
OOP:

Objects and Classes

STUDENTS-HUB.com

https://students-hub.com

 Foundation of Object-Oriented Programming (OOP)

 Covers:

 Defining classes and creating objects

 Constructors

 Instance vs static members

 The this keyword

 Data encapsulation

STUDENTS-HUB.com

https://students-hub.com

What is OOP?

 OOP stands for Object-Oriented Programming.

 Object-oriented programming has several advantages over procedural

programming:

 OOP is faster and easier to execute

 OOP provides a clear structure for the programs

 OOP helps to keep the Java code DRY "Don't Repeat Yourself", and makes the code

easier to maintain, modify and debug

 OOP makes it possible to create full reusable applications with less code and

shorter development time

STUDENTS-HUB.com

https://students-hub.com

Object-Oriented Programming (OOP)

 Beyond procedural programming: Focus on "objects" rather than just actions.

 Models real-world entities.

 Enables complex system development.

STUDENTS-HUB.com

https://students-hub.com

What is a Class?

 A blueprint or template for creating objects.

 Defines the common structure (data fields) and behaviors (methods) for all objects
of that type.

 Think of it like a cookie cutter, and objects are the cookies.

 Defines:

 Fields (attributes/data)

 Methods (behavior/functions)

 Example:
public class Circle {
double radius;
double getArea() {

return radius * radius * Math.PI;
}
}

STUDENTS-HUB.com

https://students-hub.com

What is an Object?

 An object represents an entity with a unique identity, state, and behaviors.

 Identity: Distinguishes it from other objects.

 State (Attributes/Data Fields): Properties with current values (e.g., a circle's

radius).

 Behaviors (Methods): Actions the object can perform (e.g., a circle calculating its

area).

 An object is an instance of a class

 Memory is allocated when object is created

 Can access fields and methods of the class

Circle c1 = new Circle();

c1.radius = 5.0;

System.out.println(c1.getArea());

STUDENTS-HUB.com

https://students-hub.com

OO Programming Concepts

 Object-oriented programming (OOP) involves programming using objects.

 An object represents an entity in the real world that can be distinctly

identified. For example, a student, a desk, a circle, a button, and even a loan

can all be viewed as objects.

 An object has a unique identity, state, and behaviors. –

 The state of an object consists of a set of data fields (also known as properties)

with their current values. –

 The behavior of an object is defined by a set of methods.

STUDENTS-HUB.com

https://students-hub.com

Creating Objects

 Syntax:

ClassName objectName = new ClassName();

 new keyword creates the object

 Constructor initializes it

STUDENTS-HUB.com

https://students-hub.com

Accessing Object Members

 Use the dot operator (.) to access an object's data fields and methods.

objectName.field

objectName.method()

 Example:

c1.radius = 10;

double a = c1.getArea();

STUDENTS-HUB.com

https://students-hub.com

Constructors

 Special methods used to construct and initialize objects when they are

created.

 Same name as class, no return type

 Automatically called when object is created (new operator)

STUDENTS-HUB.com

https://students-hub.com

Constructors

 Default Constructor

 A constructor with no parameters

 Java provides one if no constructor is written

 No-Arg Constructor

 A constructor that takes no arguments.

 If you don't define any constructors, Java provides a default no-arg constructor.

 Example: public Circle() { radius = 1.0; }

 Parameterized Constructors :

 Constructors that take arguments to initialize data fields.

Example: public Circle(double newRadius) { radius = newRadius; }

 Overloaded Constructors : A class can have multiple constructors, as long as they have different

parameter lists (different number of parameters, different types, or different order of types).

STUDENTS-HUB.com

https://students-hub.com

Constructor Example

public class Circle {

double radius;

public Circle(double r) {

radius = r;

}

}

Circle c = new Circle(3.5);

STUDENTS-HUB.com

https://students-hub.com

Primitive vs. Reference Types Revisited

 Primitive type variables: Store the actual value.

 Reference type variables: Store the memory address (reference) of an object.

 Assignment (=) for primitives copies the value; for references, it copies the

reference, making both variables point to the same object.

STUDENTS-HUB.com

https://students-hub.com

Static Variables and Methods

 Static (or class) variables: Belong to the class itself, not to specific objects.

