7.5 Sampling Distribution of X	
* The sampling distribution of \overline{x} is the probability distribution of all possible values of the sample mean \overline{x} .	
 Now we study the properites of the sampling distribution of X as other prob. distributions, interms of D Expected value the following characteristics: B standard deviation B the shap of the distribution D Expected Value of X 	
* The expected value of \overline{x} equals to the mean of the population from which the sample is selected.	
$E(\overline{X}) = M$	
* Hence, with a simple random sample, the expected value or mean of the sampling distribution of \overline{x} is equal to the	
mean of the population.	
* Recall that in Example*, the population mean $M = $51,800$ and the expected value of \overline{X} is $E(\overline{X}) = $51,800$	
Hence, $E(\bar{x}) = H = $51,800$ and we say that the point estimator \bar{x} is unbiased.	
* Unbiased: Aproperty of a point estimator that is present STUDENTS-HUB.com the expected value of the point estimator is equal to the population pavameter. Uploaded By: Jibro equal to the population pavameter.	eel Bornat
* Note that eq. () shows that X is unbiased estimator of the population mean M.	

(2) Standard Deviation of
$$\bar{x}$$

Let: $N = Population size$
 $n = sample size$
 $G = Population standard deviation$
 $G_{\bar{x}} = standard deviation of the sampling dishibution of \bar{x} .
* For finite Population: the standard deviation of \bar{x} is
 $G_{\bar{x}} = \sqrt{\frac{N-n}{N-1}} \left(\frac{G}{\sqrt{n}}\right)$ where
 $\sqrt{\frac{N-n}{N-1}}$ is the finite population correction factor.
* For infinite Population * process " or when N is large and
hat is when $\frac{n}{N} \le 0.05$, then the standard deviation
of \bar{x} is $G_{\bar{x}} = \frac{G}{\sqrt{n}}$.
This because the finite population correction factor becomes
close to 1, and so has a little effect on the value of $G_{\bar{x}}$.
* Note that $G_{\bar{x}}$ is also called the standard general
to refere to the standard deviation of a point estimator.
to refere to the standard deviation standard deviation $G_{\bar{x}} = \frac{1}{260} = 0.012 \le 0.05$. Hence
to refere to the standard deviation standard deviation $G_{\bar{x}} = \frac{1}{260} = \frac{1}{2600} = 730.3$
et symbol error $G_{\bar{x}} = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{200}} = 730.3$$

3 Shap (Form) of the sampling Dishbution of x (93) we consider two cases: I The population has a normal distribution: => when the population has a normal distribution, the sampling distribution of \overline{x} is normally distributed for any sample size. 2 The population does not have a normal distribution: => when the population, from which we select a simple random sample, does not have a normal distribution, we apply the Central limit Theorem to identify the shape of the sampling distribution of X. Central limit Theorem: In selecting simple random samples of size n from a population, the sampling distribution of the sample mean & can be approximated by a normal distribution as the sample size becomes large. Population I exponential Population I "Uniform" Population II "rabbit-eared" Population Distribution A, SSTIPLDENTS-HUB.com Uploaded By: Jibreel Bornat Sampling dist of × when n=5 JA, Â, Sampling dist of $\bar{\mathbf{x}}$ when n=30E.

* Hence, the sampling distribution of x can be approximated by a normal distribution if the sample size n > 30. * If the population is highly skewed or IF the population has an outliers, then the sampling distribution of x can be approximated by a normal distribution if the sample size n>50. Recall Example where $E(\overline{x}) = \$51,800$ and $6_{\overline{x}} = 730,3$ => we don't know if the population is normally distributed or not. . So if the population has a normal distribution, then the sampling distribution of x is normally distributed. . If the population does not have normal distribution, then I the simple random sample of size 30 managers and E) the central limit Theorem enable us to conclude that the sampling distribution of x can be approximated by a normal distribution. distrof 6= 6= 730,3 Example (Q18 page 276) A population has a mean of 200 and standard deviation of 50. A simple vondom sample of size 100 will be taken and the sample mean x will be used to estimat the population mean. M= 200 SFUDENTESHUB. Com expected value of \$\overline{x}? E(\$\overline{x}) = M = 200 Uploaged By: Jibreel Bornat 15 what is the standard deviation of \bar{x} ? $\bar{6}_{g} = \frac{6}{\sqrt{n}} = \frac{50}{\sqrt{100}} = \frac{50}{10} = 5$ E show the sampling distribution of X? Since n= 100 > 30, it follows by the Central limit Theorem that the sampling distribution is approximated by a normal distribution with $E(\bar{x}) = 200$ and $6\bar{x} = 5$. [d] What does the sampling distribution of x show? The probability distribution of X. (see next page)

