£555 Wil re31

BIRZEIT UNIVERSITY

Electrical and Computer Engineering
Computer Design LAB — ENCS4110

Experiment No. 6: GPIO (General Purpose Input/Output) Interface
Using TM4C123G Boards

Objectives

The main objective of tis lab is to give students a first foot in the door exposure
to the programming of I/0, which when executed by the microcontroller (TM4C123G, an
ARM Cortex-M4) simply blinks LED located on the development board.

Tiva C Series TM4C123G LaunchPad Introduction

The TM4C123G is a member of the class of high performance 32-bit ARM cortex M4 microcontroller with a
broad set of peripherals developed by Texas Instrumentals. The Tiva LaunchPad has a built-in processor
clock frequency of up to 80MHz with a floating-point unit (FPU). The Cortex-M4F processor also supports

the tail chaining functionality. It also includes a nested vector interrupt controller (NVIC). The debugging

interface used is JTAG and SWD (serial wire debugger) for programming and debugging purposes.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Tiva™ EK-TM4C123GXL LaunchPad

¢ ARM® Cortex™-M4F
64-pin 80MHz TM4C123GH6PM >y r
¢ On-board USB ICDI evicE; | ocad._y
(In-Circuit Debug Interface) @60 .
. . n) = ® usnsisinnl geser
¢ Micro AB USB port S e X e | _
+ Device/ICDI power switch : m—,?x%;m%—m"'- -
a = o ¥
¢ BoosterPack XL pinout also supports orwce e————TRIE 5, .
a)‘t EK-TM4CI123GXL REV A
legacy BoosterPack pinout 38 ;';va e Sy
L vau -"u - VDRC = g
¢ 2 user pushbuttons) @ 4 P05 o "' e S ® RN poz 4y 4
(SW2 is connected to the WAKE pin) gL e & Lo *
* g PBI DOY PC4 PFO 4}
¢ Reset button ;~,-m 02 : % pes #5144
3 user LEDs (1 tri-color device) SGiE, o
¢ Current measurement test points v * Nt Ak e idoalts,
E 5 ' (9“ PAS PE3 - PO7 PA3 ¢‘ ‘
¢ 16MHz Main Oscillator crystal & e e paz A}

TEXAS INSTRUMENTS us @ wake
¥ -

e S i;_

%/ Tiva™ C Series)i Sz 9=

0 //LaunchPad Co_o" &

+3.3v

¢ 32kHz Real Time Clock crystal
¢ 3.3V regulator
¢ Support for multiple IDEs:

- @
® swi
L
U

1YBUS

embedded t?glfe& ARM[}]KEIL g“““"’&!ﬁﬂ!

Lab...

TM4C123G LaunchPad Features

The TM4C123G has a vast variety of applications. It hosts a variety of communication peripherals, which can be
used to connect all sorts of electronics devices; both sensors and actuators, for example, IR sensors, motors,
etc. The TM4C123G is basically a Thumb2 16/32-bit code, which is 26% less memory and 25% faster than pure
32-bit. Moreover, it has a flexible clocking system, and can also access real time clock through hibernation

module.

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

M4 Core and Floating-Point Unit

¢ 32-bit ARM® Cortex™-M4 core
¢ Thumb2 16/32-bit code: 26% less memory & 25 % faster than pure 32-bit

¢ System clock frequency up to 80 MHz
100 DMIPS @ 80MHz

Flexible clocking system
+ Internal precision oscillator
+ External main oscillator with PLL support
+ Internal low frequency oscillator
+ Real-time-clock through Hibernation module

Saturated math for signal processing
Atomic bit manipulation. Read-Modify-Write using bit-banding
Single Cycle multiply and hardware divider

Unaligned data access for more efficient memory usage
IEEE754 compliant single-precision floating-point unit

JTW and Serial Wire Debug debugger access
+ ETM (Embedded Trace Macrocell) available through Keil and IAR emulators

* *

* ¢ ¢ ¢ o

K

TM4C123GH6PM Memory

256KB Flash memory
+ Single-cycle to 40MHz

¢ Pre-fetch buffer and speculative branch improves
performance above 40 MHz

32KB single-cycle SRAM with bit-banding

Internal ROM loaded with TivaWare software
+ Peripheral Driver Library

¢ Boot Loader [0x00000000 Flash]
o)t:(é\.lr:zced Encryption Standard (AES) cryptography [0x01000000 ROM J
¢ Cyclic Redundancy Check (CRC) error [0x20000000 SRAM]
detection functionality -

