
Dynamic Branch Prediction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Control Dependences and Branch Prediction
❖ Modern processors have deep pipelines

 Pipeline depth for i7 is 14 stages

 Because of the combination of deep pipelining and multiple issues per clock,
the i7 has many instructions in-flight at once (up to 256, and typically at least
30).

 Branch penalty limits performance of deep pipelines.

❖ Want to execute instructions beyond a branch even before that branch
is resolved → use speculative execution

❖ What to predict?

 Answer: The address of the next instruction

 If the fetched instruction is a non-control-flow instruction:

❖ Next Fetch PC is the address of the next-sequential instruction

❖ Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

▪ How do we determine the next Fetch PC?

▪ In fact, how do we even know whether or not the fetched instruction is a
control-flow instruction?

2
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

How to Handle Control Dependences

❖ Critical to keep the pipeline full with correct sequence of dynamic

instructions.

❖ Potential solutions if the instruction is a control-flow instruction:

 Stall the pipeline until we know the next fetch address

 Always Guess Next PC = PC + 4

 Reducing the Branch Misprediction Penalty

 Employ delayed branching (branch delay slot)

 Eliminate control-flow instructions (predicated execution)

 Guess the next fetch address (branch prediction)

 Do something else (fine-grained multithreading)

 Fetch from both possible paths (if you know the addresses of both

possible paths) (multipath execution)

4Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Stall Fetch Until Next PC is Known: Good Idea?

5

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

This is the case with non-control-flow and unconditional br instructions
Stall for 50% of the cycles!

Much worse stalling for conditional branch instructions!
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Always Guess NextPC = PC + 4

❖ Always predict the next sequential instruction is the next

instruction to be executed

❖ This is a form of next fetch address prediction (and branch

prediction)

❖ How can you make this more effective?

❖ Idea: Maximize the chances that the next sequential instruction is

the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely next instruction”

is on the not-taken path of a branch

▪ Profile guided code positioning

 Hardware: ??? (how can you do this in hardware…)

▪ Cache traces of executed instructions → Trace cache

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

Reducing the Branch Misprediction Penalty

❖ Resolve branch condition and target address early

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Define branch to take place after the next instruction

❖MIPS defines one delay slot

 Reduces branch penalty

❖ Compiler fills the branch delay slot

 By selecting an independent instruction

from before the branch

 Must be okay to execute instruction in the

delay slot whether branch is taken or not

❖ If no instruction is found

 Compiler fills delay slot with a NO-OP

Delayed Branch

label:

. . .

add $t2,$t3,$t4

beq $s1,$s0,label

Delay Slot

label:

. . .

beq $s1,$s0,label

add $t2,$t3,$t4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Branch Problem

❖ Control flow instructions (branches) are frequent

 15-25% of all instructions

❖ Problem: Next fetch address after a control-flow instruction is not

determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

❖ If we are fetching W instructions per cycle (i.e., if the pipeline is W

wide)

 A branch misprediction leads to N x W wasted instruction slots

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Prediction (A Bit More Enhanced)
❖ Idea: Predict the next fetch address (to be used in the next cycle) → no

wasted cycle(s) on correct prediction

❖ Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 Direction (1-bit)

▪ Single direction for unconditional jumps and calls/returns

▪ Binary for conditional branches

 Target (32-bit or 64-bit addresses)

▪ Some are easy

– One address: uni-directional jumps

– Two: addresses: fall through (not taken) vs. taken

▪ Many: function pointer or indirect jump (e.g. jr r31)

❖ Observation: Target address remains the same for a conditional direct branch

across dynamic instances

 Idea: Store the target address from previous instance and access it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address CacheUploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Prediction Techniques

❖ Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

❖ Run time (Dynamic Branch Prediction)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

Common disadvantage of

compile time methods?

