
 - D. 3
 - E. $\sqrt{3}$

ans: A

Chapter 3: VECTORS 35

STUDENTS-HUB.com