Chapter 10

Instruction Set Architecture
Characteristics and Functions

STUDENTS-HUB.com Uploaded By: anonymous

Instruction Set Architecture (ISA)

m Complete set of instructions used by a machine

m Abstract interface between the HW and lowest level SW.

m An ISA includes the following ...
= Instructions and Instruction Formats
m Data Types, Encodings, and Representations
m Programmable Storage: Registers and Memory
m Addressing Modes: to address Instructions and Data

m Handling Exceptional Conditions (like division by zero)

Examples (Versions) First Introduced in
— Intel (8086, 80386, Pentium, ...) 1978
— MIPS (MIPS I, II, III, 1V, V) 1986
— PowerPC (601, 604, ...) 1993

STUDENTS-HUB.com Uploaded By: anonymous

Instruction Set Architecture (ISA)
m [SA is considered part of the SW

m Must be designed to survive changes in hardware
technology, software technology, and application
characteristic.

m Is the agreed-upon interface between all the software that runs on
the machine and the hardware that executes it.

m Advantages:
m Different implementations of the same architecture
m Easier to change than HW

m Standardizes instructions, machine language bit patterns, etc.

m Disadvantage

m Sometimes prevents using new innovations

STUDENTS-HUB.com Uploaded By: anonymous

Instruction Set Architecture (ISA)

software / N

hardware

m Properties of a good abstraction
m Lasts through many generations (portability)
m Used in many different ways (generality)
m Provides convenient functionality to higher levels

m Permits an efficient implementation at lower levels

STUDENTS-HUB.com Uploaded By: anonymous

Intel 8086 instruction set

m There were 116 instructions in the Intel 8086 instruction set

CMPSB MOY
AAA CMPSW JAE JNBE JPO MOVYSB RCR SCASB
AAD CWD JB JNG 1S MOYSW REP SCASW
AAM DAA JBE JNE 1z MUL REPE SHL
AAS DAS G ING LAHF NEG REPNE SHR
ADC DEC JCXI INGE LDS NOP REPNZ STC
ADD DIV JE JNL LEA NOT REPZ STD
AND HLT 1G JNLE LES OR RET STI
CALL IDIV JGE JNO LODSB out RETF STOSB
CBW IMUL JL JNP LODSW POP ROL STOSW
CLC IN JLE JNS LOOP POPA ROR sUB
CLD ING JMP INZ LOOPE POPF SAHF TEST
CLI INT INA JO LOOPNE PUSH SAL KCHG
CMC INTO INAE Jp LOOPNZ PUSHA SAR XLATB
CMP IRET INB JPE LOOPZ PUSHF SBB XOR

JA RCL

STUDENTS-HUB.com Uploaded By: anonymous

Elements of an Instruction
m Operation code (Op code)

m Specify the operation (e.g., ADD, I/0)

m Source Operand reference

m Operands that are input to the operation.

m Result Operand reference

m Put the answer here

m Next Instruction Reference

m Tells the processor where to fetch the next instruction

STUDENTS-HUB.com Uploaded By: anonymous

+
Instruction Representation

m In machine code each instruction has a unique bit pattern

m For human consumption (well, programmers anyway) a
symbolic representation is used

= e.g. ADD, SUB, LOAD

m Operands can also be represented in this way
m ADD A,B

STUDENTS-HUB.com Uploaded By: anonymous

+

Instruction Cycle State Diagram

Instruction Operand
fetch fetch
A
Multiple
operands
Y
Instruction Instruction Operand
address operation —— address
calculation decoding calculation
Instruction complete,
fetch next instruction

operation

Return for string
or vector data

Operand
store

Multiple
results

Y

Operand
address
calculation

STUDENTS-HUB.com

Uploaded By

: anonymous

+

Generic CPU Machine Instruction

Execution Steps

|

Instruction
Fetch

|

Instruction
Decode

1

Operand
Fetch

Execute

Result
Store

l

Next
Instruction

S

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use (if required)

Determine successor instruction

STUDENTS-HUB.com

Uploaded By: anonymous

Where have all the Operands Gone?
Where is the next instruction to be fetched?

m Main memory (or virtual memory or cache)
m CPU register

m [/O device

STUDENTS-HUB.com Uploaded By: anonymous

Types of Operand

m Addresses

m Numbers

= Integer/floating point

m Characters
m ASCII etc.