Cannot adapt to dynamic

changes in branch

behavior

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Branch Prediction

❖ Idea: Predict branches based on dynamic information (collected

at run-time)

❖ Advantages

+ Prediction based on history of the execution of branches. It can adapt to

dynamic changes in branch behavior

+ No need for static profiling: input set representativeness problem goes

away

❖ Disadvantages

-- More complex (requires additional hardware)

12Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Prediction is just a hint that is assumed to be correct

❖ If incorrect then fetched instructions are killed

❖ 1-bit prediction scheme is simplest to implement

 1 bit per branch instruction

 Record last outcome of a branch instruction (Taken/Not taken)

 Use last outcome to predict future behavior of a branch

1-bit Dynamic Branch Prediction Scheme

Predict

Not Taken

Taken

Predict

Taken

Not

Taken

Not Taken

Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1-Bit Predictor: Shortcoming

❖ Inner loop branch mispredicted twice!

 Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of inner loop

next time around

outer: …
…

inner: …
…
bne …, …, inner
…
bne …, …, outer

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1-Bit Predictor: Example

For(i=0; a<4; i++) {

if(a%2==0)
{.....}

Else
{.....}

a++;

}

i 0 1 2 3 4

For Br Pred NT T NT T NT

Act T T T T NT

    

If Br Pred T T T T

Act T NT T NT

   

Assume initially branch is Not Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1-Bit Predictor: Example

For(i=0; a<4; i++) {

if(a%2==0)
{.....}

Else
{.....}

a++;

}

i 0 1 2 3 4

For Br Pred T T NT T NT

Act T T T T NT

    

If Br Pred T T T T

Act T NT T NT

   

Assume initially branch is Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Branch Prediction - One-bit Branch
History Table (BHT)

❖ Predict branch based on past history of branch

❖ One-bit Branch History Table (BHT)

PC

.

.

.

.

.

2N entries

Prediction

N bits

FSM

Update

Logic

Table update

Actual outcome

BHT: a cache of recent branches

• Each entry stores last direction that the

indexed branch went (1 bit to encode

taken/not-taken)

• No need to decode to know if it is a branch,

just look at instr. address

Hash

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Dynamic Branch Prediction - One-bit Branch
History Table (BHT)

❖ One-bit Branch History Table (BHT)

PC

.

.

.

.

.

2N entries

Prediction

N bits

FSM

Update

Logic

Table update

Actual outcome

Aliasing Problem:

❖ Two branches may be hashed to the

same entry

→ branch prediction history is polluted

❖ Solution: make the table bigger, apply

other cache optimization strategies

Hash

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

1-bit Branch History Table (BHT) Example

For(i=0; a<4; i++) {

if(a%2==0)
{.....}

Else
{.....}

a++;

}

i 0 1 2 3 4

For Br Pred T T T T T

Act T T T T NT

    

If Br Pred T T NT T

Act T NT T NT

   

Assume BHT initialized as Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ 1-bit prediction scheme has a performance shortcoming

❖ 2-bit prediction scheme works better and is often used

 4 states: strong and weak predict taken / predict not taken

❖ Implemented as a saturating counter

 Counter is incremented to max=3 when branch outcome is taken

 Counter is decremented to min=0 when branch is not taken

2-bit Prediction Scheme

Not Taken

Taken

Not Taken

Taken
Strong

Predict

Not Taken

Taken

Weak

Predict

Taken

Not Taken

Weak

Predict

Not Taken
Not Taken

Taken
Strong

Predict

Taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ 2-bit scheme change prediction only if we get two

mispredictions

10

11

00

01

. . .

11

11

00

00

T

T NT

NT

T

NT

T

NT

Weakly

Not Taken
Strongly

Not Taken

Strongly

Taken
Weakly

Taken

BHT = 2n

entries
Program Counter

n bitsUpper bits
Branch

Prediction

2-bit Prediction Scheme with BHT

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

2-bit Branch History Table (BHT) Example

For(i=0; a<4; i++)
{

if(a%2==0)
{.....}

Else
{.....}

a++;

}

i 0 1 2 3 4

For Br Pred (10) T (11) T (11) T (11) T (11) T

Act T T T T (10) T

    

If Br Pred (10) T (11) T (10) T (11) T

Act T NT T NT

   

Assume BHT initialized as Weakly Taken (10)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

