The exponential Probability Distribution "continuous" (7) The exponential Prob. distribution is Tused for random variables s.t:
The exponential Prob. distribution is rused for random variable
- the time between arrivals at a car wash. - the time between the arrival customers at a bank. - the time required to load a truck - the distance between defects in a highway, and so on * The Exponential Prob. 0
- the time required to 1000
- the distance between defect
* The Exponential Probe Density Function is
f(x)= if for x>0 and u>0
where M = expected value on Mean
where $M = \text{expected Value on Mean}$ $M = \text{standard deviation 6}$ $6 = \text{Variance} = M^2$ X
* The Cumulative Perhabilities ()
* The cumulative Probabilities for the exponential distribution is $P(x \le x_0) = 1 - e^{\frac{-x_0}{e^{-x_0}}}$
Example (433 page 248) Consider the following exponential prob. density function $f(x) = \frac{1}{3}e^{-\frac{x}{3}}$ for $x \ge 0$
density function $f(x) = \frac{1}{3}e^{3}$ for $x \ge 0$
Tal write the formula for the cumulative probabilities?
$P(X \leq X_0) = 1 - e^{\frac{-X_0}{3}}$
ま UDERPS-HUE.50元) = 1- e = 1- 0.5134 = 0.4866 Uploaded By: Jibreel Bornat
[Find $P(X \ge 3) = 1 - P(X < 3) = 1 - [1 - e^{-\frac{2}{3}}] = e^{-\frac{1}{3}} = 0.3679$
d Find $P(x \le 5) = 1 - e^{-\frac{5}{3}} = 1 - 0.1889 = 0.811)$
e Find $P(2 \le x \le 5) = P(x \le 5) - P(x \le 2) = 0.8111 - 0.4866 = 0.3245$
e) Find $P(2 \le x \le 5) = P(x \le 5) - P(x \le 2) = 0.8(1) - 0.4866 = 0.32$ F) Sketch this exponential probability distribution probability distribution $P(2 \le x \le 5)$ [h] Find $G = M = 9$
3° X 3 Y 5

Relationship Between the Poisson and Exponential (78) Distributions:

- * Recall that the Poisson distribution is a discrete prob. distribution used to examine the number of occurrence of an event over a specified interval of time: f(x) = Me-M where 6= Var(x) = M = expected value or mean number of occurrence over specified interval.
 - * The continuous exponential prob. distribution describes the length of the interval between occurrence.
- * That is, if arrivals follow a Poisson distribution, then the time between arrivels must follow an exponential distribution.

Example: Suppose the number of cars arrive at a car wash during one hour is described by a Poisson prob. distribution with mean 10 cars per hour.

Hence, the Poisson prob. function that gives the prob. of x arrivals car per hour is $f(x) = \frac{10}{10} \frac{e^{-10}}{x^{1}}$

. Now the average time between cars arriving is = I hour 10 cars Hence, the corresponding exponential Me = 0.1 hour/car = 6 minut/car between the arrivals has mean

Me = 0.1 hour/ear. Thus, the exponential prob. density function is $f(x) = \frac{1}{0.1} e^{x/0.1} = 10 e^{-10x}$