All objects of the class share the same static variable.

 Static methods: Belong to the class and can be invoked without creating an

object. They can only access static data fields and other static methods.

 Use ClassName.staticMember for clarity.

STUDENTS-HUB.com

https://students-hub.com

Instance Variables and Methods

 Declared without static

 Belong to each object individually

 Example:

public class Person {

String name;

void sayHello()

{

 System.out.println("Hello, " + name);

}

}

STUDENTS-HUB.com

https://students-hub.com

Instance vs. Static

 Instance members: Belong to an instance (object) of the class. Each object

has its own copy of instance data fields. Instance methods operate on the

object's data.

 Static members: Shared among all instances of the class.

STUDENTS-HUB.com

https://students-hub.com

The this Keyword

 Refers to the current object

 Used to distinguish fields from parameters

 Example:

 public class Circle {

 double radius; // this is the instance variable

 public Circle(double radius) {

 this.radius = radius;

 }

}

STUDENTS-HUB.com

https://students-hub.com

Data Fields

 Also called attributes or instance variables

 Define the properties of an object

 Can be private, public, or protected

 private: accessible only within the class

 public: accessible from any class

 protected: accessible within the same package and subclasses

STUDENTS-HUB.com

https://students-hub.com

Methods
 Define behavior of objects

 Can return a value or be void

 Can have parameters or no parameters

 Access Modifiers on Methods:

 public: method accessible from any class

 private: method accessible only within the same class

 protected: method accessible within the same package and subclasses

 Example:

public double getArea() {

return radius * radius * Math.PI;

}

STUDENTS-HUB.com

https://students-hub.com

Encapsulation

 Encapsulation is one of the four pillars of OOP

 It means bundling data (fields) and methods that operate on that data into a

single unit (class)

 Protects internal state by restricting direct access

 Fields are usually declared private

 Access is provided via public getter and setter methods Hiding data from

direct access

 Use private fields and public getters/setters

STUDENTS-HUB.com

https://students-hub.com

Example of Encapsulation

private double radius;

public double getRadius() {

 return radius;

}

public void setRadius(double r) {

 radius = r;

}

STUDENTS-HUB.com

https://students-hub.com

Benefits of Encapsulation

 Promotes modularity: changes in one class don’t affect others directly

 Makes the code easier to maintain and debug

 Allows restricting access and modifying implementation without affecting

users

 Enables validation or access control through getters/setters

 Improves code readability and reuse

 Control access to fields

 Protect object state

 Allows validation logic in setters

STUDENTS-HUB.com

https://students-hub.com

Access Modifiers

 private: Accessible only in same class

 public: Accessible everywhere

 protected and package-private discussed later

 Crucial for encapsulation.

STUDENTS-HUB.com

https://students-hub.com

Static Variables

 Declared with static

 Shared by all objects of the class

 Example :

static int objectCount = 0;

STUDENTS-HUB.com

https://students-hub.com

Static Methods

 Declared with static keyword

 Belong to the class, not a specific object

 Can be called without creating an object

 Cannot access instance fields directly

STUDENTS-HUB.com

https://students-hub.com

Static Example

public class MathUtil {

 public static int square(int x) {

 return x * x;

 }

}

MathUtil.square(5);

STUDENTS-HUB.com

https://students-hub.com

Passing Objects to Methods

 Java uses "pass-by-value" for all arguments.

 For primitive types, the actual value is copied.

 For reference types, the reference (memory address) is copied. This means

changes made to the object through the copied reference inside the method

will affect the original object.

 Objects are passed by reference

 Method can modify the object fields

public static void changeRadius(Circle c) {

 c.radius = 9.0;

}

STUDENTS-HUB.com

https://students-hub.com

Arrays of Objects

 An array can hold objects (or rather, references to objects).

 When an array of objects is created, its elements are initially null.

 Each element must then be individually instantiated with new.

 Example:

Circle[] circles = new Circle[5];

for (int i = 0; i < circles.length; i++) {

 circles[i] = new Circle();

 }

STUDENTS-HUB.com

https://students-hub.com

Immutable Objects and Classes

 Immutable object: An object whose state cannot be modified after it's

created.