18%

5%

12%
10%

9%

5%

9% 9%

0%
1%

0%
2%

4%
6%

8%
10%
12%

14%
16%

18%
20%

eq
nt
ot
t

es
pr
es

so gc
c li

sp
ice

do
du

c
sp

ice
fp
pp

p

m
at
rix

30
0

na
sa

7

M
is

p
re

d
ic

ti
o

n
 R

a
te

❖Mispredict because either:

 Wrong guess for that branch

 Got branch history of wrong branch when index the table

❖ 4096 entry table:

Integer
Floating Point

2-bit Prediction Scheme with BHT Accuracy

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

For More Advanced Branch Prediction …

❖ Hypothesis: recent branches are correlated; that is, behavior of

recently executed branches affects prediction of current branch

❖ Two possibilities: current branch depends on

 Local behavior: Last m outcomes of the same branch (local branch

predictor), e.g., a loop of 3 iterations is executed repetitively

→ a history record of the loop branch of the last 6 iterations should be able

to predict the direction of that branch correctly

 Global behavior: Last m most recently executed branches

→ because branches are often correlated!

24
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Local Correlation: Yeh-Patt predictor

❖ It is possible to do quite well considering only information about

the current branch (local information).

❖ We do this by considering, What happened the last time a branch

had the same history that the current branch does now?

 This diagram shows how it operates.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

The Yeh-Patt predictor Example

❖ Let us work out an example,

assuming that two branches

have this history:

A: T N T N T N T N

B: T T T T T T T T

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Global Correlation

❖ Branch direction of multiple branches

 Not independent but correlated to the path taken

❖ Example: path 1-1 of b3 can be known beforehand

27

if (aa==2) // b1

aa = 0;

if (bb==2) // b2

bb = 0;

if (aa!=bb) {// b3

……

}

b1

b2 b2

b3 b3 b3

1 (T)

1 1

0 (NT)

0

b3

0

Path: A:1-1 B:1-0 C:0-1 D:0-0
aa=0

bb=0

aa=0

bb2

aa2

bb=0

aa2

bb2

How to capture global behavior?

Idea: record m most recently executed branches

as taken or not taken, and use that pattern to

select the proper n-bit branch history table

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Global Correlation: Gshare Predictor

❖ The Gshare architecture uses an m-bit global history register to keep track

of the direction of the last m executed branches.

❖ To simplify the implementation, this global history register is xored with the

(PC>>2) to create an index into a 2m-entry pattern history table of n-bit

counters.

❖ The result of this index is the prediction for the current branch.

❖ The predictor then compares this prediction with the real branch direction to

determine if the branch was correctly predicted or not, and updates the

prediction statistics.

❖ The predictor then updates the n-bit counter used to perform the prediction.

❖ The counter is

 Incremented if the branch was taken, and

 Decremented if the branch was not taken.

❖ Finally, the branch outcome is shifted into the most significant bit of the

global history register:
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Gshare Predictor Architecture

❖ + Better utilization of PHT

❖ -- Increases access latency

29

The Gshare predictor works remarkably
well for a simple predictor, and is often
used as the baseline for comparison
with more sophisticated predictors.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Two-Level Global Adaptive Branch Predictors (GAp)

❖ Improve branch prediction by looking not only at the history of the branch in question but
also at that of other branches using two levels of branch history.

❖ Uses two levels of branch history:

 First level (global):

▪ Record the global pattern or history of the m most recently executed branches as
taken or not taken. Usually an m-bit shift register.

 Second level (per branch address):

▪ 2m prediction tables, each table entry has n bit saturating counter.

▪ The branch history pattern from first level is used to select the proper branch
prediction table in the second level.

▪ The low N bits of the branch address are used to select the correct prediction entry
(predictor)within a the selected table, thus each of the 2m tables has 2N entries and
each entry is 2 bits counter.

▪ Total number of bits needed for second level = 2m x n x 2N bits

❖ In general, the notation: GAp (m,n) predictor means:

 Record last m branches to select between 2m history tables.

 Each second level table uses n-bit counters (each table entry has n bits).

