
Multicycle

Implementation

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 2

Drawbacks of Single Cycle Processor

 Long cycle time

 All instructions take as much time as the slowest

 Functional units are duplicated raising cost

 Each functional unit can be used once per clock cycle

Instruction Fetch

Store

ALU Memory Write

Instruction Fetch

Arithmetic & Logical

Register Read ALU Reg Write

Instruction Fetch

Branch

Load

Memory ReadInstruction Fetch

longest delay

ALURegister Read

Register Read

Register Read ALU

Reg Write

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 3

Solution = Multicycle Implementation

 Break instruction execution into five steps

 Instruction fetch

 Instruction decode and register read

 Execution, memory address calculation, or branch completion

Memory access or ALU instruction completion

 Load instruction completion

 One step = One clock cycle (clock cycle is reduced)

 First 2 steps are the same for all instructions

Instruction # cycles Instruction # cycles

ALU 4 Branch 3

Load 5 Store 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 4

MIPS Multicycle Datapath

ALU is used to increment upper 30

bits of PC, to compute branch

target and load/store address, and

to execute ALU instructions

Registers are used to store values at the end of

each clock cycle for use during next cycle

Same memory is used for instructions and data

4

Imm16

32

A
L
U

32

RA

RB

BusA

BusBRW

BusW

Address

Instruction

or data

Memory

30

P
C

0
0

30 5Rs

Extender

5Rt

m
u
x

0

1

m
u
x

0

1

mux 01

Rd

5

m
u
x

0

1

zero

Data_in
M

D
R

IR

Registers

A
B

m
u
x

0

1

32

32

A
L

U
o

u
t

32

32

PC[31:28], Imm26

30

30

m
u
x

2

0

1

30

32

30

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 5

Multicycle Datapath Changes

 Eliminating some of the components

 Single memory unit for both instructions and data

 Single ALU eliminating branch address adder and PC adder

Note: modern CPUs maintain separate instruction and data memories as

well as separate address adders, but we reduce them here because the

same component can be used for different purposes in different cycles

 Adding temporary registers

 Instruction Register: IR

Memory Data Register: MDR

Register file output data registers: A and B

 ALU output register: ALUout

Required to store major unit output values for use in next cycle

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 6

Multicycle Datapath Changes – cont’d

 This multicycle design can accommodate

One memory access per cycle

 IR register saves fetched instruction

 MDR register saves the read memory data

One register file access per cycle

 Two registers can be read concurrently into A and B registers

One ALU operation per cycle

 ALUout register saves the ALU output

 Additional multiplexers are also needed

Mux before the memory address to select PC or ALUout address

Mux before 1st ALU input to select PC to increment or A register

 Extended mux before PC to increment PC, branch, or jump

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 7

Multicycle Datapath + Control Signals

4

Imm16

32

A
L
U

32

RA

RB

BusA

BusB
RW

BusW

Address

MemData

Memory

30

P
C

0
0

30 Rs

Extender

Rt

m
u
x

0

1

m
u
x

0

1

mux 01

Rd

m
u
x

0

1

zero

Data_in

M
D

R
IR

Registers

A
B

m
u
x

0

1

32

32

A
L

U
o
u

t

32

32

PC[31:28], Imm26

30

30

30

32

30

MemRead MemWrite

ExtOp

RegDst

MemtoReg

IorD IRWrite RegWrite ALUSrcA

ALUSrcB ALUCtrl

PCWrite PCSource

m
u
x

2

0

1

PCWrite and IRWrite to enable the

writing of PC and IR registers

IorD to select memory address as either PC

for instruction or ALUout for data address

PCSource to select PC input

ALUSrcA and

ALUSrcB to

select ALU inputs

More control signals than single-cycle CPU

NextPC

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 8

Signal Effect when ‘0’ Effect when ‘1’

RegDst Destination register = Rt Destination register = Rd

RegWrite None Register(RW) ← BusW

ExtOp 16-bit immediate is zero-extended 16-bit immediate is sign-extended

ALUSrcA 1st ALU operand is PC (upper 30-bit) 1st ALU operand is the A register

ALUSrcB 2nd ALU operand is the B register 2nd ALU input is extended-imm16

MemRead None MemData ← Memory[address]