 Immutable class: A class whose objects are immutable.

 Benefits: Thread safety, simpler reasoning about program state.

 To make a class immutable:

 All data fields must be private and final.

 No setter methods.

 If mutable objects are used as data fields, they must be defensively copied.

STUDENTS-HUB.com

https://students-hub.com

Example: The Point Class
 Consider a simple Point class with x and y coordinates. We want to ensure that once a Point is created,

its coordinates never change.

public final class ImmutablePoint { // Class is final to prevent subclassing

 private final int x; // All fields are private and final

 private final int y;

 // Constructor to initialize fields

 public ImmutablePoint(int x, int y) {

 this.x = x;

 this.y = y;

 }

 // Only getter methods (no setters)

 public int getX() { return x; }

 public int getY() { return y; }

 // No way to change x or y after object creation

}

// Usage Example:

ImmutablePoint p1 = new ImmutablePoint(10, 20);

// p1.x = 30; // Compile-time error: cannot assign to final field

// To "change" a point, create a new one:

ImmutablePoint p2 = new ImmutablePoint(30, 40);

STUDENTS-HUB.com

https://students-hub.com

Object Composition

 A class can have fields of other class types

 Called "has-a" relationship

 Example:

class Engine { }

class Car {

 Engine e = new Engine();

}

STUDENTS-HUB.com

https://students-hub.com

UML Class Diagrams

 A visual way to describe classes

 Syntax:

+ public

- private

protected

STUDENTS-HUB.com

https://students-hub.com

Example UML for Circle

+----------------+

| Circle |

+----------------+

| - radius: double |

+----------------+

| + getArea(): double |

| + setRadius(r: double): void |

+----------------+

STUDENTS-HUB.com

https://students-hub.com

Wrapper Classes (Intro)

 Wrapper classes allow primitive data types to be used as objects

 Each primitive has a corresponding wrapper:

 int → Integer

 double → Double

 Useful with collections (explained later)

 Useful when working with Java Collections like ArrayList, which only store

objects

 Enable methods and features available to objects such as .toString(),

.compareTo(), etc.

 Provide utility methods for parsing and conversion (e.g., Integer.parseInt())

STUDENTS-HUB.com

https://students-hub.com

Using Wrapper Classes

Integer num = Integer.valueOf(5);

int n = num.intValue();

STUDENTS-HUB.com

https://students-hub.com

Wrapper Classes

Primitive Wrapper

int Integer

double Double

char Character

boolean Boolean

byte Byte

short Short

long Long

float Float

STUDENTS-HUB.com

https://students-hub.com

Autoboxing/Unboxing

 Autoboxing: automatic conversion from a primitive type to its corresponding

wrapper class (e.g., int → Integer)

 Unboxing: automatic conversion from a wrapper object back to its primitive

type (e.g., Integer → int)

 Happens implicitly in assignments, method calls, and expressions

 Useful when storing primitives in collections like ArrayList<Integer>

 Example:

 int a = 10;

 Integer obj = a; // autoboxing

 int b = obj; // unboxing

 Autoboxing: int x = 5; Integer obj = x;

 Unboxing: Integer obj = 7; int y = obj;

 Happens automatically

STUDENTS-HUB.com

https://students-hub.com

The toString() Method

 Every object inherits from Object class

 toString() returns string representation

 Example:

public String toString() {

return "Circle with radius " + radius;

}

STUDENTS-HUB.com

https://students-hub.com

Summary of Chapter 9

 Defined and created classes and objects

 Constructors and overloading

 Used this keyword

 Data encapsulation and accessors

 Instance vs static members

 Wrapper classes and toString()

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions

 What is the correct way to create an object of a class named Student?

 A) Student = new Student();

 B) Student student = Student();

 C) Student student = new Student();

 D) new Student = Student();

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions

 What does the keyword this refer to in a Java class?

 A) The name of the class

 B) The current object

 C) The parent class

 D) A static reference

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions

 Which of the following correctly declares a constructor in Java?

 A) void Constructor() { }

 B) Student.Student() { }

 C) Student() { }

 D) public void Student()

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions

 What is the purpose of a setter method?