m Logical Data

m Bits or flags

STUDENTS-HUB.com Uploaded By: anonymous

Typical Operations

Data Movement Load (from memory) Store (to memory)
memory-to-memory move register-to-register move
input (from /O device) output (to /O device)
push, pop (to/from stack)

Arithmetic Data Types: (signed & unsigned) Integer (binary + decimal)

(signed & unsigned) Floating Point Numbers
Operations: Add, Subtract, Multiply, Divide
Logical Not, and, or, set, clear
Shift Arithmetic (& Logical) shift (left/right), rotate (left/right)

Control (Jump/Branch)

unconditional, conditional

Subroutine Linkage

call, return

Interrupt

trap, return

Synchronisation

test & set (atomic r-m-w)

String

search, compare, translate

STUDENTS-HUB.com

Uploaded By

: anonymous

Types of Operations

m Data Transfer

m Arithmetic

m Logical

m Conversion
m[/O

m System Control

m Transfer of Control

STUDENTS-HUB.com Uploaded By: anonymous

+
Data Transfer

m Specify
m Source
m Destination

®m Amount of data

m May be different instructions for different movements
= e.g.IBM 370

m Or one instruction and different addresses
= e.g.VAX

STUDENTS-HUB.com Uploaded By: anonymous

Arithmetic

m Add, Subtract, Multiply, Divide

m Signed Integer
m Floating point ?

m May include
m Increment (a++)
m Decrement (a--)

m Negate (-a)

STUDENTS-HUB.com Uploaded By: anonymous

+
Shift & Rotate

m Shift and Rotate Operations

Table 12.7 Examples of Shift and Rotate Operations
Input Operation Result
10100110 Logical right shift (3 bits) 00010100
10100110 Logical left shift (3 bits) 00110000
10100110 Arithmetic right shift (3 bits) 11110100
10100110 Arithmetic left shift (3 bits) 10110000
10100110 Right rotate (3 bits) 11010100
10100110 Left rotate (3 bits) 00110101

STUDENTS-HUB.com

O~ o Ve Vi
(a) Logical right shift
BT RV RV Y 2y o 0
(b) Logical left shift
YA VA Vi Vi V. Ve Ve
5 .- 8w
(c) Arithmetic right shift
NIRRT Y Y g0
S - - -
(d) Arithmetic left shift
Pl VA Vil Vil Vi VAR VAN
(e) Right rotate
RN Y SRV LY SN LAY SN

(f) Left rotate

: anonymous

Logical & Conversion

m Bitwise operations
m AND, OR, NOT

m e.g. Binary to Decimal

STUDENTS-HUB.com Uploaded By: anonymous

+
Input/Output & System Control

m Input/Output
m May be specific instructions

m May be done using data movement instructions (memory
mapped)

m May be done by a separate controller (DMA)

m Systems Control

m For operating systems use

STUDENTS-HUB.com Uploaded By: anonymous

+
Transfer of Control

m Branch
m e.g. BRZ X branch to x if result of (ADD,SUB,...) is zero

m See next slide

m Skip
m e.g.increment and skip if zero ISZ
301

309 ISZ R1
310 BR 301

311
eg. R1is set to -1000, the loop will be executed 1000 times

m Subroutine call

m c.f.interrupt call

STUDENTS-HUB.com

Uploaded By: anonymous

+

Branch Instruction

Unconditional
branch

Memory
address

200
201
202
203

— 210

211
.
.
.

225
L]
L

L]
235

Instruction

SUB XY
BRZ 211——
L

BR 202

L] —_
L]
L]

L]
BRE R1, R2, 235

Conditional
branch

Conditional
branch

STUDENTS-HUB.com

Uploaded By: anonymous

Procedure Calls Instructions

m Computer program that is incorporated with larger program.

m At any point in the program the procedure may be invoked,
or called

m When the procedure is executed, return to the point at which
the call took place.

m Advantages:
= Economy:

m The same piece of Code can be used many time efficient use
of storage space in the system

m Modularity

m Allow large programming tasks to be divided into smaller units
which eases the programming task

STUDENTS-HUB.com Uploaded By: anonymous

+
Procedure Calls Instructions

m Involves two basic instructions

m Call: branch to the procedure location

m Return: from the procedure to the place from which it was called

m Stack can be used to store the return address.