❖ Basic two-bit single-level Bimodal BHT is then a (0,2) predictor.

m-bit shift register
Last

Branch

0 =Not taken

1 = Taken
Branch History Register (BHR)

Pattern History Tables (PHTs)

1

2

BHR

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

GAp (2,2) Predictor
– Behavior of recent

branches selects

between four predictions

of next branch, updating

just that prediction

Branch address

2-bits per branch predictor

Prediction

2-bit global branch history

4

Two-Level Dynamic GAp Architecture Example

Branch History Register (BHR)

(Shift left when update)

FSM Update

Logic

Current state PHT update

Actual branch outcome

➢ Two different branches

may have the same global

branch history but behave

differently

➢ Have a per-branch history

register still capture the

behavior of the same

branch

GAp

Global

(1st level) Adaptive

per address

(2nd level)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

An Example: GAp(1,1)

if (d == 0) d = 1;

if (d == 1) { ... }

bnez R1, L1 ; b1

addi R1, R0, #1

L1: subi R3, R1, #1

bnez R3, L2 ; b2

...

L2: ...

Initial value

of d

d==0? b1 Value of d

before b2

d==1? b2

0 Yes NT 1 Yes NT

1 No T 1 Yes NT

2 No T 2 No T

=> if b1 is NT, then b2 is NT

d=? b1

prediction

b1

action

New b1

prediction

b2 prediction b2

action

new b2

prediction

2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

Behavior of one-bit Standard Predictor initialized to

not taken; d alternates between 0 and 2.

=> All branches are mispredicted Uploaded By: Jibreel BornatSTUDENTS-HUB.com

An Example: GAp(1,1)

❖ Introduce one bit of correlation

 Each branch has two separate prediction

bits: one prediction assuming the last

branch executed was not taken, and

another prediction assuming it was taken

d=? b1

prediction

b1

action

New b1

prediction

b2 prediction b2

action

new b2

prediction

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

=> Only misprediction is on the first iteration

Prediction

bits

Prediction if

last branch

NT

Prediction if

last branch T

NT/NT NT NT

NT/T NT T

T/NT T NT

T/T T T

Behavior of one-bit predictor with one bit of correlation initialized

to NT/NT; Assume last branch NT

? NT

b1 T

b2 T

b1 NT

b2 NT

b1 T

b2 T

b1 NT

b2 NT

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

An Example: GAp(2,2)

❖ All entries in the matrix are initialized to 01. In the tables next

slide, matrix entries are italicized if they were updated due to the

execution of the previous branch. The entry with the yellow

background is the entry used for the prediction.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

An Example: GAp(2,2)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

0%

F
re

q
u
en

cy
 o

f
 M

is
p
re

d
ic

ti
o
n
s

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%
2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

4096 Entries 2-bit BHT

Unlimited Entries 2-bit BHT

1024 Entries (2,2) BHT

n
as

a7

m
at

ri
x

3
0
0

d
o
d
u
cd

sp
ic

e

fp
p

p
p

g
cc

ex
p
re

ss
o

eq
n
to

tt li

to
m

ca
tv

Accuracy of Different Schemes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Hybrid Branch Predictors

❖ Idea: Use more than one type of predictor (i.e., multiple

algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

❖ Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the slower-

warmup predictor warms up)

❖ Disadvantages:

-- Need “meta-predictor” or “selector” to decide which predictor to use

-- Longer access latency

37Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Hybrid Branch Predictor – Basic Schema

❖ Some branches correlated to global history, some correlated to

local history

 Use more than one type of predictors and select “best”

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Example: Tournament Predictor

10

11

00

01

.

.

.

GBHR = 12 bits

Global Branch

History Register

Updated on each

branch outcome

4K × 2-bit

entries

Global Predictor

12

1K × 10-bit

entries

1K × 3-bit

entries

Program Counter 1011100110

0000110000

1010101010

0100000111

.

.

.

10 bits

2-Level Local

Predictor

10

101

000

100

011

.

.

.

10

10

11

00

01

.

.

.

