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CHAPTER 9 .

Theory of
Statistical Tests

9.1 Certain Best Tests

In Chapter 6 we introduced many concepts associated with tests of
statistical hypotheses. In this chapter we consider some methods of
constructing good statistical tests, beginning with testing a simple
hypothesis H, against a simple alternative hypothesis H,. Thus, in all
instances, the parameter space is a set that consists of exactly two
points. Under this restriction, we shall do three things:

1. Define a best test for testing H, against H,.
2. Prove a theorem that provides a method of determining a best test.
3. Give two examples.

Before we define a best test, one important observation should
be made. Certainly, a test specifies a critical region; but it can also be
said that a choice of a critical region defines a test. For instance, if
one is given the critical region C = {(x,, X, x3) : X3 + x3 + x3 > 1}, the
test is determined: Three random variables X,, X;, X; are to be
considered; if the observed values are x,, x,, x;, accept H, if
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396 Theory of Statistical Tests |Ch. 9

x? + x? + x} < 1; otherwise, reject H,. That is, the terms “test” and
“critical region’’ can, in this sense, be used interchangeably. Thus, if
we define a best critical region, we have defined a best test.

Let f(x;0) denote the p.d.f. of a random variable X. Let
X, Xy, ..., X, denote a random sample from this distribution, and
consider the two simple hypotheses H,: § = 6’ and H,: 0 = 0”. Thus

={0:0 =0, 8"}. We-now define a best critical region (and hence a
best test) for testing the simple hypothesis H, against the alternative
simple hypothesis H,. In this definition the symbols
Pr[(X,, X5, ..., X,) eC; Hy] and Pr[(X,, X;,...,X,) eC; H] mean
Pr[(X,, X;, ..., X,) € C] when, respectively, H, and H, are true.

Definition 1. Let C denote a subset of the sample space. Then C is
called a best critical region of size « for testing the simple hypothesis
H,:0 =0 against the alternative simple hypothesis H,:6 =0
if, for every subset A4 of the sample space for which
Pri(X,,...,X,)eA; H}]=a:

(a) Pr[(XIsXZs Qo< ,Xn)EC; HO] = a.
) PriX,,X,, ..., X )eCH]=2Pr[(X,, X,,...,X,)e A4 H]

This definition states, in effect, the following: First assume H; to
be true. In general, there will be a multiplicity of subsets 4 of the
sample space such that Pr[(X|, X,, ..., X,) € A] = a. Suppose that
there is one of these subsets, say C, such that when H, is true, the power
of the test associated with Cis at least as great as the power of the test
associated with each other 4. Then C is defined as a best critical region
of size a for testing H, against H,.

In the following example we shall examine this definition in some
detail and in a very simple case.

Example 1. Consider the one random variable X that has a binomial
distribution with n = 5 and p = 0. Let f(x; ) denote the p.d.f. of X and let
Hy:0 =1iand H, : 8 =}. The following tabulation gives, at points of positive
probability density, the values of f(x; 1), f(x; ), and the ratio f(x; })/f(x; ).

X 0 : 1 2 3 4 5
.1 | 5 1
S(x;3) % % » 3 7 7
f(x' Q_) 1 15 0 270 405 243
14 Tola 1024 1024 - To24 1024
S HIfix ) 32 i $ 5 o %
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Sec. 9.1] Certain Best Tests 397

We shall use one random value of X to test the simple hypothesis H;: § =}
against the alternative simple hypothesis H,:8 =3, and we shall first
assign the significance level of the test to be a =5. We seek a best
critical region of size a = 5. If 4, = {x: x =0} and 4, = {x: x =5}, then
Pr (X € A,; Hy) = Pr (X € A,; H,) = 35 and there is no other subset 4; of the
space {x:x =0, 1, 2, 3, 4, 5} such that Pr (X € 4,; H,) = 5. Theneither 4, or
A, is the best critical region C of size a = 4; for testing H, against H,. We note
that Pr (X € 4,; H,) = 5; and that Pr (X € 4,; H,) = 155 Thus, if the set 4, is
used as a critical region of size & = 3, we have the intolerable situation that
the probability of rejecting H, when H, is true (H, is false) is much less than
the probability of rejecting H, when Hj is true.

On the other hand, if the set 4, is used as a critical region, then
Pr (X € A;; H)) = 4 and Pr(X € A4,; H)) = %5 That is, the probability of
rejecting H, when H, is true is much greater than the probability of rejecting
H, when H, is true. Certainly, this is amore desirable state of affairs, and ac
tually A, is the best critical region of size a = 3;. The latter statement follows
from the fact that, when H, is true, there are but two subsets, 4, and A4,, of
the sample space, each of whose probability measure is 3; and the fact that

M —Pr(Xedy H)>Pr(Xed; H) =5

It should be noted, in this problem, that the best critical region C = A, of size

= 4 is found by including in C the point (or points) at which f(x; 3) is small
in comparison with f(x; 3). This is seen to be true once it is observed that the
ratio f(x; 2)/f(x, 3)is a minimum at x = 5. Accordingly, the ratio f(x; 1)/f(x; 4),
which is given in the last line of the above tabulation, provides us with a precise
tool by which to find a best critical region C for certain given values of a. To
illustrate this, take a = £. When H, is true, each of the subsets {x: x = 0 1},
{x:x=0,4}, {x:x=1,5}, {x:x=4,5} has probability measure <. By
direct computation it is found that the best critical region of this size is
{x:x=4,5}). This reflects the fact that the ratio f(x;3})/f(x;3) has its
two smallest values for x = 4 and x = 5. The power of this test which has
a = ﬁ, IS -

PI'(X=4,5;H|)—"]24 L‘% bﬁ
The preceding example should make the following theorem, due to
Neyman and Pearson, easier to understand. It is an important theorem

because it provides a systematic method of determining a best critical
region.

Neyman—Pearson Theorem Let X, X,,...,X,, wheren is a fixed
positive integer, denote a random sample from a distribution that has
p.d.f. f(x; 8). Then the joint pd.f. of X\, X;,..., X, is

L(B; x1, Xz, - . . s %) = f(x1; O)f(x; 6) - - - f(x,; 0).
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398 Theory of Statistical Tests [Ch. 9

Let 0’ and 0" be distinct fixed values of 0 so thatQ = {0 : 0 = ¢, 8"}, and

let k be a positive number. Let C be a subset of the sample space such

that:

L(B’, X1y Xgyenny xn)

L(B"; Xy X29 o0 vy xn)
0,; ] LA | n .

(b) EEB”; ;'h J;sz . J;c,,; =k, for each point (x,,x,,...,x,)eC*

() a=Pr[(X,, X;,...,X,)eC; Hy.

< k, for each point (x,,x,,...,X,) € C.

(a)

Then C is a best critical region of size a for tésting the simple hypothesis
H,: 0 = & against the alternative simple hypothesis H, : 6 = 0".

Proof. We shall give the proof when the random variables are
of the continuous type. If C is the only critical region of size
®, the theorem is proved. If there is another critical region of
size a, denote it by A. For convenience, we shall let
{2 JL@;x,...,x)dx - dx, be denoted by [, L(f). In this
notation we wish to show that

j L") — J' L(#") 2 0.

Since C is the union of the disjoint sets C n 4 and C N 4* and 4 is
the union of the disjoint sets 4 N C and 4 N C*, we have

J L") — J L(6")
c 4

ol

= L") + J' L") — J L6 —J L(6")
YCn A Cn A AnC ANC*

-  wLen- J L@). (1)
YCn At AnC*

However, by the hypothesis of the theorem, L(6") = (1/k)L(#') at each
point of C, and hence at each point of C n A*; thus

L ‘L(a')_z%'[ L(®).

Cnr A*

STUDENTS-HUB.com Uploaded By: anonymous



Sec. 9.1] Certain Best Tests 399

But L(6") < (1/k)L(#) at each point of C*, and hence at each point of

AnC*; accordingly,
.[ LO") <3 J L(6").
ANC* ANC*
These inequalities imply that

ue")—f L(”’)Z%J
ANC* C

and, from Equation (1), we obtain

J L(O”)—J L(B”)z% U L) — .[ L(B’)] | @)
C A CnA* ANC*

However,

_[ L(B’)—J L)
CnA* AnC*

]

CnA* nA* ANC*

L(O')—H LY.

= L(0')+J L(Bf)—J L(6)— I L)
YCnA* CnA AnC k AnC®

_( L®)— J L@®)
C A

=x—a=0.

If this result is substituted in inequality (2), we obtain the desired

result,
J L(6")— J L(6")>0.
C l A

If the random variables are of the discrete type, the proof is the same,
with integration replaced by summation.

Remark. Asstated in the theorem, conditions (a), (b), and (c) are sufficient
ones for region C to be a best critical region of size a. However, they are also
necessary. We discuss this briefly. Suppose there is a region 4 of size « that
does not satisfy (a) and (b) and that is as powerful at # = 8" as C, which satisfies
(a), (b), and (c). Then expression (1) would be zero, since the power at §” using
A is equal to that using C. It can be proved that to have expression (1)
equal zero A must be of the same form as C. As a matter of fact, in
the continuous case, 4 and C would essentially be the same region; that
is, they could differ only by a set having probability zero. However, in
the discrete case, if Pr[L(6")=kL(6"); H,] is positive,'A and C could be
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400 Theory of Statistical Tests |Ch. 9

different sets, but each would necessarily enjoy conditions (a), (b), and (c) to
be a best critical region of size a.

One aspect of the theorem to be emphasized is that if we take C to
be the set of all points (x,, x, . . ., x,) which satisfy
L@ x, x5, ...,X%,)
L@, x,,x5,...,x,)
then, in accordance with the theorem, C will be a best critical region.

This inequality can frequently be expressed in one of the forms (where
¢, and ¢, are constants)

<k, k>0,

ul(xls X2y o009 Xy 01, 0”) <,
or
uZ(xls x21 ce ey x,,; 6’, 0”) Z CZ.

Suppose that it is the first form, u, < ¢,. Since 6’ and 6" are given
constants, ¥,(X,, X, . . ., X,; &', 8")isa statistic; and if the p.d.f. of this
statistic can be found when H, is true, then the significance level of the
test of H, against H, can be determined from this distribution. That
is,

o= PI‘ [u.(X., Xz, “ ey Xn; 0/, G”) S CI; Ho].

Moreover, the test may be based on this statistic; for, if the observed
values of X, X,, ..., X, are x,, x,, . . ., X,, we reject H, (accept H,) if
ul(xl‘, X3y e v oy x,,) <.

A positive number k determines a best critical region C whose size
isa = Pr[(X;, X;, ..., X,) e C, Hy]for that particular k. It may be that
this value of a is unsuitable for the purpose at hand; that is, it is too
large or too small. However, if there is a statistic #,(X}, X3, . . ., X,),
as in the preceding paragraph, whose p.d.f. can be determined when
H, is true, we need not experiment with various values of k to
obtain a desirable significance level. For if the distribution of the
statistic is known, or can be found, we may determine ¢, such that
Pru(X,, X;,...,X,) <c; Hy] is a desirable significance level.

An illustrative example follows.

Example 2. Let XX, .., )f,, denote a random sample from the
distribution that has the p.d.f. -

AN
Sx; 0) = l exp(—(x 0))' —00 < X < 0.