MemWrite None Memory[address] ← Data_in

MemtoReg BusW = ALUout BusW = MDR

IorD Memory Address = PC Memory Address = ALUout

IRWrite None IR ← MemData

PCWrite None PC ← NextPC

Control Signals

Signal Value Effect

PCSource

00 NextPC = PC[31:2] + 1 (increment upper 30 bits of PC)

01 NextPC = ALUout = PC[31:2] + 1 + sign-extend(imm16) (for branch)

10 NextPC = PC[31:28], imm26 (for jump)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 9

A
L
UP

C
0
0

m
u
x

0

1

m
u
x

2

0

1

32

30

30

1. Instruction Fetch Cycle

4

Imm16

32

RA

RB

BusA

BusB
RW

BusW

Rs

Extender

Rt

m
u
x

0

1

m
u
x

0

1

Rd

zero
M

D
R

Registers

A
B

32

32

A
L

U
o
u

t

32

32

PC[31:28], Imm26

30

30

32

30

IorD

= 0

MemRead

= 1

MemWrite

= 0

IRWrite

= 1

RegWrite

= 0

ALUSrcA

= 0

ALUSrcB

= x

ALUCtrl

= INC

RegDst

= x

PCWrite

= 1

PCSource

= 0

mux 01MemtoReg

= x

IR ← Memory[PC]

PC ← PC + 4

m
u
x

0

1

Address

MemData

Memory

Data_in

IR

ExtOp = x

IorD = 0

MemRead = 1

IRWrite = 1

ALUSrcA = 0, ALU = INC

PCSource = 0, PCWrite = 1

MemWrite = 0, RegWrite = 0

Don’t care

about rest

30

NextPC

1st ALU input =

00, PC[31:2]

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 10

2. Decode and Register Fetch

Address

MemData

Memory

m
u
x

0

1
Rd

m
u
x

0

1

zero

Data_in

M
D

R
IR

Imm16

32

A
L
U

30

Extender

m
u
x

0

1

32

30

A
L

U
o
u

t

32

m
u
x

0

1

32

32

RA

RB

BusA

BusB
RW

BusW

Registers

A
B

Rs

Rt

30

30

32

ALUSrcB

= 1

ALUCtrl

= ADD

mux 01MemtoReg

= x

A ← Reg[Rs], B ← Reg[Rt]

A, B are written on every cycle

ExtOp = 1

ALUout ← PC[31:2] + sign-ext(Im16) (branch address)

ALUSrcA = 0, ALUSrcB = 1, ExtOp = 1, ALU = ADD

MemRead = MemWrite = IRWrite = RegWrite = 0

PCSource = 10, PCWrite = J (Jump Completion)Compute branch address in advance

During this cycle, the

instruction is decoded to

determine the control

signals for the next cycles

1st ALU input =

00, PC[31:2]

PC[31:28], Imm26 30

4
m
u
x

2

0

1
NextPC

30

P
C

0
0

IorD

= x

MemRead

= 0

MemWrite

= 0

IRWrite

= 0

RegWrite

= 0

ALUSrcA

= 0

RegDst

= x

PCWrite

= J

PCSource

= 10

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 11

Rs

Rt

A
B

3a. Execute Cycle for R-type

4

Imm16

RA

RB

BusA

BusB
RW

BusW

Address

MemData

Memory

30

Extender

m
u
x

0

1
Rd

m
u
x

0

1

zero

Data_in

M
D

R
IR

Registers

32

PC[31:28], Imm26

30

30

30

32

30

IorD

= x

MemRead

= 0

MemWrite

= 0

IRWrite

= 0

RegWrite

= 0

ALUSrcA

= 1

ALUSrcB

= 0

ALUCtrl

= funct

RegDst

= x

PCWrite

= 0

PCSource

= x

m
u
x

2

0

1

mux 01MemtoReg

= x

NextPC

For R-type ALU instructions:

ALUout ← A funct B

ALUCtrl depends on the function field

ExtOp = x

ALUSrcA = 1,

ALUSrcB = 0,

ALU = funct

PCWrite = MemRead = MemWrite = IRWrite = RegWrite = 0

Don’t care

about rest

P
C

0
0

During this cycle, the ALU

can perform different

operations depending on

the instruction class

30

32

A
L
U

m
u
x

0

1

m
u
x

0

1

32

32

A
L

U
o
u

t

32

32

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 12

Rs

Rt

3b. Compute Address for Load/Store

4

Address

MemData

Memory

30

m
u
x

0

1
Rd

m
u
x

0

1

zero

Data_in

M
D

R

32

PC[31:28], Imm26

30

30

30

32

30

IorD

= x

MemRead

= 0

MemWrite

= 0

IRWrite

= 0

RegWrite

= 0

ALUSrcA

= 1

ALUSrcB

= 1

ALUCtrl

= ADD

RegDst

= x

PCWrite

= 0

PCSource

= x

m
u
x

2

0

1

mux 01MemtoReg

= x

NextPC

ALUout ← A + sign-extend(Immediate16)

ExtOp = sign

ALUSrcA = 1, ALUSrcB = 1

ExtOp = sign, ALU = ADD

PCWrite = MemRead = MemWrite = IRWrite = RegWrite = 0

P
C

0
0

For load/store instructions,

ALU computes memory

address during 3rd cycle

30

32

IR

A
B

RA

RB

BusA

BusB
RW

BusW

Registers

Imm16
Extender

A
L
U

32m
u
x

0

1

32

m
u
x

0

1

32

A
L

U
o
u

t

32

Same control signals can be used with I-type ALU

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 13

A
L

U
o
u

t

Rs

Rt

A
B

3c. Branch Completion

4

Imm16

RA

RB

BusA

BusB
RW

BusW

Address

MemData

Memory

30

Extender

m
u
x

0

1
Rd

m
u
x

0

1

Data_in

M
D

R
IR

Registers

32

PC[31:28], Imm26

30

30

32

30

ALUSrcB

= 0

ALUCtrl

= SUB

mux 01MemtoReg

= x

if (branch) PC ← ALUout

ALUout is branch target address computed

during the second cycle

ExtOp = x

ALUSrcA = 1,

ALUSrcB = 0, PCSource = 01

ALUCtrl = SUB, PCWrite = Branch

MemRead = MemWrite = IRWrite = RegWrite = 0

For a branch, ALU

compares A with B and if

the branch is taken then

PC becomes ALUout

zero

A
L
U

32

32m
u
x

0

1

m
u
x

0

1

32

32

Branch depends on the zero condition

Branch = beq . zero + bne . zero

32

30

m
u
x

2

0

1
NextPC

P
C

0
0

30

IorD

= x

MemRead

= 0

MemWrite

= 0

IRWrite

= 0

RegWrite

= 0

ALUSrcA

= 1

RegDst

= x

PCWrite

= Branch

PCSource

= 01

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 14

32Rs

A
B

4a. ALU Instruction Completion

4

Imm16

Address

MemData

Memory

30

Extender

m
u
x

0

1

Data_in

M
D

R
IR

32

PC[31:28], Imm26

30

30

30

IorD

= x

MemRead

= 0

MemWrite

= 0

IRWrite

= 0

RegWrite

= 1

ALUSrcA

= x

ALUSrcB

= x

ALUCtrl

= x

RegDst

= 1 or 0

PCWrite

= 0

PCSource

= x

MemtoReg

= 0

Reg[Rd] ← ALUout (for R-type)

Reg[Rt] ← ALUout (for I-type ALU instruction)

ExtOp = x

RegDst = 1 (for R-type and 0 for I-type)