 A) To print object data

 B) To create a new object

 C) To change the value of a private field

 D) To access static variables

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions

 In Java, if a class has no constructor, what happens?

 A) Compilation fails

 B) A default constructor is added automatically

 C) Java throws an exception

 D) The class cannot be instantiated

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions
Given :

public class Circle {

 double radius;

 Circle(double r) { radius = r; }

}

What does the following do?

Circle c = new Circle(5.0);

 A) Declares a variable only

 B) Initializes radius to 0

 C) Creates a Circle object with radius 5.0

 D) Syntax error

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions
 Which of the following is true about instance variables?

A) They are shared by all objects

B) They are declared inside methods

C) Each object has its own copy

D) They must be static

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions
What will be the output?

public class Test {

 int x = 5;

 public static void main(String[] args) {

 Test obj1 = new Test();

 Test obj2 = obj1;

 obj2.x = 10;

 System.out.println(obj1.x);

 }

}

A) 5

B) 10

C) 0

D) Compilation error

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions
 What is information hiding in Java?

 A) Using this

 B) Declaring variables as public

 C) Using private fields with getters and setters

 D) Overriding methods

STUDENTS-HUB.com

https://students-hub.com

Chapter 9 – Test Questions
 A UML diagram shows:

 A) Object code only

 B) Class structure and relationships

 C) Variable values

 D) Loops and decisions

STUDENTS-HUB.com

https://students-hub.com

Short Answer
 Write a constructor for a class Book with fields title and price.

 Define a getter and setter for a private field balance in a class Account.

 What is the difference between static and instance variables?

 Explain why we use private fields with public setters/getters.

 What happens if two object references point to the same object and one

changes a value?

 Create a class Rectangle with two fields: width and height, and a method

getArea().

 How is this() used inside constructors?

 What does the term encapsulation mean in object-oriented programming?

 Describe the structure of a UML class diagram.

 Explain what happens when an object is created using new.

STUDENTS-HUB.com

https://students-hub.com

	Slide 1: OOP: Objects and Classes
	Slide 2
	Slide 3: What is OOP?
	Slide 4: Object-Oriented Programming (OOP)
	Slide 5: What is a Class?
	Slide 6: What is an Object?
	Slide 7: OO Programming Concepts
	Slide 8: Creating Objects
	Slide 9: Accessing Object Members
	Slide 10: Constructors
	Slide 11: Constructors
	Slide 12: Constructor Example
	Slide 13: Primitive vs. Reference Types Revisited
	Slide 14: Static Variables and Methods
	Slide 15: Instance Variables and Methods
	Slide 16: Instance vs. Static
	Slide 17: The this Keyword
	Slide 18: Data Fields
	Slide 19: Methods
	Slide 20: Encapsulation
	Slide 21: Example of Encapsulation
	Slide 22: Benefits of Encapsulation
	Slide 23: Access Modifiers
	Slide 24: Static Variables
	Slide 25: Static Methods
	Slide 26: Static Example
	Slide 27: Passing Objects to Methods
	Slide 28: Arrays of Objects
	Slide 29: Immutable Objects and Classes
	Slide 30: Example: The Point Class
	Slide 31: Object Composition
	Slide 32: UML Class Diagrams
	Slide 33: Example UML for Circle
	Slide 34: Wrapper Classes (Intro)
	Slide 35: Using Wrapper Classes
	Slide 36: Wrapper Classes
	Slide 37: Autoboxing/Unboxing
	Slide 38: The toString() Method
	Slide 39: Summary of Chapter 9
	Slide 40: Chapter 9 – Test Questions
	Slide 41: Chapter 9 – Test Questions
	Slide 42: Chapter 9 – Test Questions
	Slide 43: Chapter 9 – Test Questions
	Slide 44: Chapter 9 – Test Questions
	Slide 45: Chapter 9 – Test Questions
	Slide 46: Chapter 9 – Test Questions
	Slide 47: Chapter 9 – Test Questions
	Slide 48: Chapter 9 – Test Questions
	Slide 49: Chapter 9 – Test Questions
	Slide 50: Short Answer