Vo 2

1
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Sec. 9.1| Certain Best Tests 401

Itis desired to test the simple hypothesis H; : § = 6’ = 0 against the alternative
simple hypothesis H,: 0 =6" = 1. Now

(1/y/2ny [‘( x’z)/z]
L(e’; xl) ey xn) — /\/—;) exp ;
0 x),....%) y
L( 3 X1 ,x") (l/\/z_n-)n exp [—-(z (xi_ 1)2)/2]

=exp(—2x,~+g).
1

If k > 0, the set of all points (x,, x,, . . ., x,) such that

exp (—Zx,+%) <k
1

is a best critical region. This inequality holds if and only if

4 n
—zl:x,-+§slnk

or, equivalently,

n n .
$n2§~mk=a

o
1n this case, a best critical region is the set C = {(x;, X5, . ... X,): 2, X; = ¢},

1
where ¢ is a constant that can be determinned so that the size of the critical
region is a desired number «. The event } X, > c is equivalent to the event

1 —
X > ¢/n = ¢,, say, so the test may be based upon the statistic X. If H, is true,
that is, § = & = 0, then X has a distribution that is N(0, 1/»). For a given
positive integer n, the size of the sample, and a given significance level a, the
number ¢, can be found from Table III in Appendix B, so that
Pr (X 2 ¢,; Hy) = a. Hence, if the experimental values ot’"l X, X5, ..., X, were,

respectively, x;, x,, . . ., X,, we would compute x =) x,/n. If X > ¢|, the

1
simple hypothesis H,: § = 8’ = 0 would be rejected at the significance level
a; if x < ¢,, the hypothesis H, would be accepted. The probability of rejecting
H,, when H, is true, is «; the probability of rejecting H,, when H is false,
is the value of the power of the test at § = 8" = 1. That is,

Pr(A"zc,;H.)=J
4]

B ex _(E—l)’ dx
NN O

For example, if n = 25 and if « is selected to be 0.05, then from Table I1I
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402 Theory of Statistical Tests |Ch.9

we find that ¢, = 1.645/,/25 = 0.329. Thus the power of this best test of H,
against H, is 0.05, when H, is true, and is

© - _ 1 2 )
J 1 expl:—(—x———)—]dfc =J~ 1 e dw = 0.999 +,
0

)
329 4/ 2"‘\/% 2z) _3355 4/ 27

when H, is true.

There is another aspect of this theorem that warrants special
mention. It has to do with the number of parameters that appear in
the p.d.f. Our notation suggests that there is but one parameter.
However, a careful review of the proof will reveal that nowhere was
this needed or assumed. The p.d.f. may depend upon any finite number
of parameters. What is essential is that the hypothesis H, and the
alternative hypothesis H, be simple, namely that they completely
specify the distributions. With this in mind, we see that the simple
hypotheses H, and H, do not need to be hypotheses about the
parameters of a distribution, nor, as a matter of fact, do the random
variables X, X,, ..., X, need to be independent. That is, if H, is the
simple hypothesis that the joint p.d.f. is g(x,, x,, . . ., X,,), and if H,
is the alternative simple hypothesis that the joint p.d.f. is
h(x,, x3, . . ., X,), then Cis a best critical region of size « for testing H,
against H, if, for k > 0:

l,, g(x|1x21"'1xn)
Ch(x, x5, ..., X,)
g(xlaxz,' . 'an)
h(x|,x2,. . .,x")
3. a=Pr[(X,, X,,..., X,)e C: Hy.

An illustrative example follows.

<k for(x),x,,.. .,x,,)eC.

2.

>k for (x,xs...,x,) €C*

Example 3. Let X, , ..., X, denote a random sample from a distribution
which has a p.d.f. f(x) that is positive on and only on the nonnegative
integers. It is desired to test the simple hypothesis

Hoéf(x)=%, x=0,1,2,...,

=0 elsewhere,
against the alternative simple hypothesis
H:f(x)=@)**", x=012,...,

=0 elsewhere.
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Sec. 9.1] Certain Best Tests 403

Here
glxy,...,x,) _ e~"(x,! x! - - - x,))
h(xyy. .., x,)  (Q)r)xi+x+-+x
_aey

H (x!)
1
If k > 0, the set of points (x,, x4, . .., X,) such that

(i: x,-) In2— ln_[ﬁ (x,l):| <lnk—nlnQRe ") =¢
L

is a best critical region C. Consider the case of k = 1 and n = 1. The preceding
inequality may be written 2*/x,! < e/2. This inequality is satisfied by all points
inthe set C={x,:x,=0,3,4,5,...}. Thus the power of the test when H,
is true is

Pr(X,eC; Hy,) =1 —Pr (X, = 1,2; H,) = 0.448, .

approximately, in accordance with Table I of Appendix B. The power of the
test when H, is true is given by

Pr(X,eC;H)=1—-Pr(X,=1,2; H)
: ) =1-(G+3) =0.625
Remark. In the notation of this section, say C is a critical region such that

x= J L@ and B= J L(@"),
C C*

so that here a and B equal the respective probabilities of the type I and type
II errors associated with C. Let d, and d, be two given positive constants.
Consider a certain linear function of a and g, namely

d, J L) + dzJ L(6") = 4, J' L) + dz[l - J L(G"):|
c c c c
=d,+ J [d\L(6") — d,L(6")].

If we wished to minimize this expression, we would select C to be the set of
all (x,, x,, ..., x,) such that

d L(¢) —d,L(6") <0
or, equivalently,
L) 4,

<—, for all (x, x;,...,x,)€C,
@) < 7, (X1, x; X,)
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404 Theory of Statistical Tests [Ch. 9

which according to the Neyman—Pearson theorem provides a best critical
region with k = d,/d,. That is, this critical region C is one that minimizes
d,a + d,p. There could be others, for example, including points on which
L(0")/L(8") = d,/d,, but these would still be best critical regions according to
the Neyman-Pearson theorem.

EXERCISES

9.1. In Example 2 of this section, let the simple hypotheses read
Hy:0=¢ =0and H,: 0 = 6" = — 1. Show that the best test of H, against
H, may be carried out by use of the statistic X, and that if n = 25 and
a = 0.05, the power of the test is 0.999+ when H, is true.

9.2. Let the random variable X have the p.d.f. f(x;8) = (1/6)e *",
0 < x < o0, zero elsewhere. Consider the simple hypothesis H,: § = 6" = 2
and the alternative hypothesis H,:0 =8"=4. Let X,, X, denote a
random sample of size 2 from this distribution. Show that the best test
of H, against H, may be carried out by use of the statistic X, + X, and
that the assertion in Example 2 of Section 6.4 is correct.

9.3. Repeat Exercise 9.2 when H,: 60 = 6" = 6. Generalize this for every
g > 2,

94. Let X, X,,..., X, be a random sample of size 10 from a normal
distribution N(0, ¢?). Find a best critical region of size a = 0.05 for testing
H,: ¢* = 1 against H, : ¢* = 2. Is this a best critical region of size 0.05 for
testing H,: ¢ = 1 against H, : o® = 4?7 Against H,: ¢* = 61 > 1?

95. If X, X5, ..., X, is a random sample from a distribution having
p.df. of the form flx;0) =6x-', 0 < x <1, zero elsewhere, show
that a best critical region for testing H,: 6 =1 against H,:0=2 is

C={(x,,x2,...,x,,):cs f[x,-}.
i=1\

9.6. Let X, X,,..., X|, be a random sample from a distribution that is
N(@,,0,). Find a best test of the simple hypothesis H,: 6, = 6} =0,
0, =0; =1 against the alternative simple hypothesis H,:0, =6/ =1,
92 = 0;’ = 4

9.7. Let X}, X,, .. ., X, denote a random sample from a normal distribution
N(0, 100). Show that C = {(x., XyyooisX)iCLX=Y xi/n} is a best criti-
1

cal region for testing H, : 6 = 75 against H, : 6 = 78. Find »n and ¢ so that

d Pr[(X,, X,,...,X,)e C, H)] =Pr(X > c; H,) = 0.05
an

Pri(X,, X, ..., X,)eC; H]=Pr(X 2 c; H) = 0.90, approximately.
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Sec. 9.2] Uniformly Most Powerful Tests 405

98. If X\, X;,...,X, is a random sample from a beta distribution with
parameters « = § = 0 > 0, find a best critical region for testing H,: 6 = 1
agamst H,:0=2.

9.9. Let X, X;, ..., X, denote a random samp]e from a dlstrlbutlon having
the p.d.f. f(x;p) = (1 —p)-* x=0,1, zero elsewhere. Show that

= {(x.;, S A K Z X< c} is a best critical region for testing Hy: p =
. ) |
against H,:p = ; Use the central limit theorem to find n and ¢ so that

kf:ipﬁroximat‘cly Pr (Z X, < Ho) =0.10 and Pr (‘2 X, <c H,) = 0.80.
E 1 1

9.10. Let X, 1» X3, ..., Xjpdenote a random sample of size 10 from a Poisson
distribution wnh mean 6. Show that the critical region C defined by Z x 23

is a best critical ‘region for testing H,:0=0.1 against H,: 0 0.5.
Determine, for this test, the sSignificance le\;el o and the power at @ = 0.5.

9 2 Umfomnly Most Powerful Tests

This section will take up the problem of a test of a simple hypoth-
esis H, against an alternative composite hypothesis H,. We begin
with an example.

Example 1. Consider the p.d.f.

f(x; 6) —-—e"‘/", - 0<x< o,

=0 elsewhere,

of Example 2, Section 6.4, and later of Exercise 9.3. It is desired to test the
simple hypothesis H,: 8 = 2 against the alternative composite hypothesis
H,:0>2 ThusQ = {f: 60 > 2}. A random sample, X, X;, of size n = 2 will
be used, and the critical region is C = {(x,, x;): 9.5 < x, + x; < o0}. It was
shown in the example cited that the significance level of the test is
approximately 0.05 and that the power of the test when 8 = 4is approximately
0.31. The power function K{(#) of the test for all # > 2 will now be obtained.

We have
9.5 £9.5—x3
K®) =1 —I J éexp (—x';xz)dx, dx,

0 0

_ (0 +09.5) e300, 2<8.

For example, K(2) =0.05, K(4) = 0.31, and K(9.5) =2/e. It is known
(Exercise 9.3) that C = {(x|, x;) : 9.5 < x, + x; < o0} is a best critical region
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406 Theory of Statistical Tests [Ch.9

of size 0.05 for testing the simple hypothesis H, : § = 2 against each simple
hypothesis in the composite hypothesis H, : 6 > 2. -

The preceding example affords an illustration of a test of a simple
hypothesis H, that is a best’ test of Ho against every simple hypothesxs
in the alternative composite hypothesis H,. We now define a critical
region, when it exists, which is a best critical region for testing a simple
hypothesis H, against an alternative composite hypothesis H,. It seems
desirable that this critical region should be a best critical region for
testing H, against each simple hypothesis in H,. That is, the power
function of the test that corresponds to this critical region should be
at least as great as the power function of any other test with the same
significance level for every simple hypothesis in H,.

Definition 2. The critical region C is a uniformly most powerful
critical region of size « for testing the simple hypothesis H, against an
alternative composite hypothesis H, if the set C is a best critical region
of size a for testing H, against each simple hypothesis in H,. A test
defined by this critical region Cis called a uniformly most powerful test,
with significance level &, for tésting the simple hypothe51s Ho against '
the alternative composite hypothesis H,. ‘

As will be seen presently, uniformly most powerful -tests do not
always exist. However, when they do exist, the Neyman—Pearson
theorem provides a technique for finding them. Some illustrative
examples are given here.

Example 2. Let X,,X,,...,X, denote a random sample from a
distribution that is N(0, ), where the variance 6 .is an unknown positive
number. It will be shown that there exists a uniformly most powerful test with
significance level a for testing the simple hypothesis H,: 6 = 8, where &' is a
fixed positive number, against the alternative composite hypothesis
H :0>9¢.Thus Q={0:0> 0}. The joint pd.f. of X;, X;,..., X, is

1\
0; 3 A2y ey Ay) = ~TApn |
L(6; x,, x; x,) (21: 9) exp

Let @ represent a number greater than &', and let & denote a positive number.
Let C be the set of points where

L(O', Xy X2y 00y x,,)

. k,
L(eu; X1y X2y 000y xn) S
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Sec. 9.2] Uniformly Most Powerful Tests 407

that is, the set of points where

(@) oo ()] =+
3 2""’",[§m("") ink|=c.

n

The set C = {(x,, Xyy ooy Xp) i D X2 c} is then a best critical region for

1
testing the simple hypothesis H, : § = 8’ against the simple hypothesis § = ¢".
It remains to determine c, so that this critical region has the desired size a.