MemtoReg = 0, RegWrite = 1

PCWrite = MemRead = MemWrite = IRWrite = 0, and don’t care about rest

During 4th cycle, ALU

instruction completes

writing its result into the

destination register

zero

A
L
U

32m
u
x

0

1

m
u
x

0

1

32

32

32

30

m
u
x

2

0

1
NextPC

P
C

0
0

30

A
L

U
o
u

t

mux 01

32

RA

RB

BusA

BusB
RW

BusW

Registers

Rt

m
u
x

0

1
Rd

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 15

32Rs

4b. Memory Access for Load & Store

4

Imm16

30

Extender

PC[31:28], Imm26

30

30

30

IorD

= 1

MemRead

= 1

MemWrite

= 0

IRWrite

= 0

RegWrite

= 0

ALUSrcA

= x

ALUSrcB

= x

ALUCtrl

= x

RegDst

= x

PCWrite

= 0

PCSource

= x

MemtoReg

= x

MDR ← Memory[ALUout] (for load)

Memory[ALUout] ← B (for store)

ExtOp = x

IorD = 1, MemRead = 1 (load)

MemWrite = 1 (store)

PCWrite = IRWrite = RegWrite = 0

Load & store access memory during 4th cycle

zero

A
L
U

32m
u
x

0

1

m
u
x

0

1

32

32

30

m
u
x

2

0

1
NextPC

P
C

0
0

30

A
L

U
o
u

t

mux 01

Rt

m
u
x

0

1
Rd

IR

Address

MemData

Memory

Data_in

M
D

R

m
u
x

0

1

32

32

A
B

RA

RB

BusA

BusB
RW

BusW

Registers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 16

32Rs

A
B

5. Load Instruction Completion

4

Imm16

Address

MemData

Memory

30

Extender

m
u
x

0

1

Data_in

M
D

R
IR

32

PC[31:28], Imm26

30

30

30

IorD

= x

MemRead

= 0

MemWrite

= 0

IRWrite

= 0

RegWrite

= 1

ALUSrcA

= x

ALUSrcB

= x

ALUCtrl

= x

RegDst

= 0

PCWrite

= 0

PCSource

= x

MemtoReg

= 1

Reg[Rt] ← MDR

ExtOp = x

RegDst = 0 (Rt)

MemtoReg = 1

RegWrite = 1

PCWrite = IRWrite = 0,

MemRead = MemWrite = 0

Don’t care about rest

During the 5th cycle, the

load instruction

completes writing its

result into register Rt

zero

A
L
U

32m
u
x

0

1

m
u
x

0

1

32

32

32

30

m
u
x

2

0

1
NextPC

P
C

0
0

30

A
L

U
o
u

t

32

Rt

Rd

mux 01

RA

RB

BusA

BusB
RW

BusW

Registers

m
u
x

0

1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 17

Instruction Execution Summary
Cycle Action Register Transfers

1 Fetch instruction IR ← Memory[PC] , PC ← PC + 4

2

Decode instruction

Fetch registers

Compute branch address in advance

Jump completion (case of a jump)

Generate control signals

A ← Reg[Rs], B ← Reg[Rt]

ALUout ← PC[31:2] + sign-extend(Imm16)

PC ← PC[31:28], Im26

3

Case 1: Execute R-type ALU

Case 2: Execute I-type ALU

Case 3: Compute load/store address

Case 4: Branch completion

ALUout ← A funct B

ALUout ← A op extend(Imm16)

ALUout ← A + sign-extend(Imm16)

if (Branch) PC ← ALUout

4

Case 1: Write ALU result for R-type

Case 2: Write ALU result for I-type

Case 3: Access memory for load

Case 4: Access memory for store

Reg[Rd] ← ALUout

Reg[Rt] ← ALUout

MDR ← Memory[ALUout]

Memory[ALUout] ← B

5 Load instruction completion Reg[Rt] ← MDR

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 18

Defining the Control

 Control for multicycle datapath is more complex

 Because instruction is executed as a sequence of steps

 Values of control signals depend upon:

What instruction is being executed

Which cycle is being performed

 Multicycle control is a Finite State Machine (FSM)