The sampling distribution of
$$\overline{\chi}$$
 provides probability information
about how close the sample mean $\overline{\chi}$ to the population mean M .
Recall Example^{*} with $E(\overline{\chi}) \leq 51,800$ and $G_{\overline{\chi}} = 730.3$
What is the frop. that the sample mean will be within ± 500 of
the population mean?
 $P(51,800-500 \leq \overline{\chi} \leq 51,800 \pm 500) = P(51,300 \leq \overline{\chi} \leq 52,300)$
 $\overline{\chi} = \frac{52,200-51,800}{730.30} = 0.68$
 $\overline{\chi} = \frac{51,200-51,800}{730.30} = 0.68 \leq 2 \leq 0.68 = P(\epsilon \leq 0.68) - P(\epsilon \leq -0.68)$
 $P(51,300 \leq \chi \leq 52,300) = P(-0.68 \leq 2 \leq 0.68) = P(\epsilon \leq 0.68) - P(\epsilon \leq -0.68))$
 $P(51,300 \leq \chi \leq 52,300) = P(-0.68 \leq 2 \leq 0.68) = P(\epsilon \leq 0.68) - P(\epsilon \leq -0.68))$
 $P(51,300 \leq \chi \leq 52,300) = P(-0.68 \leq 2 \leq 0.68) = 0.7517 - 0.2483 = 0.5034$
 $= 0.7517 - 0.2483 = 0.5034$
Hence, a simple random sample of size 30 has roughly 50^{1} so chance
of providing a sample mean within $$500$.
What is the relationship between the sample size n and
the sampling distribution of $\overline{\chi}$?
 \times Note that $E(\overline{\chi}) = M$ regardless of the sample size n.
 \Rightarrow The shandard error $G_{\overline{\chi}} = \frac{5}{\sqrt{10}}$ depends on the sample size n:
As n increases, the shandard error $G_{\overline{\chi}} = \frac{4000}{100} = \frac{4000}{100} = \frac{4000}{100} = \frac{4000}{100} = \frac{4000}{100} = \frac{100}{100} \approx \frac{6}{\sqrt{100}} = \frac{100}{100} \approx \frac{6}{\sqrt{100}$

Example (Q 19 page 237) A population has a mean 200 and
Standard deviation 50. Suppose a simple vandom
Sample of size 100 is selected and
$$\overline{x}$$
 is used to estimate H.
What is the prob. that the sample mean will be within ± 50 f the
population mean? $E(\overline{x}) = 200$, $G = 50$, $n = 100$
 $P(200-5 \le \overline{x} \le 200+5) = P(195 \le \overline{x} \le 205)$
 $2 = \frac{205}{6\overline{x}} - \frac{E(\overline{x})}{5} = \frac{205-200}{5} = \frac{5}{5} = 1$
 $G_{\overline{x}} = \frac{5}{5} = \frac{1}{5}$
 $2 = \frac{195}{6\overline{x}} - \frac{E(\overline{x})}{5} = \frac{205-200}{5} = \frac{-5}{5} = 1$
 $G_{\overline{x}} = \frac{5}{5} = \frac{1}{5}$
 $2 = \frac{195}{6\overline{x}} - \frac{195-200}{5} = \frac{-5}{5} = 1$
 $P(195 \le \overline{x} \le 205) = P(-1 \le 2 \le 1) = P(2 \le 1) - P(2 \le 1) = 0.8413 - 0.158)$
 $P(195 \le \overline{x} \le 205) = P(-1 \le 2 \le 1) = P(2 \le 1) - P(2 \le 1) = 0.8413 - 0.158)$
 $P(195 \le \overline{x} \le 205) = P(-1 \le 2 \le 1) = P(2 \le 1) - P(2 \le -1) = 0.8413 - 0.158)$
 $P(195 \le \overline{x} \le 205) = P(-1 \le 2 \le 1) = P(2 \le 1) - P(2 \le -1) = 0.8413 - 0.158)$
 $P(195 \le \overline{x} \le 205) = P(-1 \le 2 \le 1) = P(2 \le 1) - P(2 \le -1) = 0.8413 - 0.158)$
 $P(195 \le \overline{x} \le 205) = P(-1 \le 2 \le 2) = P(2 \le 1) - P(2 \le -1) = 0.8413 - 0.158)$
 $P(200-10 \le \overline{x} \le 200+10) = P(190 \le \overline{x} \le 210)$
 $2 = \frac{[210] - E(\overline{x})}{5} = \frac{190}{5} = \frac{-10}{5} = -2$
 $P(190 \le \overline{x} \le 200+10) = P(190 \le \overline{x} \le 210)$
 $P(190 \le \overline{x} \le 210) = P(-2 \le 2 \le 2) = P(2 \le 2) - P(2 \le 2) = 0.9752 - 0.0312 - 20.9752 - 0.0312 - 20.9754 - 0.0312 - 20.9754 - 0.0312 - 20.9754 - 0.0312 - 20.9754 - 0.0312 - 0.9754 - 0.0312 - 0.9754 - 0.0312 - 0.9754 - 0.0312 - 0.9754 - 0.0312 - 0.9754 - 0.0312 - 0.9754 - 0.0312 - 0.9754 - 0.035 - 0.05 -$