If Hy is true, the random variable )’ X?/6 has a'‘chi-square distribution with n
i

or, equivalently,

degrees of freedom. Sir;ce a=Pr (i‘X,?/O’ > /0, Ho), ¢/0’ may be
1
read from Table II in Appendix. B and ¢ determined. Then C=
{(x,,xz, cey Xp) Y, X zc}ns a best critical region of size a for testing
1
H,:0 =0 against the hypothesis 8 = 6". Moreover, for each number 6"
greater ‘than: ¢, the foregoing argument holds. That is, if 8" is another
number gtg'éfér than @', then C ="{(x., X)) i X2 c} is a best critical
‘ b T .
region of ’sii"ké‘a for testing Hy: 0 =0 against the hypothesis 8 = 6".
KZ:cofdingly, C= {(x,, ey Xy) Zx,z > c} is a “imiformly most powerful

critical regxon of size a for testing H,:0=0" against H,:0> 8. If
x_,,xz, ..., X, denote the expenmental values of X,,Xz,..k. ., then
Hy:0 = 0’ is réjected at ‘the significance level «, and H, : 6 > @' is accepted,

if ¥ x? > c; otherwise, H,: § = & is accepted.

If, in the preceding disciission, we take n = 15,a = 0.05,and & = 3, then
here the two hypotheses will be H,: 8 = 3.and H,: 6 > 3. From Table II,
c/3 =25 and hence ¢ = 75.

Example 3. Let X, X,,..., X, denote a random sample from a
distribution that is N(0, 1), where the mean 6 is 'unknown. It will be
shown that there is no uniformly most powerful test of the simple
hypothesis Hy:0 = @', where @’ is' a fixed number, against the alternative
composite hypothesis H, : 0 # 0. Thus Q = {#: — 0 <0 < o0}. Let§"bea
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number not equal to @’. Let &k be a positive number and consider

(1/2my" exp —i(xf—ﬂ’)%‘;

| |

<k.

(1/2r)"? exp —'z": (x, — 62
|

The preceding inequality may be.;gﬁttefn as.
exp {— @ ~ )% x+ 510 - (0')21} <k

or .
(0” &) Zx z5 [(9”)2 (0’)’] —Ink.

This last mequal}ty is equlvalent to

” , Ink
;x125(0+0) 01/ g’

provided that 8”:> ¢, and it is equivalent to -

les 2@ +0)— ‘?"‘B,

if " < 0’. The first of these two expressions defines a best critical region for
testing H, : @ = 0’ against the hypothesis § = 0" provided that 8" > ', while
the second expression defines a best critical region for testing Hy: @ =6’
agamst the hypothesis 8 = 8" provided that 8 < 0. That is, a best critical
region for testing the simple hypothesis against an alternative simple
hypothesis, say § = 6’ + 1, will not serve as a best critical region for testing
Hy: 0 =0 against the alternative simple hypothesis § = & — 1, say. By
definition, then, there is no uniformly most powerful test in the case under
consideration.

It should be noted that had the alternative composlte hypothesns been
either H;: 0 > & or H,: 0 < &, a uniformly most powerful test would exist
in each instance.

Example 4. In Exercise 9.10 the reader was asked to show that if a
random sample of size n = 10 is taken from a Poisson distribution with
10 '

mean @, the critical region defined by Z x; > 3 is a best critical region for

testing H, : = 0.1 against H, : § = 0.5. This critical region is also a uniformly
most powerful one for testing H, : § = 0.1 against H, : § > 0.1 because, with
9 >0.1, , ,

(0. 1)~ ' %V/(x,! xp! - - - x,1)

(0" e™" " (x)! x,! - - - x,)
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is equivalent to

01 —I()(OI ‘8] k
(er') =

The preceding inequality may be written as

(i x,-) (n0.1 — In8") < In k + 100.1 — 8")

or, since 8" > 0.1, equivalently as

s Ik + 1 — 100"
Y Y

10
Of course, ¥ x; > 3 is of the latter form.
1

Let us make an observation, although obvious when pointed out,
that is important. Let X, X5, . . ., X, denote a random sample from
a distribution that has p.d.f. f(x;0), 0€€Q. Suppose that
Y=u(X,, X,, ..., X,)is asufficient statistic for 6. In accordance with
the factorization theorem, the joint p.d.f. of X, X;, ..., X, may be
written " '

L@, x,, x5, ..., J‘c,,s»= ki[u(x,, x5, . . ., Xx,); G]kz(Jg!, X2y oo vy Xn)s

where k,(x;, x5, . . ., x,) does not depend upon 6. Consequently, the
ratio

S L(gl; Xiy X2y« oo ;xr;) _ k'l[u(xhxb cecy xn); 0/]

L(Bn; Xy, X2, MR X,,) kl [u(x,, X250 00y xn); 0”]
depends upon x,, x;; . . ., X, only through u(x,, x5, . . ., X,). Accord-
ingly, if there is a sufficient statistic Y = u(X,, X;, ..., X,) for § and
if a best test or a uniformly most powerful test is desnred there is no
need to consider tests which are based upon any statistic other than the
sufficient statistic. This result supports the importance of sufficiency.

Often, when 8" < @’ the ratio

L(G" Xy, X3, . " vy n)

L(B” xla X2y .0 Il) .
which depends upon x,, X, . .". , X,only through y=u(x;, X3, . ..5%),
is an ‘increasing function of y = u(x,, x,,..., x,). In such a case

we say that we have a monorone likelihood ratio in the statistic
Y=ulX,, X,;,...,X).
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Example 5. Let X, X,, ..., X, be a random sample from a Bernoulli
distribution with parameter p = , where 0 < 6 < 1. Let 8" < #'. Then the
ratio

L@ X, %25, %) @1 —0y-=5 o1 —8)]"/1-0Y
L@ x, X, ...,x,) (@FQ—-0y-i« |¢0-6)] \U-0¢/

Since 6'/6” > 1 and (1 — ¢")/(1 — 6") > 1, so that 6'(1 — 8")/8"(1 — 8") > 1,
the ratio is an increasing function of y = X x;. Thus we have a monotone
likelihood ratio in the statistic Y = X X.

We can generalize Example 5 by noting the following. Suppose that
the random sample X, X,, .. ., X, arises from a p.d.f. representing a
regular case of the exponential class, namely

S(x; 0) = exp [p(O)K(x) + S(x) + ¢(0)], xe4,
=0 elsewhere,

where the space & of X is free of 6. Further assume: that p(G) is-an
increasing function of 6. Then

exp P(O’) Z K(x;) + ibs(x;) + "Q(O’):I
L(g') L i=1 i=1

wey r
| exp | p@) 3 K+ 5. sty + nq(O”)]

=]

= exp {[pw') — p(@")] _i K(x) + nlg(®) - qw")]}.

If0" <0, p(6) bemg an mcreasmg function requires this ratio to be
an increasing functlon of y = Z K(x,) Thus ‘we. have a monotone

hkehhood ratio in the statlstlc Y Z K(X). Moreover if we test

=

Hy:0=¢0 agamst H . 0<¢, then with 0" < &'; we see. that '

o)

L(oll)

is equivalent to X K(x;) < ¢ for every 8" < @'. That is, this provndes a
umformly most powerful critical region. :

If, in the preceding situation with monotone hkellhood ratloi we

test H,: 0 =6 against H,: 0> 6’, then £ K(x;) > ¢ would be a

uniformly most powerful critical region. From the likelihood ratios

Sk

STUDENTS-HUB.com Uploaded By: anonymous



Sec. 9.2] Uniformly Most Powerful Tests 411

displayed in Examples 2, 3, 4, and 5 we see immediately that the
respective critical regions -

N n - n

Y x}=c, Y xi>c, Zx,zc Y x;i>c¢

Fe= | = Sf=1 . im

are uniformly most powerful for testing H,: ¢ = ¢’ against H,: 0 > ¢'.

There is a final remark that should be made about uniformly most
powerful tests. Of course, in Definition 2, the word uniformly is
associated with ; that is, C is a best critical region of size « for testing
H,: 6 = 6, against all 6 values given by the composnte alternative H,.
However, suppose that the form of such a region is

u(xhx25'°- ")SC ’

Then this form provrdes uniformly most powerful critical regions for
all attamable a values by, of course, appropriately chariging the value
of ¢. That is, there is a certain’ umforrmty property, also associated
w1th o, that 1s not always noted in statistics texts.

EXERCISES

9.11. Let X have the p.d.f. f(x;0) = 6"(1 —0)'-*, x =0, I, zero elsewhere.
We test the simple hypothesns H,: 0 = ; against the alternatlve composite
hypothesns H, : 6 <} by taking a random sample of size 10 and rejecting
'Ho 6 =1if and only if the observed values x,, x,, . .., x;9 Of the sample

observatlons are such that in < 1. Find the power function K(0),
0<f<y, of this test. :

9.12. Let X have a p.d.f. of the form f(x; 6) = 1/6,0 < x < 0, zero elsewhere.
"Let Y, < Y, < Y; < Y, denote the order statistics of a random sample of
~size¢: 4 from this distribution. Let the observed value of Y, be y,. We reject
 H,:0'=1and accept H,: 0 # | if either y, < 3 or y, > 1. Find the power

function K(8), 0 < 0, of the test.

9.13. Consider a normal distribution of the form N(8, 4). The simple
hypothesis H : 8 = 0 is rejected, and the alternative composite hypothesis

. H,: 0> Oisaccepted if and only if the observed mean x of a random sample

““of size 25 is greater than or equal to? Fmd the power function K(8), 0 < 6,
of this test.

9.14. Consider the two normal distributions N(yu,, 400) and N(u,, 225). Let
6 = u; — u,. Let x and y denote the observed means of two independent
random samples, each of size n, from these two distributions. We reject
H,:60 =0 and accept H,:0 >0 if and only if x — y > c. If K(0) is the
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power function of this test, find n and ¢ so that K(O) = 0.05 and K(lO)—4 .
0.90, approximately. o

9.15. If, in Example 2 of this section, H, : § = 8, where ¢ is a fixed posmve
number, and H, : 6 < &, show that the set {(x,, XgyenrsXy)! Zx,’ < c} is
|

a uniformly most powerful critical region for testing H, against H,.

9.16. If, in Example 2 of this section, H, : § = ¢, where @ is a fixed positive
number, and H, : 0 # @', show that there is no uniformly most powerful test
for testing H, against H,. ‘ :

9.17. Let X,, X,, .. ., Xy; denote a random sample of size 25 from a normal
distribution N(8, 100). Find a uniformly most powerful critical region of
size a = 0.10 for testing H, : @ = 75 against H, : 0 > 75.

9.18. Let X}, X,, . . ., X, denote a random sample from a normal distribution
N(0, 16). Find the sample size n and a uniformly most powerful test of
Hy:0 =25 “against H,:0<25 with power function K(6) 50 that
approximately K(25) = 0.10 and K(23) = 0.90.

9.19. Consider a distribution havmg a pd.f. of the form f(x 0) =
65(1 — 0)' ~*, x = 0, 1, zero elsewhere. Let H,: 0 = 5 and H, : 0 > 5. Use
the central llmlt theorem to determine the sample size n of a random sample
so that a uniformly most powerful test of H, against H, has a power function
K(6), with approximately K(3;) = 0.05 and K(,o) 0.90.

9.20. Illustrative Example 1 of this section dealt with a random sample of size
n = 2 from a gamma distribution with & = 1, § = 0. Thus the m.g.f. of the
distribution is (1 — 8)~', r < 1/6, 8 = 2. Let Z = X, + X,. Show that Z
has a gamma distribution with a = 2, § = 0. Express the power function
K(0) of Example | in terms of a single integral. Generalize this for a random
sample of size n.

9.21. Let X}, X,, ..., X, bea random sample from a distribution with p.d.f.
f(x;0) =60x"""',0 < x < o0, zero elsewhere, where 8 > 0. Find a sufficient
statistic for 6 and show that a uniformly most powerful test of H,: 8 = 6
against H,: 6 < 6 is based on this statistic. -

9.22. Let X have the p.d.f. fix; 6) = &(1 —0)' * x =0, 1, zero elsewhere.
We test H,:0 =14 against H,:0 <j by takmg a random sample

X, Xy, ..., X, of size n = 5 and rejecting Hyif Y = Z Xii is observed to be

less than or equal to a constant c.

(a) Show that this is a uniformly most powerful test.

(b) Find the significance level when ¢ = 1.