While single-cycle control is a combinational logic

 Two implementation techniques for multicycle control

 Set of states and transitions implemented directly in logic

Microprogramming: a programming representation for control

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 19

Multicycle Datapath + Control

4

Imm16

32

A
L
U

RA

RB

BusA

BusB
RW

BusW

Address

MemData

Memory

30

P
C

0
0

30 Rs

Extender

Rt

m
u
x

0

1

m
u
x

0

1

mux 01

Rd

m
u
x

0

1

Data_in

M
D

R
IR

Registers

A
B

m
u
x

0

1

32

32

A
L

U
o

u
t

32

PC[31:28], Im26

30

30

32

30

ExtOp

MemtoReg

ALUSrcB ALUCtrl

m
u
x

2

0

1

ALU

Control

NextPC

Op6
PCSourceALUSrcARegWriteRegDstPCWrite IorD MemRead MemWrite zero

funct6

ALUop

Main

Control

IRWrite

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 20

High Level View of FSM Control

Instruction

fetch

R-typeLoad/Store Branch

Start Instruction decode,

register fetch, and

branch address computation

I-type

ALU

(op = J)

(op = BEQ) or

(op = BNE)

(op = ANDI) or

(op = ORI) or …

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 21

Branch

Completion

State Diagram for Multicycle Control

Start

BEQ or BNE

Control signal

values default to

zero when they

are not specified

IorD = 0

MemRead = 1

IRWrite = 1

ALUSrcA = 0

ALUop = INC

PCSource = 00

PCWrite = 1

0

Instruction fetch

ALUSrcA = 0

ALUSrcB = 1

ALUop = ADD

Extop = 1

PCSource = 10

PCWrite = J

1

ALUSrcA = 1

ALUSrcB = 0

ALUop = SUB

PCSource = 01

PCWrite = Branch

8

6 7
ALUSrcA = 1

ALUSrcB = 0

ALUop = R-type

R-type ALU

RegDst = 1 (Rd)

MemtoReg = 0

RegWrite = 1

R-type Completion

IorD = 1

MemWrite = 1

5

Store Access

RegDst = 0 (Rt)

MemtoReg = 1

RegWrite = 1

4

Load Completion

ALUSrcA = 1

ALUSrcB = 1

Extop = sign

ALUop = ADD

2

Address Computation

IorD = 1

MemRead = 1

3

Load Access

LW

SW

R-type

LW

SW

Decode, Register fetch,

Jump completion

J

9 10ALUSrcA = 1

ALUSrcB = 1

Extop = zero

ALUop = op

I-type ALU

RegDst = 0 (Rt)