4K × 2-bit

entries

12

Program Counter

12 bits

Tournament

Predictor Final Prediction

Select Predictor

Global

Prediction

Local

Prediction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Comparing Accuracy of Different Predictors

The misprediction rate for three different predictors on SPEC89 versus the size of the
predictor in kilobits.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Performance of Core i7 920 and core i7 6700

The misprediction rate for the integer SPECCPU2006 benchmarks on the Intel Core i7 920 and 6700.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Zero-Delayed Branching

❖ How to achieve zero delay for a jump or a taken branch?

 Jump or branch target address is computed in the ID stage

 Next instruction has already been fetched in the IF stage

Solution

❖ Introduce a Branch Target Buffer (BTB) in the IF stage

 Store the target address of recent branch and jump instructions

❖ Use the lower bits of the PC to index the BTB

 Each BTB entry stores Branch/Jump address & Target Address

 Check the PC to see if the instruction being fetched is a branch

 Update the PC using the target address stored in the BTB

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Target Buffer (IF Stage)

❖ The branch target buffer is implemented as a small cache

 Stores the target address of recent branches and jumps

❖We must also have prediction bits

 To predict whether branches are taken or not taken

 The prediction bits are determined by the hardware at runtime

mux

PC

Branch Target & Prediction Buffer

Addresses of

Recent Branches

Target

Addresses

low-order bits

used as index

Predict

Bits
Inc

=
predict_taken

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Target Buffer – cont’d

❖ Each Branch Target Buffer (BTB) entry stores:

 Address of a recent jump or branch instruction

 Target address of jump or branch

 Prediction bits for a conditional branch (Taken or Not Taken)

 To predict jump/branch target address and branch outcome before

instruction is decoded and branch outcome is computed

❖ Use the lower bits of the PC to index the BTB

 Check if the PC matches an entry in the BTB (jump or branch)

 If there is a match and the branch is predicted to be Taken then Update

the PC using the target address stored in the BTB

❖ The BTB entries are updated by the hardware at runtime

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Correct

Prediction

No stall

cycles

YesNo

Dynamic Branch Prediction with BTB

Use PC to address Instruction memory

and Branch Target Buffer

Found

BTB entry with predict

taken?

Increment PC PC = target address

Enter branch & target address,

and set prediction in BTB entry.

Kill fetched instructions.

Restart PC at target address

Mispredicted branch

Kill fetched instructions

Update prediction bits

Restart PC after branch

Normal

Execution

YesNo

Taken

branch?

No Yes

IF
ID

E
X

Taken

branch?

Jump?

No

Enter jump & target address in BTB

Kill fetched instruction.

Restart PC at jump target address

Yes

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

48

target address

Gshare Predictor with BTB

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Tournament Predictor with BTB

❖ Bimodal/Local (2-bit)

Branch Predictor

+ Good for biased

branches

+ No interference

- Cannot discern

patterns

❖ Global 2-level Branch

Predictor

+ Leverages

correlated branches

+ Identifies patterns

- Cannot always take

advantage of biased

branches -

Interference

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Branch Target Cache

❖ Similar to BTB, but we also want to get the target instruction!

– Prediction returns not just the target address, but also the

instruction stored there

– Allows zero-cycle unconditional branches (branch-folding)

• Send target-instruction to ID rather than branch

• Branch is not even sent into pipe

▪ For conditional branches? Read
Branch Target

Cache

Target

instructions

stored here

Target instruction

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

http://tab.computer.org/tcca/NEWS/dec97/kavi.pdf

How about Subroutine Returns?

❖ Different call sites make return address hard to predict

 printf() may be called by many callers

 Target of “return” instruction in printf() is a moving target

❖ But return address is actually easy to predict

 It is the address after the last call instruction that have not returned from

yet

 Can use a Return Address Stack (RAS)

❖ RAS:

 Call will push return address on the stack

 Return uses the prediction of top-of-stack

51
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Return Address Stack

+

4

Call PC

Push

Return

Address

BTB

Return PC

BTB

Return?

• May not know if it is a return instruction prior to decoding

– Rely on BTB for speculation

– Fix once recognize Return

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