(c) Find’the significance level when ¢ = 0.

(d) By using a randomized test, modify the tests given in parts (b) and (c)
to find a test with significance level « = 3.
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9.3 Likelihood Ratio Tests

The notion of using the magmtude of the ratio of two probablllty
density functions as .the basis of a best test or of a uniformly most
powerful test can be modified, and made intuitively appealing, to
provide a method of constructing a test of a composite hypothesis
against an alternative composite hypothesis or of constructing a test
of a simple hypothesis against at’ alternative composite hypothesis
when a uniformly most powerful test does not exist. This method leads
to tests called likelihood ratio tests. A likelihbod ratio test, as just
remarked, is not necessarily a uniformly most powerful test, but it has
been proved in the llterature that such a test often has desirable
properties.

+ A certain terminology and notation w11] be mtroduced by means
of an example. . e : :

Example 1. Let the random variable X be N(6,, 6,) and let the parameter
space be Q= {(#,,6,): —o0 <0, < 0,0 <, <oo}. Let the composite
hypothesis be H, : 8, = 0, 8, > 0, and let the alternative composite hypothesis
be H,: 0, #0, 6, > 0. The set w = {(8,,6,):6,=0,0 < 0, < 0} is a subset
of Q and will be called the subspace specified by the hypothe51s H,. Then, for
instance, the hypothesis H,may be described as H, : (8,, 0,) € w. Itis proposed
that we test H, against all alternatives in H,.

Let X,, X,,..., X, denote a random sample of size n > 1 from the
distribution of thlS example The joint p. d.f. of X, 1y Xz, ..., X, is, at each
point’in £, ’

nf2 Z (x,; — (71 )2
) exp | —- = L().

; .;;l
6,0, x),...,%,) =
L6, z‘xl X,) ( 20,

27[02

At each point (8, 6,) € w, the joint p.d.f. of X, X,..., X, is

ixz

26,

nf2
L©, 8 x,,....%0) = (=) exp|———|= Lw).
2n0,

The joint p.d.f., now denoted by L(w), is not completely specified, since 8, may
be any positive number; nor is the joint p.d.f., now denoted by L(),
completely specified, since §; may be any real number and 6, any positive
number. Thus the ratio of L(w) to L(Q) could not provide a basis for a
test of H, against H,. Suppose, however, that we modify this ratio in the
following manner. We shall find the maximum of L(w) in w, that is, the
maximum of L(w) with respect to 6,. And we shall find the maximum of
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L(Q) in Q, that is, the maximum of L(Q2) with respect to 8, and 8,. The ratio
of these maxima will be taken as the criterion for a test of H, against H,.
Let the maximum of L(w) in w be denoted by L(c) and let the maximum of
L@) in 1 be denoted by L(f}). Then the criterion for the test of H, agamst
H, is the likelihood ratlo
g L(a‘))

l(x,,xz,. . .,x,,)—l#z(-a)-.
Since L(w) and L{Q) are probabnhty density functions, 4 = 0; and smoe o is
asubsetofQ,A<1. =

In our example the maxlmum L(d)), of L(w) ls obtamed by ﬁrst settmg

anse_ o 20
d02 202 20%

equal to zero and solving for ;. The solution of &; is Z x‘/n, and thns number
maximizes L(w). Thus the maximum is

l . nj2 o x?x‘z |
L) = G .
\2= i x} /n | 1 2em
l : . I :
ne_l 5/2 ) o Ol .
2n ix’

CES

On the other hand, by usmg Example 4, Sectlon 6 1, the maxmium, L(ﬁ), Of

L(Q) is obtained by replacing 9, and 6, by Zx,/n = X and Z(x, X)}/n,
respectively. That is

n 1 nf2 i (X[ - az
L( )_ €Xp.| — - A
Z (x; — X)n 1 2X(0q—%)/n
]
h ne" nf2
- 2n i (x; — x)?
1
Thus here .
| i (x; — x) "
A= L - 5
X
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n

Because Y x2 =Y (x, — X)? + nx?, A may be written
1 1
1

[ feltenT

Now the hypothesis H, is 6, = 0, 6, > 0. If the observed number X were zero,

A=

the experiment tends to confirm H,. But if X = 0 and X x*>0,then A =1.
On the other hand, if X and nx* / Y (¢ — x)? deviate conmderably from zero,

the expenment tends to negate H,. Now the greater the deviation of
/ Z (x, Tfrom zero, the smaller 4 becomes. That is, if A is used asatest

criterion, then an intuitively appealing critical region for testing H, is a set
defined by 0 < 4 < 4,, where A, is a positive proper fraction. Thus we reject
H,if 4 < 4,. A test that has the critical region A < 4, is a likelihood ratio test.
In this example A < i, when and only when

- i \/’—‘IEI > \/(n - 1)(16-2/n _ 1) — cf
\/V; (x; = XP{(n—1)

If Hy: 6, =0 is true, the results'in Section 4.8 show that the statistic
JnX —0)
\/Z X; — 17)2/(" -1)

has a s-distribution w1th n — 1 degrees of freedom. Accordingly, in this
cxample the likelihood fatio test of H,against H, may be based on a T-statistic.
For a given positive integer n, Table IV in Appendix B may be used (withn — 1
degrees of freedom) to determine the number ¢ such- that
a = Pr[lt(X,, X, - . ., X,)| 2 c; Hy]is the desired significance level of the test.
If the experimental values of X, X,, . . ., X, are, respectively, x,, Xs, . . . ; X,,
then we reject H, if and only if |t(x,, x,, . . ., x,)| = c. If, for instance, n = 6
and « = 0.05, then from Table IV, ¢ = 2.571. '

- The precadmg example should make the following generaliz-
ation easier to read: Let X,, X,, ..., X, denote n independent ran-
dom variables having, respectively, the probability density functions
fi(x;6,,6,,...,08,),i=1,2,...,n The set that consists of all par-
ameter points (6,,6,,...,0,) is denoted by Q, which we have
called the parameter space. Let w be a subset of the parameter
space ). We wish to test the (simple or composite) hypothesis

I(Xls XZ’ LI | Xn) =
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H,:(0,,0,,...,80,) € wagainst all alternative hypotheses. Define the
likelihood functions

L(CO) = 1—[|f;(xl; 015 02’ veey Gm)’ (Bls 02’ ey om) €w,

and

L@ = [1f53 00,0, (01,6, Om)E

Let L(cd) and L(£) be the maxima, which we assume to exist, of these
two likelihood functions. The ratio of L(cd) to L(Q) is called the
likelihood ratio and is-denoted by

L(d)
L&)’
Let 4, be a positive proper function. The likelihood ratio test principle

states that the hypothesis H,:(8,,6,,. ., 8,) € w is rejected if and
only if '

}‘(xhxz,...,x")= =

w AMXy, Xy e, X)) =A< A

The function A defines a random variable A(X}, X5, . . ., X,), and the
significance level of the test is given by

a=Pr[AX,, Xy, ..., X,) < Jo; Hy).

The likelihood ratio test principle is an intuitive one. However,
the principle does lead to the same test, when testing a simple
hypothesis H,against an alternative simple hypothesis H,, as that given
by the Neyman—Pearson theorem (Exercise 9.25). Thus it might be
expected that a test based on this principle has some desirable
properties. c

An example of the preceding generalization will be given.

Example 2. Let the independent random variables X and Y have
distributions that are N(8,, 8;) and N(0,, 6;), where thé-means 6, and 6, and
common variance 0, are unknown. Then Q = {(6,, 0,, 0;): — 0 < 0, < o0,
-0 <0, <0,0<60; <0} LetX,X,,...,X,and ¥,, ¥, ..., ¥, denote
independent random samples from these distributions. The hypothesis
H,: 0, = 0,, unspecified, and @; unspecified, is to be tested against all
alternatives. Thenw = {(0,,0,,60y): —o0 <0, =0, < 0,0 < 8, < oo}. Here
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X,Xy.. .., X, Y, Y, ..., Y, aren + m > 2 mutually independent random
variables having the likelihood functions '

(m +m)2 Z(xi— 0, + Z(yi— 6,)
L) =|=—= exp | —- !
21:93 203
and
]\l Xl:(xf —6,) + z‘:(}’x —?92)2
L(Q) = (77?6;) exp| — 20,
If
¢ In L(w) and dn L(w)
26, n 20,
are equated to zero, then (Exercise 9.26)
Z(xi—el)"‘Z(yi—el):os ()
1 1

3

—(n+m) +bl—[i(xi—0|)2+i()’t— 01)2] =0.
i 1

The solutions for 8, and 0, are, respectively,

;xl+ z‘:}’J
U=
and
;(xf— ) +§(yf — u)?
W=

]

n+m

and ¥ and w maximize L(w). The maximum is

o1\ m)i2
=)

2w

In like manner, if
 dmLE) L) olmLEQ)
06, %, 00,
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are equated to zero, then (Exercise 9.27)

i(xf ~6)=0,
i (v, — 8;) = 0, @

—(+m) +@‘;[2 (x,— 8, +$(y.~—62)2]=0.

The solutions for 6,, 6,, a'qd. 0, are, respectively,

ix.-
="
ZT;J’:'
=
z::(xi““l)z'*'i(."i"“z)z
w =

?

n+m
and u;, u,, and w’ maximize L(QQ). The maximum is

L(Q) _ (ﬁl)(n+m)/2

2aw’

so that

L L((b)_ lv_: (.n+m)/2
ﬂ.(x,,...,x,,,yl,...,y,,,)—ﬂ.—zz?l—)—(w) .

The random variable defined by A" +™ js

Sw-Br+l-

i{xl—[(nf+m)")/(n+m)]}2"+${y,—[(n)?+m}“’)/(n+m)]}2'
Now
L nX +m¥\ af — - nXk+m?\T
E(XI-T;‘;“) =¥[<Xf-x’+(x-m)]

—_n,?+m}_’ ?
n+m

|
_M;

(X.-—«\_’)’+n(
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‘and
” nX +m¥Y , & = (s nX+mY
z,:( T Thtm )—ZI’,[(Y;—Y)+(Y n+m )]
=N 2
—m ___2 _nX‘l'mY
_¥(Y' '+ (Y n+m)
But '
S =\2
= nX+mYY  mn = 2
(X n+m )_(n+m)2( -D
and ‘
= nX+m¥\ _  mm o
,(_‘:Y—- n+m )—(n+m)2( Yy

Hence the random variable deﬁhed b& A”‘j* ™ may be written

Z(X: X)’+Z(Y 0%

z(x x>2+z(r, Y)=+[nm/(n+m)1(x 7y
R [nmj(n + m)I(X — ¥
z(x X>2+2(Y Y)’

If the hypothesis Hy: 6, = 0, is true the random variable

nm
n+m

X-D

z'l';(xi—x")ui(yi— vy
n+m-—2

has, in accordance with Section 6.3, a t-distribution with n + m — 2 degrees
of freedom. Thus the random variable defined by A¥"+™ is S

n+m-—2
m+m=)+T"
The test of Ho agamst all alternatives may then be based on'a t-dlstnbutlon
with n +'m —2 degrees of freedom.
The likelihood ratio principle calls for the rejection of H) if and only if
A < 4y < 1. Thus the significance level of the test is

a= PI[A(XIS sety Xn: Yhftﬂ- (N Ym) < '109 HO]‘
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However, A(X,,..., X,, Y,,..., Y,) < 4 is equivalent to |T] 2 ¢, and so
a=Pr (|7 2 ¢; Hy). :

For given values of n and m, the number c is determined from Table IV in
Appendix B (with n + m — 2 degrees of freedom) in such a manner as to yield
a desired a. Then H, is rejected at a significance level « if and only if |¢| > ¢,
where ¢ is the experimental value of T. If, for instance, n = 10, m = 6, and
a = 0.05, then ¢ = 2.145.

In each of the two examples of this section it was found that the
likelihood ratio test could be based on a statistic which, when the
hypothesis H, is true, has a t-distribution. To help us compute the
powers of these tests at parameter points other thai those described
by the hypothesis H;, we turn to the following definition.