MemtoReg = 0

RegWrite = 1

I-type Completion

ORI, ANDI, …

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 22

Finite State Machine Controller

 Implemented as …

 Comb control logic

 State register

RegDst

RegWrite

ExtOp

ALUSrcA

ALUSrcB

MemRead

MemWrite

MemtoReg

IorD

IRWrite

PCWrite

PCSource

State register
next

state

Op

current state

zero

clk

ALUop

Combinational

Control logic

0 x x 1 x x 0 0 x 1 0 x 0 1 1 00 INC

1 lw, sw x 2 x 1 0 0 1 0 0 x x 0 0 10 ADD

1 Rtype x 6 x 1 0 0 1 0 0 x x 0 0 10 ADD

1
beq

bne
x 8 x 1 0 0 1 0 0 x x 0 0 10 ADD

1 j x 0 x 1 0 0 1 0 0 x x 0 1 10 ADD

1 ori, … x 9 x 1 0 0 1 0 0 x x 0 0 10 ADD

2 lw x 3 x 1 0 1 1 0 0 x x 0 0 x ADD

2 sw x 5 x 1 0 1 1 0 0 x x 0 0 x ADD

3 x x 4 x x 0 x x 1 0 x 1 0 0 x x

4 x x 0 0 x 1 x x 0 0 1 x 0 0 x x

5 x x 0 x x 0 x x 0 1 x 1 0 0 x x

6 x x 7 x x 0 1 0 0 0 x x 0 0 x Rtype

7 x x 0 1 x 1 x x 0 0 0 x 0 0 x x

8
bne

beq

0

1
0 x x 0 1 0 0 0 x x 0 Br 01 SUB

9 x x 10 x 0 0 1 1 0 0 x x 0 0 x Op

10 x x 0 0 x 1 x x 0 0 0 x 0 0 x x

c
u
rr

e
n
t

s
ta

te

n
e
x
t

s
ta

te

R
e
g
D

s
t

z
e
ro

R
e
g
W

ri
te

A
L
U

S
rc

A

A
L
U

S
rc

B

M
e
m

R
e
a
d

M
e
m

W
ri
te

M
e
m

to
R

e
g

Io
rD

IR
W

ri
te

P
C

W
ri
te

P
C

S
o
u
rc

e

A
L
U

o
p

O
p

E
x
tO

p

State Transition and Output Table

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

NS0

O
p
5

O
p
4

O
p
3

O
p
2

O
p
1

O
p
0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register

opcode field

Outputs

Control logic

Inputs

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

ALU Control Block

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 ROM = "Read Only Memory"

 values of memory locations are fixed ahead of time

 A ROM can be used to implement a truth table

 if the address is m-bits, we can address 2m entries in the ROM.

 our outputs are the bits of data that the address points to.

m is the "heigth", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 0

0 1 1 1 0 0 0

1 0 0 0 0 0 0

1 0 1 0 0 0 1

1 1 0 0 1 1 0

1 1 1 0 1 1 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 How many inputs are there?

6 bits for opcode, 4 bits for state = 10 address

lines

(i.e., 210 = 1024 different addresses)

 How many outputs are there?

16 datapath-control outputs, 4 state bits = 20

outputs

 ROM is 210 x 20 = 20K bits

 Rather wasteful, since for lots of the entries, the outputs

are the same

— i.e., opcode is often ignored

ROM Implementation

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

PLA Implementation

 Programmable

Logic Array

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead

MemWrite

PCWrite

PCWriteCond

MemtoReg

PCSource1

ALUOp1

ALUSrcB0

ALUSrcA

RegWrite

RegDst

NS3

NS2

NS1

NS0

ALUSrcB1

ALUOp0

PCSource0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Performance multi cycle

Assume the following latencies for the data path components.

Memory : 20ns. Register File: 12ns, ALU: 16 ns, Temp. Reg: 2ns.

MUX time and all other components is 0ns.

Assume a program has a 2x108 and frequencies of instruction types as follows: ALU

50%, Load 20%, Store 10% and Branch 20%.

Compare processor performance assume single cycle and multicycle data paths.

CPI single cycle is 1 and Cycle Time is (LW) 2 x 20 + 2 x 12 + 16 = 80 ns.

Average CPI multi cycle is = . 5x 4 + .2 x 5 + .1 x 4 + .2 x 3 = 4

Cycle time multicycle is Max (20, 12, 16, 20, 12) + 2 = 22 ns.

ET single cycle = 2 x 108 x 1 x 80 x 10-9= 16 seconds.

ET multicycle = 2 x 108 x 4 x 22 x 10-9= 17.6 seconds.

Which is faster why? Multi cycle is slower due the large variations in stage times.

The stage times must be chosen to have equal or very close latencies to each others

80/5 = 16 ns per stage and 2 ns for temp registers. Then ideal cycle time is 18ns.

ET multicycle = 2 x 108 x 4 x 18 x 10-9= 14.4 seconds.

Speedup = 16/14.4 = 1.11 11% faster multicycle than single cycle.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multicycle Implementation © Muhamed Mudawar, COE 308 – KFUPM Slide 30

 Reduces hardware

One unified memory for instruction and data, and one ALU

 Breaks instruction execution into steps (step = 1 cycle)

 Internal registers in data path

 Save intermediate data for later cycles

 Finite State Machine (FSM) specification of control

 Implementation of control

Hardwired control a sequential machine

Microprogramming (See textbook)

 Reduces clock cycle and time

Cycle time = Maximum delay due to any stage + Delay for writing state registers

When compared to single-cycle implementation (Maximum instruction delay)

Multicycle Implementation Summary

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