2KB EEPROM (fast, saves board space) {OXZZOOOOUO B't'Fanded SRAM J
¢ Wear-leveled 500K program/erase cycles L0X40000000 Peripherals & EEPROM]
o Jhrtytwo Jword blocks [0x42000000 Bit-banded Peripherals |
¢ Can be bulk or block erase
+ 10 year data retention [0xE0000000 Instrumentation, ETM, etc.]
¢ 4 clock cycle read time

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

TM4C123GH6PM Peripherals

ﬁattery-backed Hibernation Module
+ |Internal and external power control (through external voltage regulator)

Separate real-time clock (RTC) and power source

VDD3ON mode retains GPIO states and settings

Wake on RTC or Wake pin

Sixteen 32-bit words of battery backed memory

+ 5 pAHibernate current with GPIO retention. 1.7 pA without

Serial Connectivity

+ USB 2.0 (OTG/Host/Device)

*
*
*
*

¢ 8- UART with IrDA, 9-bit and 1ISO7816 support

¢ 6-12C

¢ 4 - SPI, Microwire or Tl synchronous serial interfaces
¢ 2-CAN

TM4C123GH6PM Peripherals

Two 1MSPS 12-bit SAR ADCs

Twelve shared inputs

Single ended and differential measurement

Internal temperature sensor

4 programmable sample sequencers

Flexible trigger control: SW, Timers, Analog comparators, GPIO
VDDA/GNDA voltage reference

Optional hardware averaging

3 analog and 16 digital comparators

MDMA enabled

0-43 GPIO
¢ Any GPIO can be an external edge or level triggered
interrupt

¢ Can initiate an ADC sample sequence or yDMA transfer
directly

+ Toggle rate up to the CPU clock speed on the Advanced
High-Performance Bus

¢ b5-V-tolerant in input configuration
(except for PB0/1 and USB data pins when configured as GPIO)

¢ Programmable Drive Strength (2, 4, 8 mA or 8 mA with slew rate control)
Programmable weak pull-up, pull-down, and open drain

R E R R

*

*

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

TM4C123GH6PM Peripherals

Memory Protection Unit (MPU)
+ Generates a Memory Management Fault on incorrect access to region
Timers

¢ 2 Watchdog timers with separate clocks

+ SysTick timer. 24-bit high speed RTOS and other timer
¢ Six 32-bit and Six 64-bit general purpose timers
*
*

PWM and CCP modes
Daisy chaining
¢ User enabled stalling on CPU Halt flag from debugger for all timers
32 channel yDMA
¢ Basic, Ping-pong and scatter-gather modes
¢ Two priority levels
¢ 8,16 and 32-bit data sizes
¢ Interrupt enabled

TM4C123GH6PM Peripherals

Nested-Vectored Interrupt Controller (NVIC)
& 7 exceptions and 71 interrupts with 8 programmable priority levels
+ Tail-chaining and other low-latency features
¢ Deterministic: always 12 cycles or 6 with tail-chaining
+ Automatic system save and restore

Two Motion Control modules. Each with:
¢ 8 high-resolution PWM outputs (4 pairs)
¢ H-bridge dead-band generators and hardware polarity control
¢ Fault input for low-latency shutdown
¢ Quadrature Encoder Inputs (QEI)
+ Synchronization in and between the modules

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

TM4C123G LaunchPad Pinout Diagram

The figure below shows the front end pinout diagram:

Energia LaunchPad with LM4F120H5QR
LaunchPad with TM4C123GH6PM
Revision 1 crom e
Flash 256 KB Pin number

SRAM 32 KB Other pin number

ADC 12 bits
Use pins numbers only!

Quadrature Encoder - TTL level
only on TM4C123GH6PM

<

.
B2 - SDA (0)
«is 985 100 % 1 [index (1)
s oo v X S e

SCL(3)
SDA(3)

o o~loaswn-

iR ScL(> o5 % N - ;
A, SDA(2) - N - | PhB(1)
ot p’ scL (1)) 7 A
S o1 s AL
pusiiP TEXAS INSTRUMEN ;g5 #u
2.4 - . Sy GROUND PA O
v /] o = 4 GROUND
Stellaris* ye, -y PA_1
gchPad _— — PD_4
PD_5
P2l scL@)
EZY spa @) [T detection MEENE

K ei Vilo, 2012-2017
embeddedcomputing.weebly.com Remove shunts for compatibility
verson2.1 2015-12-19

The figure below shows the pin configuration for back end connector:

Energia StellarPad with LM4F120H5QR
LaunchPad with TM4C123GH6PM
Revision 1 oo
Flash 256 KB Pin number
SRAM 32 KB
. 3 rC
» e