STUDENTS-HUB.com Uploaded By: anonymous

+
Nested Procedure Calls

Addresses Main memory
4000 l
Main
4100
1101 CALL Procl program 4 -
4500 T
L
4600 CALL Proc2 / -
4601 Procedure l
4650 CALL Proc2 Procl
4651 -
/ ™
RETURN l /
4800
Procedure
Proc2
RETURN YA /
(a) Calls and returns (b) Execution sequence

STUDENTS-HUB.com Uploaded By: anonymous

. |
Use of Stack

(a) Initial stack
contents

4101

(b) After

CALL Procl

4601

4101

(c) Initial

CALL Proc2

4651
4101 4101
[] []
(d) After (e) After
RETURN CALL Proc2

4101
L] L]
(f) After (g) After
RETURN RETURN

STUDENTS-HUB.com

Uploaded By: anonymous

Table 12.1

Utilization of Instruction Addresses
(Nonbranching Instructions)

Number of Addresses Symbolic Representation Interpretation

3 OPA,B,C A —-BOPC
2 OP A, B A — AOPB
1 OP A AC - ACOPA
0 OP T—= (T-1)OPT

AC = accumulator

T = top of stack

(T—-1) = second element of stack

A, B, C = memory or register locations

STUDENTS-HUB.com Uploaded By: anonymous

+
Number of Addresses

m # of addresses contained in each instruction

m May be 1, 2, 3 or 4 addresses

m 3 addresses

m Operand 1, Operand 2, Result
m ADD a,b,c (a=Db +c;)

m 4 addresses
m Operand 1, Operand 2, Result, and next instruction
® Not common

m Needs very long words to hold everything

STUDENTS-HUB.com Uploaded By: anonymous

+
Number of Addresses

m 2 addresses

m One address doubles as operand and result
m ADDa,c(a=a+o0)

m Reduces length of instruction

m Requires some extra work

m Temporary storage to hold some results

m] address
m Implicit second address
m Usually a register (accumulator)
= ADD B (AC = AC + B)

m Common on early machines

STUDENTS-HUB.com Uploaded By: anonymous

+
Number of Addresses

m O (zero) addresses

m Applicable to a special memory organization called Stack
m Stack is known location

m Often at least the top two stack elements are in processor
registers

m ADD

m All addresses implicit
m e.d.

m pusha

m push b

m add

m pop C

mc=a+b

STUDENTS-HUB.com Uploaded By: anonymous

29
Instruction Comment -

SUB Y,A B Y—-A-B
MPY T,D,E T—-D"E
ADD T,T,C T—-T+C
DIV Y,Y, T Y—=Y=T

Instruction Comment
(a) Three-address instructions
LOAD D AC—-D
MPY E AC—-AC E
Instruction Comment ADD C AC = AC+C
MOVE Y, A Y—=A STOR Y Y = AC
SUB YVY,B Y—-Y-B LOAD A AC — A
MOVE T,D T—=D SUB B AC — AC-B
MPY T,E T—=T E DIV Y AC = AC+Y
ADD T,C T—=T+C STOR Y Y = AC
DIV Y, T Y—=Y=+T
(b) Two-address instructions (c) One-address instructions
Figure 12.3 Programs to Execute Y= A],3
C+ (D" E

STUDENTS-HUB.com Uploaded By: anonymous

+
Reverse Polish Notation

m Arithmetic Expressions: A + B

m A + B Infix notation
m + A B Prefix or Polish notation
m A B + Postfix or reverse Polish notation

m The reverse Polish notation is very suitable for stack manipulation

m Evaluation of Arithmetic Expressions

m Any arithmetic expression can be expressed in parenthesis-free
Polish notation, including reverse Polish notation

(3%¥4)+(5%6) = 34%*56%*+

- 6
- 4 - 5 5 -1 30
- 3 3 - 12 12 12 12| —|1 42
3 4 * 5 6 * +

STUDENTS-HUB<com YptoadedBy: anonymous
P

+
How Many Addresses

m More addresses

m More complex (powerful?) instructions
m More registers
m Inter-register operations are quicker

m Fewer instructions per program

m Fewer addresses
m Less complex (powerful?) instructions
m More instructions per program

m Faster fetch/execution of instructions

m Most processor designs involve a variety of instruction
formats.