Definition 3. Let the random variable W be N(3, 1); let the random
variable V' be xX(r), and W and V be independent. The quotient

W
Vir
is said to have a noncentral t-distribution with r degrees of freedom and

noncentrality parameter 4. If § = 0, we say that T has a central
t-distribution. .

In the light of this definition, let us reexamine the statistics of the
examples of this section. In Example 1 we had

Jnx
[ (X, = XFfn - 1)
| JnXja
\/ > (X - X)’/[O‘(n = 1)]
Here W, = ./n X/ is N(\/_ 8,/a, 1), V, = 2 (X, — X)/o?is y*(n — 1),

T=

t(X|,...,X,,)=

and W, and ¥, are independent. Thus if 8, # 0, we see, in accordance
with the definition, that #(X, . . ., X,) has a noncentral ¢-distribution
w1th n—1 degrees of frecdom and _noncentrality parameter

\/_ 0,/c. In Example 2 we had
W,

=\/V,/(n+m—2)"
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m o =
- ¥ ® =D

Y- X7+ 3 - Py

where

and

V2=

Here W, is N[./nm/(n + m)(0, — 6,)/a, 1], V,is x*(n + m — 2),and W,
and V, are independent. Accordingly, if 6, # 0,, T has a noncentral
t-distribution with n + m — 2 degrees of freedom and noncentrality
parameter 8, = \/nm/(n + m)(6, — 0,)/a. It is interesting to note that
o, = \/; 6,/c measures the deviation of 8, from 6, = 0 in units of the
standard deviation a/\/r_z of X. The noncentrality parameter
0, = /nm/f(n + m)(6, — 6;)/e is equal to the deviation of §, — 8, from
8, — 0, = 0in units of the standard deviation ¢./(n + m)/nmof X — Y.

There are various tables of the noncentral ¢-distribution, but they
are much too cumbersome to be included in this book. However, with
the aid of such tables, we can determine the power functions of these
tests as functions of the noncentrality parameters.

In Example 2, in testing the equality of the means of two normal
distributions, it was assumed that the unknown variances of the
distributions were equal. Let us now consider the problem of testing
the equality of these two unknown variances.

Example 3. We are given the independent random samples X, ..., X,
and Y,,..., Y, from the distributions, which are N(8,, 6,) and N(#8,, 6,),
respectively. We have

Q={(0,0,0,0): —0 <8,,0, <00,0<8b,, 0, <0}
The hypothesis H, : 6, = 0,, unspecified, with 8, and 8, also unspecified, is to
be tested against all alternatives. Then
={(0|,02,B3,04)' — Q0 <0|,92<CD 0<03=04<CD}

It is easy to show (see Exercise 9.30) that the statlsuc defined by A = L(@)/ L)
is a function of the statistic

3 (X, — BPfn — 1)
Fe 1

5 ¥, — Byiom - 3
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If 8; = 8, this statistic F has an F-distribution with n — 1 and m — 1 degrees
of freedom. The hypothesis that (6,, 8,, 6, 8,) € w is rejected if the computed
F < ¢, or if the computed F > ¢,. The constants ¢, and ¢, are usually selected
so that, if 8, = 8,,

Pr(F<¢)=Pr(F> cz)=%,

where «, is the desired significance level of this test.

Often, under H,, it is difficult to determine the distribution of
A=AMX,, X, ...,X,) or the distribution of an cquivalcnt statistic
upon which to base the likelihood ratio test. Hence it is impossible to
find 4, such that Pr [A < Ay; H,] €quals an appropnatc value of a. The
fact that the maximum likelihood estimators in a regular case have a
joint normal distribution does, however, provide a solution. Using this
fact, in a more advanced course, we can show that —2 In 4 has, given
H, is true, an approximate chi-square distribution with r degrees of
freedom, where r = the dimension of Q — the dimension of w. For
illustration, in Example 1, the dimension of Q = 2 and the dimension
of w=1landr=2—-1=1." :

Also, in that example, note that

. —2 - -7
—21n}.=nln{1 +——nx—:——}=nln{l +"—}.
: E (x;—x )2 s
Hence, with n large so that X%/s? is close to zero under H, : 6, = 0, let
us approximate the right-hand member by two terms of a Taylor’s
series expanded about zero: :
InAizx0 nx’
- 2 ~ =
n + 2

Since n is large, we can replace n by n — | to get the approximation

— 2
——2lnﬁ.z(s————£-—~—) =
//n—1

But T = f’/(S/ﬁ/n — 1) under H,: 8, =0 has a t-distribution with
n — 1 degrees of freedom. Moreover, with large n — 1, the distribution
of T'is approximately N(0, 1) and the square of a standardized normal
variable is y2(1), which is in agreement with the stated result. Exercise
9.31 provides another illustration of the fact that —21n A has an
approximate chi-square distribution.
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EXERCISES

9.23. In Example 1 let n = 10, and let the experimental values of the random
variables yield X = 0.6 and lzo(x,. — x)? = 3.6. If the test derived in that
example is used, do we aorjcpt or reject Hy:0, =0 at the 5 percent
significance level?

9.24. In Example 2 let n=m =8, x =75.2, y = 78.6, i(x,- —x)2=171.2,
i (¥; — 7)* = 54.8. If we use the test derived in that exar;nplc, do we accept
c;r reject Hy : 0, = 0, at the 5 percent significance level?

9.25. Show that the likelihood ratio principle leads to the same test, when
testing a simple hypothesis H, against an alternative simple hypothesis H,,
as that given by the Neyman—Pearson theorem. Note that there are only
two points in €.

9.26. Verify Equations (1) of Example 2 of this section.
9.27. Verify Equations (2) of Example 2 of this section.

9.28. Let X, X, ..., X, be a random sample from the normal distribution
N(0, 1). Show that the likelihood ratio principle for testing Hy: 0 = @',
where ¢’ is specified, against H, : 0 # 0’ leads to the inequality [x — 8’| > c.
Is this a uniformly most powerful test of H, against H,?

9.29. Let X}, X;, ..., X, be a random sample from the normal distribution
N(6,, 6;). Show that the likelihood ratio principle for testing H, : 0, = 6
specified, and 6, unspeciﬁed against H, : 0, # 63, 8, unspecified, leads to a

test that rejects when Z (x;i—XP<c or Z (x; — X)* > ¢,, where ¢, < c,

are selected appropnately

9.30. LetX,,...,X,and ¥,, ..., Y, be independent random samples from
the distributions N(0,, 6,) and N(0,, 0,), respectively.
(a) Show that the likelihood ratio for testing H,: 8, = 0,, 6, = 0, against
all alternatives is given by

n "2 m
I:; (x; — jz/ "] [; o — }7)2/ m]
n m =+ my2?
{[; (x; —u) + le(y.- - u)"] / (m + n)}

where u = (nx + my)/(n + m).

m/2
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(b) Show that the likelihood ratio test for testing H,: 8, =0,, 6, and 6,
unspecified, against H, : 0, # 8,, 8, and 8, unspecified, can be based on
the random variable

(X, — X(n— 1)
F |

i(n — PYm—1)

(c) If 8, = 8,, argue that the F-statistic in part (b) is independent of the
T-statistic of Example 2 of this section.

9.31. Let nindependent trials of an experiment be such that x,, x,, . . ., x, are
the respective numbers of times that the experiment ends in the mutually
exclusive and exhaustive events A4,, 4,, ..., 4,. If p, = P(A4,) is constant
throughout the 7 trials, then the probability of that particular sequence of
trials is L = pfipy2- - - pf.

(a) Recallingthatp, + p, + - - - + p, = 1, show that the likelihood ratio for
testing Hy: p,=po > 0,i= 1,2, ..., k, against all alternatives is given
by -

(b) Show that

koxi(x; — "I’Of)2
-2Ind= —_—
fZ:l (np;)?

”

where p; is between p,; and x;/n.
Hint: Expand In p,, in a Taylor’s series with the remainder in the

term involving (p,, — x;/n)%
(c) For large n, argue that x;/(np;)? is approximated by 1/(np,y) and hence
k (x; — npy)’
X

, when H, is true.
i=1 np(’f

—-2lnix

In Section 6.6 we said the right-hand member of this last equation
defines a statistic that has an approximate chi-square distribution
with & — 1 degrees of freedom. Note that

dimension of Q@ — dimensionof w =(k—1)—-0=k — I.

9.32. Let Y, < Y, <:-: < Y; be the order statistics of a random sample of
size n = 5 from a distribution with p.d.f. f(x; ) = 3¢ "~ %, —0 < x < 00,
for all real 6. Find the likelihood ratio test A for testing H, : § = 6, against
H,:0+8,.

9.33. LetX,,X,,...,X,andY,, Y,, ..., Y, beindependent random samples
from the two normal distributions N(0, #,) and N(0, 6,).
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(a) Find the likelihood ratio A for testing the composite hypothesis
H,: 0, = 0, against the composite alternative H, : 8, # 6,.

(b) This 4 is a function of what F-statistic that would actually be used in
this test?

9.34. A random sample X,, X,, ..., X, arises from a distribution given by
Hy: f(x; 0) = %0 , 0 <x <0, zero elsewhere,

or
H,:f(x;0)= %e"‘”, 0 < x < 00, zero elsewhere.

Determine the likelihood ratio (1) test associated with the test of H, against
H,.

9.35. Let X and Y be two independent random variables with respective
probability density functions

f(x;60) = (01) e 0<x< oo,

zero elsewhere, i=1,2. To test H,: 0, =6, against H,:0, # 68,, two
independent random samples of sizes n, and n,, respectively, were taken
from these distributions. Find the likelihood ratio A and show that A can
be written as a function of a statistic having an F-distribution, under H,.

9.36. Consider the two uniform distributions with respective probability
density functions

f(x;oi)=2lo,~’ -0, <x<86,

zero elsewhere, i=1,2. The null hypothesis is H,:0, = 0, while
the alternative is H,:0,#80,. Let X, <X,<---<X, and
Y <Y, <---- <Y, be the order statistics of two independent random
samples from the two distributions, respectively. Using the likelihood
ratio A, find the statistic used to test H, against H,. Find the distribution
of —2In A when H, is true. Note that in this nonregular case the number
of degrees of freedom is two times the difference of the dimensions of Q
and w. '

9.4 The Sequential Probability Ratio Test

In Section 9.1 we proved a theorem that provided us with a
method for determining a best critical region for testing a simple
hypothesis against an alternative simple hypothesis. The theorem was
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as follows. Let X, X,,...,X, be a random sample with fixed
sample size n from a distribution that has p.d.f. f(x;0), where
0e{0:0=26,0"}and 0 and §” are known numbers. Let the joint p.d.f.
of X\, X,,..., X, be denoted by

L(8, n) = f(x,; 0)f(x5; 0) - - - f(xn; 0),

a notation that reveals both the parameter 6 and the sample size n. If
we reject H,: 6 = 6’ and accept H,: 6§ = 68” when and only when

L@, n) e
Le", n)

where k > 0, then this is a best test of H, against H,.

Let us now suppose that the sample size n is not fixed in advance.
In fact, let the sample size be a random variable N with sample space
{n:n=1,2,3,...}. An interesting procedure for testing the simple
hypothesis H,: 0 = @' against the simple hypothesis H,:0 = 6" is
the following. Let k, and k, be two positive constants with k, < k.
Observe the independent outcomes X, X,, Xj, ... in sequence, say
X, X3, X3, . - . , and compute

L@, LE,2) L@,3)
L@, 1)’ Le,2)’ Le,3)"
The hypothesis H,: 0 = @’ is rejected (and H, : @ = 0" is accepted) if

and only if there exists a positive integer n so that (x,, x,, . . ., x,)
belongs to the set “

L@, j)
L6, j)

C,,={(x,,...,x,,):k0< <k,j=1,...,n—1,

L@, n)
and L@ n) < ko}.