IRea i}

SCK (1)
SCL (0) . Cs (1)
SDA (0)
miso (1)] | PUSH2 |
=
MISO (2
_Cs{0)
SCK (0
2 a0
8£9000802 GROUND PA_1
| vBus | | vBus | PD 4
PD 5
ei Vilo, 2012-2017 00 shunt
embeddedcomputing. weebly.com EEN scL (3) BB R9 PB6 (14
version 15 2015-07-20 24 ISINCE P01 BETEM PB7 |15 TN detection IEEAN

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

GPIO (General Purpose Input/Output)

It has 0-43 general purpose input-output pins. Any GPIO can be used as an external edge or level-
triggered interrupt, it can initiate ADC sampling, can change toggle rate to up to CPU clock speed on
the advanced high-performance bus. Each input pin has a tolerance voltage of 5V in the input
configuration. Every GPIO pin also has a weak pull-up, pull-down, and open drain.

There are many registers associated with each of the above I/O ports, and they have designated
addresses in the memory map. The above addresses are the base addresses meaning that within that
base address we have the registers associated with that port.

Port Name Lower Address Upper Address
GPIO port A 0x40004000 0x40004FFF
GPIO port B 0x40005000 0x40005FFF
GPIO port C 0x40006000 0x40006FFF
GPIO port D 0x40007000 0x40007FFF
GPIO port E 0x40024000 0x40024FFF
GPIO port F 0x40025000 0x40025FFF

On Board Push Buttons

There are two onboard switches (push button) on the LaunchPad that are connected internally with the
GPIO pins, a toggle switch that is used as a power switch, and another push button that is used to reset

or restart the program execution that is already loaded on the board. As shown in the figure below:

(L X

SNBA AS'T+ Wit o8
adl:
9 Ny

'u
Whi @
L]

—r 3
WA q!u
powl e
,Lll""

.
LN

Zams

y

oy

salsas) .ealL 4

r—
Q
<
S
o
=
S
=

4 ¥

$8ssnes

LIS et S
1111111111

HHTHTT

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

SW1 push-button switch is connected to the PFO GPIO pin and the SW2 push-button switch is
connected to the PF4 GPIO pin.

Onboard LEDs

TIVA LaunchPad has one tri-color (RGB) LED onboard. It is internally connected to the F port of the
GPIO pins, and when enabled, the LED shows the color of the enabled pin. Moreover, there is a power
LED of color green onboard, when it is “on”, it tells the user that the board is turned on. Both LEDs are
highlighted in the figure below.

X
:
-

.
& ‘Tl '
o Bals . SO
‘. -

-
") f

<1 @' i

ppav)ﬂ;"::’/wo_\ DR T

USRI
U

LLIL LTI

I ol

-
x
=
-
T
~
w
<
>
o<

-
<
-

feWdnow

0o

RGB LED
LED Flashing

A GPIO pinis a pin that can be configured through software to be either a digital input or a digital output.
GPIO outputs let you translate logical values within your program to voltage values on output pins.
These are the voltage outputs that help your microcontroller exert control over the system into which it
is embedded.

Configuring Peripherals

The fundamental initialization steps required to utilize any of the peripherals are:

1. Enable clocks to the peripheral

2. Configure pins required by the peripheral

3. Configure peripheral hardware

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

LED flashing code is implemented using an infinite loop which toggles bit 28 of the address
0x2009C020 after certain delay. The delay is implemented using the loop that just increments the loop

counter until the condition is satisfied, as shown in the following flow-chart.

The overall structure of the program is shown in listing below. The program begins by defining

macros for the relevant register addresses.

The main routine follows the initialization steps

described above then enters a loop in which it toggles an LED and waits for sometime.

Initialize LEDs
(Turn them off)

) 4
Set initial value
of counter

»

Increment/

Delay loop

the counter

Decrement «—— reached final

L

Y

No Counter

value?

Yes

¥
Switch the LED
(Toggle the bit)

L |

#include " Im4f120h5qr.h"

int main (void)
{
//[Enable peripheral

(1) ..

/I Conf igure pins
o (2)...
while (1)
/[Turn ON LED
o (3). ..
/IDelay for a bit
o (4) ...
/[Turn OFF LED
...(5)...

}

}

STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Where is LED?
The Stellaris LaunchPad comes with an RGB LED. The LED can be configured for use in any custom
application. The following table shows how the LED is connected to the pins on the microcontroller.

The following figure shows the physical connection of the LED.