STUDENTS-HUB.com Uploaded By: anonymous

Fundamental Issues in Instruction Set
Design

m Operation repertoire
m How many ops?
m What can they do?
m How complex are they?

m Data types
m The data type that the processor can deal with
m E.g., Pentium can deal wit data types of:
m Byte, 8 bits
m Word, 16 bits
m Doubleword, 32 bits
m Quadword, 64 bits
m Other data type...

m Instruction formats
m Length of op code field
®m Number of addresses

STUDENTS-HUB.com Uploaded By: anonymous

Fundamental Issues in Instruction Set
Design

m Registers
= Number of CPU registers available

m Which operations can be performed on which registers?
m Addressing modes (later...)

m RISC v CISC

STUDENTS-HUB.com Uploaded By: anonymous

Byte Order

(A portion of chips?)

m What order do we read numbers that occupy more than one

byte

m e.g. (humbers in hex to make it easy to read)

m 12345678 can be stored in 4x8bit locations as follows

Address
184
185
186
187

Value (1)
12
34
56
78

Value(2)
78
56
34
12

STUDENTS-HUB.com

Uploaded By: anonymous

Byte Order Names

m The problem is called Endian

m The system on the left has the least significant byte in the
lowest address

m This is called big-endian [Motorola]

m The system on the right has the least significant byte in the
highest address

m This is called little-endian [Intel]

STUDENTS-HUB.com Uploaded By: anonymous

+

Example of C Data Structure

Struct{

int a;
double b;
char *c;
char
short e;
int f;
S

//0x1112_1314
//8x2122_2324 2526 2728
//8x3132_ 3334
a[71; /A
// 8x5152
//0x6162_6364

word

double word

FE_I' l'F_l' I’G.I

byte array

B Big-cndian sldress mapping
e

Lit tle-emdizn sl ress mmpping

Addes | g1 12 13 14

[l m o 02 oxf o+ 05

a7

1M 1z 13 14
i 06 M o4 |03 02 01 00

21 22 23 M X N N7
(i i 09 0A OB OC 0D (B

28
i3

21 22 D M5 N 2T B
0F OB 0D OC OB 0A (% Of

3132 33 M|[ABICD

Y OC OB ‘A [312 33 M
17 E]!1:]55 1+ 13 2 11 10

51 s2 ‘G FE

1
P IB] I IClIB) A IR & IE

101 (N} 11 12 13 HE 15 . l'ﬁ-i 17
R G 51 &2

i La|::l HE iAjmelic p)ie 1P
6l 62 63 ol

2l X 2 I N

61 62 63 6l

3 x I M

Byle
Adddress

K}

LU}

1€}

2

STUDENTS-HUB.com

]

05

10

|

11

12

14

[7X]
==t

i)

s

10

X

== =] =

= [B = Gi%ni'il‘imi#&ﬁﬁﬁﬁhﬁk!ﬁkﬁ%

=
=N

Up

Standard...What Standard?

m Pentium (80x86),VAX are little-endian

m IBM 370, Motorola 680x0 (Mac), and most RISC are big-
endian

m Internet is big-endian
m Makes writing Internet programs on PC more awkward!

m WinSock provides htoi and itoh (Host to Internet & Internet to
Host) functions to convert

STUDENTS-HUB.com Uploaded By: anonymous

	Slide 1: Chapter 10
	Slide 2: Instruction Set Architecture (ISA)
	Slide 3: Instruction Set Architecture (ISA)
	Slide 4: Instruction Set Architecture (ISA)
	Slide 5: Intel 8086 instruction set
	Slide 6: Elements of an Instruction
	Slide 7: Instruction Representation
	Slide 8: Instruction Cycle State Diagram
	Slide 9: Generic CPU Machine Instruction Execution Steps
	Slide 10: Where have all the Operands Gone? Where is the next instruction to be fetched?
	Slide 11: Types of Operand
	Slide 12: Typical Operations
	Slide 13: Types of Operations
	Slide 14: Data Transfer
	Slide 15: Arithmetic
	Slide 16: Shift & Rotate
	Slide 17: Logical & Conversion
	Slide 18: Input/Output & System Control
	Slide 19: Transfer of Control
	Slide 20: Branch Instruction
	Slide 21: Procedure Calls Instructions
	Slide 22: Procedure Calls Instructions
	Slide 23: Nested Procedure Calls
	Slide 24: Use of Stack
	Slide 25
	Slide 26: Number of Addresses
	Slide 27: Number of Addresses
	Slide 28: Number of Addresses
	Slide 29
	Slide 30: Reverse Polish Notation
	Slide 31: How Many Addresses
	Slide 32: Fundamental Issues in Instruction Set Design
	Slide 33: Fundamental Issues in Instruction Set Design
	Slide 34: Byte Order (A portion of chips?)
	Slide 35: Byte Order Names
	Slide 36: Example of C Data Structure
	Slide 37: Standard…What Standard?