On the other hand, the hypothesis H,: 0 =6 is accepted (and
H, : 0 = ¢ is rejected) if and only if there exists a positive integer » so
that (x,, x,, . . ., x,) belongs to the set

L, )) .
B, = sy Xy) kg <————<ky,j=1,2,...,n— 1,
{(xl X,) 0<L(0",j)< 1] n
L@, n)
>k, >
and Lo n) > .}
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That is, we continue to observe sample observations as long as
L 14

L Le.n
L(®", n)

We stop these observations in one of two ways:

ko < k|f'.‘ (1)

1. With rejection of H,: § = 6’ as soon as
L, |
( " n) < ko,
L", n)

or

2. with acceptance of H,: 8 = 0" as soon as
L', n)
L(@", n)

A test of this kind is called Wald’s sequential probability ratio test.
Now, frequently inequality (1) can be conveniently expressed in an
equivalent form

2 k.

| co(n) < u(xy, x5, ...,x,) <cy(n),

where u(X,, Xa, . . . , X,) is a statistic and c,(n) and ¢, () depend on the
constants kg, k;, 8',:68”, and on n. Then the observations are stopped
and a decision is reached as soon as

u(x,, xzk,l.-. vy Xn) < () i or uU(Xy, X3y . ..y Xy) = €1 ().
We now give an illustrative example.
Example 1. Let X have a p.d.f.
fle, ) =61 -0)'"% x=0,1,
= 0 elsewhere.

In the preceding discussion of a seqluential probability ratio test,let Hy: 0 =1
and H,:0 =1; then, with Y. x, =} x,,
|

Len) _ Q@ s,
L(%y n) (%)2 x;(%)n -ZIxi, :
If we take logarithms to the base 2, the inequality
L(, n)

ke < —— <k
‘4 2 > 1s
R 3’")
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with 0 < k; < k;, becomes

log kg <n— 2$x,~< log, k,,
or, equivalently,

1 ul 1
co(n) = g —ilogz k, < Zx,- < ; —-2-log2ko = ¢y(n).
1

Note that L(}, n)/LG, n) < ko if and only if ¢,(n) < Z x; and L(3, n)/
LG, n) = k, if and only if co(n) > Z x;. Thus we contmue to observe
outcomes as long as ¢y(n) < Z x; < c,(n) The observation of outcomes is
discontinued with the first value n of N for which either ¢,(n) < Zx, or
co(n) = 2": x;. The inequality ¢,(n) < i x; leads to the rejection of Hol: 6 =3
(the accelptance of H)), and the inequallity co(n) = i x;leads to the acceptance
of Hy: 6 =1 (the rejection of H,). l

Remarks. At this point, the reader undoubtedly sees that there are many
questions that should be raised in connection with the sequential probability
ratio test. Some of these questions are possibly among the following:

1. What is the probability of the procedure continuing indefinitely?

2. What is the value of the power function of this test at each of the points
0 =6 and 6 = 6"

3. If @ is one of several values of 6 specified by an alternative composite
hypothesis, say H, : > ', whatis the power function at each point 8 > 6"?

4. Since the sample size N is a random variable, what are some of the
properties of the distribution of N? In particular, what is the expected value
E(N) of N?

5. How does this test compare with tests that have a fixed sample size n?

A course in sequential analysis would investigate these and many other
problems. However, in this book our objective is largely that of acquainting
the reader with this kind of test procedure. Accordingly, we assert that the
answer to question 1 is zero. Moreover, it can be proved that if 8 = 6" or if
0 = 0", E(N) is smaller, for this sequential procedure, than the sample size of
a fixed-sample-size test which has the same values of the power function at
those points. We now consider question 2 in some detail.

In this section we shall denote the power of the test when H, is
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true by the symbol a and the power of the test when H, is true by the
symbol 1 — B. Thus a is the probability of committing a type I error
(the rejection of H, when H, is true), and B is the probability of
committing a type Il error (the acceptance of H, when H, is false). With
the sets C, and B, as previously defined, and with random variables of
the continuous type, we then have

e=3% | Low, 1-p=3 J L@, n).
n=1 G . nw | Ca

Since the probability is 1 that the procedure will terminate, we also

have
l—a=) | L@E,m, p=3 J L@, n).
n=1 B, n=1 B,
If (x), x3, .. ., x,) € C,, we have L(§', n) < ko, L(8", n); hence it is clear
that 2

a=% | Lo.ms< }': ko L(6", n) = ko(1 — B).

n=1 Ca G
Because L(6', n) > k,L(6", n) at each point of the set B,, we have
l—a= i LO,n) =Y | kL@ n)=kp.

ne] n" nw=1 Bn

Accordingly, it follows that

o | —a
1 _ B S kOv kl S B ]
provided that § is not equal to zero or 1.
Now let a, and f, be preassigned proper fractions; some typical
values in the applications are 0.01, 0.05, and 0.10. If we take

)

o, l —a,
STop TR

then inequalities (2) become

ko

o < o, 1 —a, < l —a
1-g~1-8.’ B. [
or, equivalently,’

ol =)< (1—Pos, Bl —a) <1 —a)f,.

)
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If we add corresponding members of the immediately prcceding
inequalities, we find that

a+p_aﬁa-ﬁaasaa+ﬂafﬂga;aﬁa

and hence
a+pf<a,+ B,

That is, the sum a + f of the probabilities of the two kinds of errors
is bounded above by the sum o, + B, of the preassigned numbers.
Moreover, since a and f are positive proper fractlons, inequalities (3)
imply that :

o, B.
Sl—-ﬂ,,’ ﬂ<1—a

consequently, we have an upper bound on each of a and . Various
investigations of the sequential probability ratio test seem to indicate
that in most practical cases, the values of « and f are quite close to a,
and B,. This prompts us to approximate the power function at the
points § = 0" and # = 8" by a, and 1 — B,, respectively.

Example 2. Let X be N(0, 100). To find the sequential probabilify ratio test
for testing H,: 0 = 75 against H,:0 = 78 such that each of a and f is
approximately equal to 0.10, take

|- 0.10
010 2

k|=

Since

L(75,n) _ exp [=X (= 757/20100)] 6 Y x, — 459n
L(78,n)  exp[-Y (x; — 78)%/2(100)] oxP (_ 200 ) ’

the inequality

L(75 n) —k
°= 9 L8, m) ~ !
can be rewritten, by taking logarithms, as
6 Zx —459n
—-In9 <In9.
In9 < —=——— 200 n

This inequality is equivalent to the inequality

o) =3n—-Pmn9< ix,(%n +1%1n 9 = ¢,(n).
1 C e

Moreover, (75, n)/L(78, n) < k, and L(75, n)/L(78, n) > k, are equivalent
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to the inequalities ) x; > ¢,(n) and i x; < cy(n), respectively. Thus the
1 1

observation of outcomes is discontinued with the ﬁrst value n of N for which

either Zx > c,(n) or Zx, < co(n). The mequa.hty Z x> c,(n) leads to the

rejectlon of Hy: 8 =15, and the mequalltyz xS co(n) leads to the acceptance

of H,: 8 = 75. The power of the test is approx1mately 0.10 when H, is true,
and approximately 0.90 when H, is true. :

Remark. Itisinteresting to note that a sequential probability ratio testcan
be thought of as a random-walk procedure. For illustrations, the final
inequalities of Examples 1 and 2 can be rewritten as

—logsky < ¥ 2(x; — 0.5) < —log; ko
! R

and

—%.an9<2(x 76.5) <12°In9,

respectively. In each instance, we can think of starting at the point zero and
taking random steps until one of the boundaries is reached. In the first
situation the random steps are 2(X, — 0.5), 2(X; — 0.5), 2(X; — 0.5), ... and
hence are of the same length, 1, but with random directions. In the second
instance, both the length and the direction of the steps are random variables,
X, —76.5, X; — 76.5, X; — 76.5, .

In recent years, there has been much attention to improving quality
of products using statistical methods. One such simple method was
developed by Walter Shewhart in which a sample of size n of the items
being produced is taken and they are measured, resulting in » values.
The mean X of these » measurements has an approximate normal
distribution with mean u and variance o%/n. In practice, u and ¢* must
be estimated, but in this discussion, we assume that they are known.
From theory we know that the probability is 0.997 that X is between

LCL=p -2 and UCL=u+-Z.
7

N
These two values are called the lower (LCL) and upper (UCL) control
limits, respectively. Samples like this are taken periodically, resulting
in a sequence of means, say x,, X,, X, . . . . These are usually plotted;
and if they are between the LCL and UCL, we say that the process

STUDENTS-HUB.com Uploaded By: anonymous



432 Theory of Statistical Tests |Ch. 9

is in control. If one falls outside the limits, this would suggest that the
mean p has shifted, and the process would be investigated.
It was recognized by some that there could be a shift in the mean,

say from p to p + (a/+/n); and it would still be difficult to detect that
shift with a single sample mean as now the probability of a single x
exceeding UCL is only about 0.023. This means that we would need
about 1/0.023 ~ 43 samples, each of size n, on the average before
detecting such a shift. This seems too long; so statisticians recognized
that they should be cumulating experience as the sequence
X1, X3, X3, - . . is observed in order to help them detect the shift sooner.
It is the practice to compute the standardized variable Z = (X — u)/(a/

n); thus we state the problem in these terms and provide the solution
given by a sequential probability ratio test.

Here Z is N(0, 1), and we wish to test H,: 8 = 0 against H,: 0 = 1
using the sequence of i.i.d. random variables Z,, Z,, . .., Z,,, . ... We
use m rather than n, as the latter is the size of the samples taken
periodically. We have

LO,m)  exp[-} /2 [ . ]
L(l,m)  exp[-Y (z — 1)¥2] exp ,-Z. (z )
Thus

=

i=1

k, < exp I:—. (z; — 0.5)] <k,

can be rewritten as

h=—Inky> Y (z;—0.5) > —Ink, = —h.
=

It is true that —In k, = In k, when a, = §,. Often, h = —In ky is taken
to be about 4 or 5, suggesting that «, = g, is small, like 0.01. As
Z (z; — 0.5) is cumulating the sum of z;— 0.5, i=1,2,3,..., these
procedures are often called CUSUMS. If the CUSUM = X (z; — 0.5)
exceeds A, we would investigate the process, as it seems that the mean
has shifted upward. If this shift is to 8 = 1, the theory associated with
these procedures shows that we need only 8 or 9 samples on the average,
rather than 43, to detect this shift. For more information about these
methods, the reader is referred to one of the many books on quality
improvement through statistical methods. What we would like to
emphasize here is that, through sequential methods (not only the
sequential probability ratio test), we should take advantage of all past
experience that we can gather in making inferences.
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EXERCISES

9.37. Let X be N(0, 6) and, in the notation of this section, let 8’ =4, 6" =9,
a, = 0.05,and §, = 0.10. Show that the sequential probability ratio test can

be based upon the statistic )’ X?. Determine cy(n) and c,(n).
|

9.38. Let X have a Poisson distribution with mean 6. Find the sequential
probability ratio test for testing H,: 8 = 0. 02 against H, : @ = 0.07. Show

that this test can be based upon the statistic ): X,. Ifa, =0.20and 8, = 0.10,
find c,(n) and ¢,(n). '

9.39. Let the independent random variables Y and Z be N(y,, 1)and N(u,, 1)
respectively. Let 8 = u;, — u,. Let us observe independent observations
from each distribution,say Y,, Y5, .. and Z,, Z,,....Totestsequentially
the hypothesns Hy: 6 = Oagainst H,: § =}, use the sequence X=Y-2,
i=12,.... If a,=B,=0.05 show that the test can be based upon
X=Y- Z Fmd co(n) and ¢,(n).

9.40. Say that a manufacturing process makes about 3 percent defective
items, which is considered satisfactory for this particular product. The
managers would like to decrease this to about 1 percent and clearly want
to guard against a substantial increase, say to 5 percent. To monitor the
process, periodically » = 100 items are taken and the number X of defectives
counted. Assume that X is b(n = 100, p = 0). Based on a sequence
X, X5...,X,, ..., determine a sequential probability ratio test that
tests Hy: 0 = 0.01 against H, : 8 = 0.05. (Note that 8 = 0.03, the present
level, is in between these two values.) Write this test in the form

ho> i (x,-—na')>h|
f=1
and determine d, hy, and h, if a, = B, = 0.02.