PED PFO

g»’W‘g USR_SWz2
YR gﬁzs
VYA USRS
GPIO pin | Pin Function USB Device
PF'1 GPIO RGB LED (Red)
PFE?2 GPIO RGB LED (Blue)
PF3 GPIO RGB LED (Green)

LED Configuration

We will follow the steps stated above to configure the on-board LED.
Enabling the Clock

The RCGCGPIO register provides the software with the capability to enable and disable GPIO modules
in Run mode. When enabled, a module is provided with a clock and access to the module. When
disabled, the clock is disabled to save power and access attempts to module registers generate a bus
fault. This register is shown in the figure below. The clock can be enabled for the GPIO port F by
asserting the 6th bit of RCGGPIO register.

Now, to set any bit (i.e., make it 1) in a given register, we can do it in three different ways. For example,
to set the 6th bit of RCGGPIO register, we can use:

Case 1: RCGGPIO = (1<<6); // direct assign: other pins set to 0.

Case 2: RCGGPIO |= 0x20; // direct assign: other pins not affected

Case 3: RCGGPIO |= (1<<6); //binary — OR and assign: other pins not affected.

The following command can be used to enable clock signal for GPIO port F

10

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

| SYSCTL RCGCGPIO R = 0x20 ; (1)

Basa Oud 00F_EOOD
Offsat 008
Type RAW, resat Oud000.0000
bl 30 20 28 a7 b} 25 24 3 2 b3 | 20 19 18 17 16
T T T T T T T T T T T T T T T
reserved
1 | | |
Tipe R (Zo] RO RO R RO RO RO RO RO 21w} RO RO RO Ry RO
Flagel o i} 1] [1] o i} i] [1]] o a il] o o il
15 14 13 12 1 10 9 B T 5} 5 4 3 2 1 i}
T T T T T T T T T
resared RS R4 R3 B2 B RO
1 1
Type RO RO RO RO RO RO RO RO RO RO RN RN RN RV RN RN
[Faoey o a 1] [1] o a a [1] 1]} o a a 1]} o o a

General-Purpose Input/output Run Mode Clock Gating Control (RCGCGPIO)
Configuring the Pin as Output

After enabling the clocks, it is necessary to configure any required pins. In this case, a single pin (PF3)
must be configured as an output. To use the pin as a digital input or output, the corresponding bit in the

GPIODEN register must be set, and then setting a bit in the GPIODIR register configures the
corresponding pin to be an output

GPIO Port F (APB) basa: 0x4002.5000

kil 30 20 28 27 8 25 24 3 2 21 20 19 18 17 18
T T T T T T T T T T T T T T T
reseryed
1] [
Type RO RO RO RO RO RO] RO RO RO RO RO RO RO RO RO
Faset o a [1] [1] o a a [1] o o a a [1] o o a
15 14 13 12 1 10 9] T -] 5 4 3 2 1 a
I I] | L] L) L) I I L] L] | |]
reserved DEMN
] 1
Type RO RO RO RO RO RO RO RO RV RAV R RW R RV R R
Faset o i (1] (1] o a a [1]

GPIO Digital Enable (GPIODEN)
GPIO Port F (APB] base: Ox4002.5000 Offset 0400

k| 30 20 28 Fa] 25 24 3 2 | 20 19 16 17 16
] 1 L| L L] T L| 1 L L] L] | T I L]
reserved
L 1 1
Type RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO
Reset o [i] [i] 0 o [i] [i] 0 [1] o [i] [i] [1] o o [i]
15 14 13 i2 11 id] B T i 5 4 3 2 i a
T T T T T T T T T T T T T T
reserved DR
| I
Type [zTa] RO RO RO RO RO RO RO R R W R [T [ZT] RW R
Reset o [i] o 1] o a a 1] [1] o a [i] [1] o o a

GPIO Direction (GPIODIR)

The commands used to set the corresponding bits in GPIODEN and GPIODIR registers are given as
follows

GPIO PORTF DIR R = 0x08; 11(2)
GPIO PORTF DEN R = 0x08 ;

11

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

Toggle the LED

After configuring the LED as an output, we want to toggle it after regular intervals. LED can be turned

ON and OFF by setting and resetting the corresponding bits in the GPIODATA register.