9.5 Minimax, Bayesian, and Classification Procedures

In Chapters 7 and 8 we considered several procedures which may
be used in problems of point estimation. Among these were decision
function procedures (in particular, minimax decisions) and Bayesian
procedures. In this section, we apply these same principles to the
problem of testing a simple hypothesis H, against an alternative simple
hypothesis H,. It is important to observe that each of these procedures
yields, in accordance with the Neyman—Pearson theorem, a best test
of H, against H,.
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We first investigate the decision function approach to the problem
of testing a simple hypothesis against a simple alternative hypothesis.
Let the joint p.d.f. of n random variables X, X,, . .., X, depend upon
the parameter 0. Here n is a fixed positive integer. This p.d.f. is denoted
by L(6; x,, x5, ..., x,) or, for brevity, by L(0). Let 6 and 6" be
distinct and fixed values of 6. We wish to test the simple hypothesis
H,: 0 =0 against the simple hypothesis H,:0 = 60". Thus the
parameter spaceisQ = {0 : 6 = ¢, 8”}. In accordance with the decision
function procedure, we need a function J of the observed values of
X,, ..., X,(or, of the observed value of a statistic Y) that decides which
of the two values of 6, 8 or 8", to accept. That is, the
function 6 selects either Hy: 0 = 6’ or H,: 0 = 6". We denote these
decisions by 4 = 6’ and § = 8", respectively. Let £ (0, §) represent the
loss function associated with this decision problem. Because the pairs
@=0,6=20) and (0 =0",5 = 0") represent correct decisions, we
shall always take £(0’, 0") = £(0",8”) = 0. On the other hand, if
either 6 = 6" when 0 = ' or 6 = 6’ when 0 = 0", then a positive value
should be assigned to the loss function; that is, #(6’,0") > 0 and
Z0",60)>0. |

It has previously been emphasized that a test of H, : 6 = 0 against
H, : 6 = 6" can be described in terms of a critical region in the sample
space. We can do the same kind of thing with the decision function.
That is, we can choose a subset C of the sample space and if
(xy, X3, ..., x,) € C, we can make the decision § = 6”; whereas, if
(x1, X3, ..., X,) € C*, the complement of C, we make the decision
6 = 6’. Thus a given critical region C determines the decision function.
In this sense, we may denote the risk function by R(0, C) instead of
R(0, 6). That is, in a notation used in Section 9.1,

R(6, C) = R(D, &) = (0, $)L(0).
’ ’ cuC*
Sinced =0"if (x,,...,x,)eCandd =0'if(x,, ..., x,,)e C*,wehave
RO, C) = J 20, 0")L(0) + JA 20, 0')L(0). ¢))
C c*

If, in Equation (1), wé take 0 = ¢, then £ (6, ') = 0 and hence

R, C) = f 2@, 0\LEO) =L@, o")J L®).
C C
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On the other hand, if in Equation (1) we let § = 6", then £(6", 8") =0
and, accordingly,

R@",C) = J 20", 0)L(O") = 20", 0’)J L(©").
c* c*

Itis enlig}htening to note that, if K(0) is the power function of the test
associated with the critical region C, then

R, C)= L@, 0)K©O) =2, 0",
where o = K(@) is the signiﬁcance level; and
R(@", C) = 28", )1 — K(©")] = 2", 08,
where f =1 — K(6"”) is the probability of the type Il error.

Let us now see if we can find a minimax solution to our problem.
That is, we want to find a critical region C so that

max [R(6', C), R(6", C)]
is minimized. We shall show that the solution is the region

L(a,;xla'--s n)
= : k»,
‘ {(x" M N }

provided the positive constant k is selected so that R(¢’, C) = R(6", O).
That is, if k£ is chosen so that

Z(@,0 J L@)=20",0) j L(6"),
c

C

then the critical region C provides a minimax solution. In the case of
random variables of the continuous type, k can always be selected so
that R(#’, C) = R(0", C). However, with random variables of the
discrete type, we may need to consider an auxiliary random exper-
iment when L(6)/L(6”") = k in order to achieve the exact equality
R@,C)= R, O).

To see that this region C is the minimax solution, consider every
other region A4 for which R(6’, C) > R(¢’, A). Obviously, a region A4 for
which R(¢#, C) < R(#, A) is not a candidate for a minimax solution,
for then R(#, C) = R(0", C) < max [R(¢, A), R(0", 4)]. Since
R, C) = R(6’, A) means that ‘

L@, 6 f L(B’) A () J L(#),
. C A
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we have

o= j L@) > J' L(@).-
C A

That is, the significance level of the test associated with the critical
region A is less than or equal to a. But C, in accordance with the
Neyman—Pearson theorem, is a best critical region of size a. Thus

J' L(@") = .[ L(0")
c y
J L( ")SJ L(6").
c A

G 0’).[ L") < 2", 9").[ L(8"),
lad A°

and

Accordingly,

or, equivalently,
R(6", C) < R(0", A).
That 1s,
R(@, C) = R(6", C) < R(0", A).
This means that
max [R(6’, C), R(0", C)] < R(#", A).
Then certainly,
max [R(¢', C), R(0", O)] < max [R(€, A), R@", A)],

and the critical region C provides a minimax solution, as we wanted
to show.

Example 1. Let X, X, . .., X,ndenote a random sample of size 100 from
a distribution that is N(0, 100). We again consider the problem of testing
H,:0=175 against H,:0=78. We seeck a minimax solution with
£(75,78) = 3 and £(78, 75) = 1. Since L(75)/L(78) < k is equivalent to
x > ¢, we want to determine ¢, and thus k, so that

3Pr(X>c;0=175=Pr(X <c,0="18).
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Because X is N(6, 1), the preceding equation can be rewritten as
31 — @(c — 75)] = B(c — 78).

If we use Table III of the appendix, we see, by trial and error, that the
solution is ¢ = 76.8, approximately. The significance level of the test is
1 — @(1.8) = 0.036, approximately, and the power of the test when H, is true
is 1 — ®(—1.2) = 0.885, approximately.

Next, let us consider the Bayesian approach to the problem of
testing the simple hypothesis H, : § = 0’ against the simple hypothesis
H,:0 = 6". We continue to use the notation already presented in this
sectlon In addition, we recall that we need the p.d.f. A(0) of the random
variable @. Since the parameter space consists of but two points, 6’
and 6”, © is a random variable of the discrete type; and we have
h@) + h(0") = 1. Since L(6; x,, X3, . . . , x,) = L(0) is the conditional
p.d.f.of X;, Xa, . .., X,, given ® = 0, the joint p.d.f. of X, X>, . . ., X,
and . @ is - o .

h(O)L(O; x,, x3, . . ., x,) = H(B)L(6).

Because
Z h(O)L(0) = h(8")L(0") + h(0")L(0")

is the'marginal p.d.f. of X;, X;, .. ., X,, the conditional p.d.f. of ®,
given X, =x,...,X,=Xx,, is

h(6)L(8)
h(0")L(6") + h(0")L(6")
Now a Bayes’ solution to a decision problem is defined in Section
8.1 as a 4(y) such that E{Z[0, 6(»)]|Y = y} is a minimum. In this

problem if 6 = 6, the conditional expectation of 3’(0 d), given
'X,—x.,...,X = X,, IS

k(@lxi, . .., x,) =

20", 0)h(6")L(@")
h@)L(®) + h(@")L(@")’

Y 20, 0)kO|x., . .., X,) =
0

because Z (6, 0") = 0; and if 6 = 6", this expectation is

" _ 2L, 0MnO6)LO)
; ."[(0, 0 )k(le,, Tt xn) - h(g,)L(Oz) + h(O”)L(O”) ’
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because £ (0", 8")-= 0. Accordingly, the Bayes’ solution requires that
the decision § = 0" be made if

20, 0)h(O)LO) < 20", 0)h(0")L(0")
h(O)L(®) + hEIL(E") ~ KOIL®) + h(8)L(E") "
or, equivalently, if .

L) £, 0)he") .
Lo) " 2@. 090 )

If the sign of inequality in expression (2) is reversed, we make the
decision’d = ¢’; and if the two-members of expression (2) are equal, we
can use some auxiliary random experiment to make the decision. It is
important to note that expression (2) describes, in accordance with the
Neyman-Pearson theorem, a best test. e

Example 2. In ‘addition to the mformatlon given in Example 1, suppose
that we know the prior probabilities for 8§ = & = 75 and for § = 8" = 78 to
be given, respectively, by /(75) = 1 and h(78) = §. Then the Bayes’ solution s,
in this case,

L5y (H@

—_— =2,

L(78) 3G
which is equivalent to x > 76.3, approximately. The power of the test when
Hyistrueis 1 — ®(1.3) = 0.097, approximately, and the power of the test when
H,is true is 1 — ®(—1.7) = ®(1.7) = 0.955, approximately.

In summary, we make the following comments. In testing’ the
simple hypothesis H, : § = 0’ against the simple hypothesis H, : 0 = 6",
it is emphasized that each principle leads to critical regions of the form

L@ x,...,x,)
X)Xy, 2 . s
{( 15y X2, ’ xn) L(o,,; X, x”) < k}

where k is a positive constant. In the classical approach, we determine
k by requiring that the power function of the test have a certain value
at the point @ = 6’ or at the point § = 6" (usually, the value « at the
point § = ). The minimax decision requires k to be selected so that

2@, 0" J L) = 20", 0) J L(0").
C c*

Finally, the Bayes’ procedure requires that
L L, 00"
T L, 0N
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Each of these tests is a best test for testing a simple hypothesis
H,:0 = @ against a simple alternative hypothesis H,: 0 = 6".

The summary above has an interesting application to the problem
of classification, which can be described as follows. An investigator
makes a number of measurements on an item and wants to place it into
one of several categories (or classify it). For convenience in our
discussion, we assume that only two measurements, say X and Y, are
made on the item to be classified. Moreover, let X and Y have a joint
p.d.f. f(x,y; 0), where the parameter 6 represents one or more
parameters. In our simplification, suppose that there are only two
possible joint distributions (categories) for X and Y, which are indexed
by the parameter values 8’ and 8", respectively. In this case, the problem
then reduces to one of observing X=x and Y=y and
then testing the hypothesis § = 8’ against the hypothesis § = 8", with
the classification of X and Y being in accord with which hypothesis is
accepted. From the Neyman—Pearson theorem, we know that a best
decision of this sort is of the form: If

o Sx, 3, 8) <k

Sf(x, y; 87)
choose the distribution indexed by 6”; that js, we classify (x, y) as
coming from the distribution indexed by 8”. Otherwise, choose the
distribution indexed by ¢'; that is, we classify (x, y) as coming from the
distribution indexed by €'. Here.k can be selected by considering the
power function, a minimax decision, or a Bayes’ procedure. We favor
the latter if the losses and prior probabilities are known.- . .

Example 3. Let (x, y) be an observation of the random pair (X Y), which
has a bivariate normal distribution with parameters u,, y,, 0+, 03, and p. In
Section 3.5 that joint p.d.f. is given by

2750'|0'2 1 —p

. 2 2 — — gyt 12 M2
f(xa y, ﬂla “Z:”GI!GZ’ p) - ze i #2) ’

—0<xX<0w, —0wW<y<ow,
where g, >0,0,>0, -1 <p<l,and . .. -

: 1 [(x=mY . (x=w\(y=m\, (y—mY
q(-xayvuth):l_sz:( 7, )—2p( v, )( o) )+( o )]

Assume that ¢2, 6%, and p are known but that we do not kndw whether the
respective means of (X, Y) are (u;, u3) or (uy, us). The inequality

f('x yi ul’ I‘zs a]s azy ﬂ)
ﬂ'x’y; ulsauls 0219 O'z,P)

<k

STUDENTS-HUB.com Uploaded By: anonymous



440 ‘ Thkeory of Statistical Tests [Ch. 9

is equivalent to

Hatx, y; 7, 15) — q(x, y; pi, 1)) < Ink.

Moreover, it is clear that the difference in the left-hand member of - this
inequality does not contain terms involving x?, xy, and y°. In particular, this
inequality is the same as

1 m—p el — x4+ #— B PG — HY) )
1—-p o 00, a; 0,0,

< Ink +3[q(0, 0; ui, u3) — q(0, O; pi, p3)l, (3)

or, for brevity,
ax + by < c.