GPIO Port F (APB] base: 0xd002.5000 Offset (D00

il 30 24 28 27] 25 24 pi | 2 | 20 19 18 17 16
T T T T T T T T T T T T T T T
reserved
I} 1 1
Tipe ROy RO RO RO ROy RO RO RO RO RO RO RO RO RO ROy RO
Raset o a [1] [1] o a 0 [1] [1] o a a [1] i] o a
15 14 13 12 1 10 9] T 5] 5 3 2 1 a
T T T T T T T T T T T T T T
resered IDWATA
i i
Type RO RO RO RO RO RO RO RO RV RAV RN RW R [ZT] RN RAN
Resed o [i] (1] [1] o [i] [i] [1] (1] o a [i] (1] o o [i]

GPIO Data (GPIODATA)

The commands for toggling LED are as follows

GPIO PORTF DATAR = 0x08; 11(3)
GPIO PORTF DATAR=0x00; //(5)

Introducing a Delay

We cannot observe the toggling of LED because of very high frequency. We introduce a delay loop in
order to observe the toggle sequence of the LED. The syntax for the loop is shown in the following

figure

int counter =0 ;
while (count e r < 200000) { 11(4)
++counter ;

}

Source Code

The complete assembly and C language code for the program is given as follows

Assembly Language Code

; Directives
PRESERVES
THUMB ; Marks the THUMB mode of operation
:Data variables are declared in DATA AREA;
AREA const_data , DATA, READONLY
; Initialing some constants
SYSCTL_RCGCGPIO_R EQU 0x400FE608
GPIO PORTF AFSEL R EQU 0x40025420

12

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

GPIO_PORTF_DIR_R EQU 0x40025400
GPIO_PORTF_DEN_ R EQU 0x4002551C
GPIO_PORTF_DATA_R EQU 0x400253FC

DELAY EQU 200000

;The user code (program) is placed in CODE AREA;
AREA |.text| , CODE, READONLY, ALIGN=2
ENTRY ; ENTRY marks the starting point of the code execution
EXPORT __main

__main

: User Code starts from the next line

: Enable clock for PORT F
LDR R1, =SYSCTL RCGCGPIO_R
LDR RO, [R1]

ORR RO ,RO0, #0x20

STR RO, [R1]

NOP ; No operations for 3 cycles
NOP

NOP

; Set the direction for PORT F
LDR R1, =GPIO_PORTF_DIR_R
LDR RO, [R1]

ORR RO, #0x08
STR RO, [R1]
; Digital enable for PORT F
LDR R1, =GPIO_PORTF_DEN_R
LDR RO, [R1]
ORR RO, #0x08
STR RO, [R1]

; Infinite loop LED flash

LED_flash

: Set the data for PORT F to turn LED on
LDR R1, =GPIO_PORTF_DATA R
LDR RO, [R1]

ORR RO, RO, #0x08
STR RO, [R1]

; Delay loop

LDR R5, =DELAY
delayl

SUBS R5,#1

BNE delayl

; Set the data for PORT F to turn LED off
LDR R1, =GPIO_PORTF_DATA_R
LDR RO, [R1]
AND RO, RO, #0xF7
STR RO, [R1]
; Delay loop
LDR R5, =DELAY
delay2
SUBS R5,#1
BNE delay2

13

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

B LED_flash

ALIGN
END ; End of the program , matched with ENTRY keyword

C language Code

#define SYSCTL_RCGCGPIO_R (*((volatile unsigned long *)0x400FE608))

#define GPIO_PORTF_DATA R (*((volatile unsigned long *)0x400253FC))

#define GPIO_PORTF_DIR_R (*((volatile unsigned long *)0x40025400))

#define GPIO_PORTF_DEN_R (*((volatile unsigned long *)0x4002551C))

#define DELAY 200000

int main (void)

{volatile unsigned long ulLoop ;

/l Enable the GPIO port that is used for the onboard LED.
SYSCTL_RCGCGPIO_R = 0x20;

/I Do a dummy read to insert a few cycles after enabling the peripheral.

ulLoop = SYSCTL_RCGCGPIO_R;

GPIO_PORTF_DIR_R = 0x08;
GPIO_PORTF_DEN_R = 0x08;

/I Loop for ever.

while (1) {
/I Toggle the LED.

GPIO_PORTF_DATA_R "= 0x08; // » means XOR in c
I/l Delay for a bit.

for (ulLoop = 0; ulLoop < DELAY; ulLoop++)
{

for (ulLoop = 0; ulLoop < DELAY; ulLoop++)

}

/I _Enable the GPIO pin for the LED (PF3). Set the direction as output and enable the GPIO pin for digital /function. _/

14

Uploaded By: Malak Dar Obaid

In-Lab Exercises:
1- Modify the assembly program so that the Blue Led is flashing instead of the Green one.

-Increase delay amount to 2000000 and observe the response.

-Decrease the delay amount to 2000 and observe the response. Explain?

2- Modify the ¢ code so the three Leds light in this sequence R->B->G. Choose a reasonable delay so

the three led’s can be observed.

15

STUDENTS-HUB.com Uploaded By: Malak Dar Obaid