That is, if this linear function of x and y in the left-hand member of inequality
(3) is less than or equal to a certain constant, we would classify that (x, y) as
coming from the bivariate normal distribution with means uf and uj.
Otherwise, we would classify (x, y) as arising from the bivariate normal
distribution with means y; and u;. Of course, if the prior probabilities and
losses are given, & and thus ¢ can be found easily; this will be illustrated in
Exercise 9.43.

Once the rule for classification is established, the statistician might
be interested in the two probabilities of misclassifications using that
rule. The first of these two is associated with the classification of (x, y)
as arising from the distribution indexed by 8" if, in fact, it comes from
that index by €. The second misclassification is similar, but with the
interchange of & and 6". In the preceding example, the probabilities
of these respective misclassifications are

Pr(aX + bY < c; ui, u3) and Pr(aX + bY > c; u}, ). ~

Fortunately, the distribution of Z = aX + bY is easy to determine,
so each of these probabilities is easy to calculate. The m.g.f. of Z is

E(erZ) = E[ef(ax+bl’)] — E(ear)(+bn’).

Hence in the joint m.g.f. of Xand Y found in Section 3.5, simply replace
t, by at and ¢, by bt to obtain

ai(at)’ + 2pa,a,(ar)(br) + alz(bt)z]
2

E(e%) = exp Tplat + u,bt +
B

= exp | (ap + bu)t +

(a%a® + Zdbpa. g, + bzai)tz]
> )
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However, this is the m.g.f. of the normal distribution
N(“#l + buy, a0} + 2abpo, o, + bzﬂ'z)

With this 1nformat10n it is easy to compute the probabllltles of
misclassifications, and this will also be demonstrated in Exercise 9.43.

One final remark must be made with respect to the use of the
important classification rule established in Example 3. In most
instances the parameter values u{, u; and uf, 5 as well as a3, o3, and
p are unknown. In such cases the statistician has usually observed a
random sample (frequently called a training sample) from each of the
two distributions. Let us say the samples have sizes n’ and n”,
respectively, with sample characteristics

E',} ’- (sx)z’ (Sy)z’ r and —n " (S )2 (Su)z n
Accordingly, if in inequality (3) the 'parameters Wi, W Wiy iy, 03, a,
and po,a, are repla"ced‘by the unbiased estimates '

, WP + (S n(s) + n'(s)

by e Syt B

xaysxyys

]

n+n -2 > n+n-2
n'r's,s, +n"r'sys,
n+n-2

the resulting expression in the left-hand member is frequently called
Fisher’s linear discriminant function. Since those parameters have been
estimated, the distribution theory associated with aX + bY is not
appropriate for Fisher’s function. However, if n’ and n” are large, the
distribution of aX + bY does provide an approximation. |
Although we have considered only bivariate distributions in this
section, the results can easily be extended to multivariate normal
distributions after a study of Sections 4.10, 10.8, and 10.9.

EXERCISES

9.41. Let X}, X,, ..., Xo be a random sample of size 20 from a distribution
which is N(8, 5). Let L(0) represent the joint p.d.f. of X, X;, ..., Xy. The
problem is to test H,: 8 = | against H,:8=0. Thus Q={0:6=0,1}.
(a) Show that L(1)/L(0) < k is equivalent to x < c.

(b) Find c so that the significance level is « = 0.05. Compute the power of
this test if H, is true.
(c) If the loss function is such that #(1,1)= £(0,0)=0 and
- Z(1,0)=2(0,1)> 0, find the minimax test. Evaluate the power
function of this test at the points 6 = 1 and & = 0.
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(d) If, in addition, the prior probabilities of 8 =1 and 6 =0 are,
respectively, 4(1) = 3 and 4(0) =}, find the Bayes’ test. Evaluate the
power function of this test at the points 6 = 1 and § = 0.

9.42. Let X,, X,, ..., X)o be a random sample of size 10 frdm a Poisson
distribution with parameterf) Let L(0) bethejointp.d.f.of X}, X;, . . ., Xo.
The problem 1s 1o test Hy: 0= } against H,: 0 = l

(a) Show that L(3)/L(1) < k is equlvalent toy= Z x; = c.

(b) In order to make o = 0.05, show that H,is reJected ify >9and,ify =9,
* reject H, with probability § (using some auxiliary random experiment).

(c) If the loss function is such that Sf(z, D=201,1)=0and £(3, 1) =1
and #(1, }) = 2show that the minimax procedure is to reject H,if y > 6
and, if y = 6, reject H, with probability 0.08 (using some auxiliary
random experiment).

(d) If, in addition, we are given that the prior probabilities of # = 1 and
6 =1 are h(}) =4 and h(1) =1, respectively, show that the Bayes’
solution is to reject H, if y > 5.2, that is, reject H, if y > 6.

9.43. In Example 3 let u; = u; =0, uj = ur =1, ol=1,dl=1,and p =1
(a) Evaluate inequality (3) when the prior probabllmes are h(uj, u3) =1
and h(uj, u3) =3 and the losses are [0 = (uj, u3), & = (uj, 3)] = 4

and Z[0 = (i, 43), 6 = 1y, w3)] = 1.
(b) Find the distribution of the linear functlon aX + bY that results from

part (a).
(c) Compute Pr (aX+ bY< i, =u;=0) and Pr(aX + bY > ¢y} =
=1). ~ ;
9.44. Let X and Y have the joint p.d.f.
1 y ‘
10, 0;) = — - = 0<x<oo, 0<y< o0,
f(xy 1 02) = Gazexp( 6, 02) x < 00, y < o

zero elsewhere, where 0 < 0,,0 < 8,. An observation (x, y) arises from the
joint distribution with parameters equal to either (§; = 1,60, = 5) or (6‘" =3,
05 = 2). Determine the form of the classification rule.

9.45. Let X and Y have a joint bivariate normal distribution. An observation
(x, y) arises from the joint distribution with parameters equal to either

;,,,“i _ ué _ 0,- (0_%), — (0’%)' . 1’ ¢ =%
or K '
W=u=1 () =4 (63)'=9 p'=1

Show that the classnﬁcatlon rule involves a sccond degree polynomial in x
and y.
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9.46. Let X, X3, ..., X, be a random sample from a distribution with one
of the two probability density functions (1/p)f[(x — 8)/p], —0 < 8 < 0,
p>0,i=1,2. We wish to decide from which of these distributions the
sample arose. We assign the respective prior probabilities p, and p, to f; and
/2, where p, + p, = 1. If the prior p.d f. assigned to the nuisance parameters
6 and p is g(6, p), the posterior probability of f; is proportional to
pd(fix, . - ., x,), where

ISx, . .., ,)_f J. () ("'—")..;ﬁ(’“;")g(e,p)dbdp;

i=1;2.
If the losses associated with the two wrong decisions are equal, we would

select the p.d.f. with the largest posterior probability.
(a) Ifg(@; p)isa vague noninformative prior proportional to 1/p, show that

e (o (P N (g X, — 0
I(fixy, ..., x,) = (—) f.-( )f:( )dﬂdp
' Toh JL\e) T p

PO MmO

==t A" (Ax, — u) - - - fi(Ax, — u) du dA

v vom

by changmg variables through 8 = u/4, p = 1/A. Hajek and Sidak show
“that using this last expression, the Bayesnan procedure of selecting f;
over f, if

pZI(j‘lelAs teey xn) zpl’(ﬂlxl’ ey xn)

provides a most powerful location and scale invariant test of one model
against another. , , '

(b) Evaluate I(f)x,...,x,), i=1,2, given in (a) for fi(x)=1,
—1:< x < 1, zero elsewhere, and f5(x) is the p.d.f. of N(0, 1). Show that
the most powerful location and scale invariant test for selecting the

.~ normal distribution over the uniform is of the form (Y, — Y;)/S <k,
where Y, < Y, < - - - <Y, are the order statistics and S is the sample

- standard deviation.

ADDITIONAL EXERCISES

9.47. Consider a random sample X,, X;, ..., X, from a distribution with
p.d.f. fix;0)=6(1 —x)’"!, 0 < x< 1, zero elsewhere, where 6 > 0.
(a) Find the form of the uniformly most powerful test of H, : 8 = | against
H:0>1.° B
(b) What is the hkehhood ratio A for testmg H,: 0 =1 against H :0#17

9.48. Let X, X, .. X be a random sample from a dlSll‘lbl]thl‘l with p.d.f.
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f(x;8) = 0x*=', 0 < x <.1, zero elsewhere.

(a) Find a complete sufficient statistic for 6.

(b) If a = B =, find the sequential probability ratio test of H,: 8 =2
against H,:0=3. =

9.49. Lét X have a Poisson p.d.f. with parameter . We shall use a random
sample of size n to test Hy: 0 = 1 against H,: 0 # 1.
(a) Find the likelihood ratio A for making this test.
(b) Show that 1 can be expressed in terms of X, the mean of the sample,
so that the test can be based upon X.

950. et X,,X;,...,X, and Y,,Y,,..., Y, be independent random
samples from two normal distributions N(p. , @) and N(u,, ¢?), respectwely,
where o2 is the common but unknown variance.,

(a) Find the likelihood ratio A for testing Ho U=y = 0 against all
‘alternatives.

(b) Rewrite A so that itis a function of a statistic Z which has a well—known
distribution.

(c) Give the dlstnbutlon of Z under both null and alternative hypotheses.

9.51. Let X,,...,X, denote a random sample from a gamma-type
distribution with alpha equal to 2 and beta equal to 6. Let H,: 0 = 1 and
H :0>1.

(a) Show that there exists a uniformly most powerful test for Ho against
H,, determine the statistic ¥ upon which the test may be based and
indicate the nature of the best critical region.

(b) Find the p.d.f. of the statistic Y in part (a). If we want a significance
level of 0.05, write an equation which can be used to determine the
critical region. Let K(0), 8 > 1, be the power functlon of the test.
Express the power function as an integral.

9.52. Let (X,,Y),(X;, 13),...,(X,, Y, be a random sample from a
bivariate normal distribution wnth B, B, 65 = 0% = &%, p = 3, where ,, p,,
and a? > 0 are unknown real numbers. Find the likelihood ratio 4 for testing
H,: u, = y; = 0, 6 unknown against all alternatives. The likelihood ratio
A is a function of what statistic that has a well-known distribution?

9.53. Let W’ = (W,, W,) be an observation from one of two bivariate normal
distributions, I and II, each with u, = u, =0 but with the respective
variance—covariance matrices

1 0 3 0
v|~—,(0 4) . and Vz—-(o 12).

How would you classify ¥ into I or I1?

9.54. Let X be Poisson 6. Find the sequential pfobaBility ratio test for
testing H;:0 = 0.05 against H,:60=0.03. Write this in the form
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co(n) < i: X, < ¢/(n), determining cy(n) and c¢,(n) when a,=0.10 and

i=1

B. = 0.05.
9.55. Let X and Y have the joint p.d.f.
f(x, ;0 9)—-—l—ex X7 0<x<ow, 0<y<owm
1y1 1y V2 —aloz p gl 02 ] ] J’ ’y

zero elsewhere, where 0 < 0,, 0 < 6,. An observation (x, y) arises from the
joint distribution with 8; = 10, 0;= 5 or 8 = 3, 0; = 2. Determine th
form of the classification rule. . . :
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CHAPTER 10 |

Inferences About

Normal Models

10.1 The Distributions of Certain Quadratic Forms

A homogeneous polynomial of degree 2 in n variables is called
a quadratic form in those variables. If both the variables and
the coefficients are real, the form is called a real quadratic form.
Only real quadratic forms will be considered in this book. To
illustrate, the form X? + X, X, + X? is a quadratic form in the two
variables X, and X,; the form X; + X3 + X% — 2X, X, is a quadratic
form in the three variables X,, X,, and X;; but the form
X, — 1+ (X;— 2= X} + X} — 2X, — 4X, + 5 is not a quadratic
form in X, and X,, although it is a quadratic form in the variables
X,—land X, — 2.

Let X and S? denote, respectively, the mean and the variance of a
random sample X, X,, ..., X, from an arbitrary distribution. Thus

" _ o+ X\
nS2=Z(Xi_X)2=Z(X,-—XI+X2+ + n)
| 1

n
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