$$\begin{array}{c} \underline{Ch6}: \ \hline 6.1 \ \hline Eigenvalues and Eigenvector \ \end{tabular} \$$

Remark Let A be non matrix and
$$\lambda$$
 be a scalar. (02)
The following statements are equivalent:
(D) λ is an eigenvalue of A .
(D) $(A - \lambda I) \neq 0$ has a nontrivial solution.
(D) $N(A - \lambda I) \neq 0$ has a nontrivial solution.
(D) $N(A - \lambda I) \neq 0$
(D) The matrix $A - \lambda I$ is singular
(D) $(A - \lambda I) = 0$
(D) The matrix $A - \lambda I$ is singular
(D) $(A - \lambda I) = 0$
(D) The sum of the diagonal elements of A_{nxn} is called trace of
(D) A denoted by $tr(A)$. That is, $tr(A) = \sum_{i=1}^{n} a_{ii}$
(D) $(\lambda_1)(\lambda_2) \cdots (\lambda_n) = |A|$
(D) $(\lambda_1)(\lambda_2) = |A|$

-2i
$$X_1 + 2X_2 = 0$$
 (c) $X_2 = iX_1$
 $\Rightarrow x = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} X \\ \alpha i \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is the eigenvector
 $\Rightarrow i \begin{pmatrix} 1 \\ 1 \end{pmatrix}^2$ is basis for the eigenvector associated with $\lambda_1 = 1 + 2i$
 $\Rightarrow i \begin{pmatrix} 1 \\ 1 \end{pmatrix}^2$ is basis for the eigenvector associated with $\lambda_2 = 1 + 2i$
 $\Rightarrow i \begin{pmatrix} -1 \\ 1 \end{pmatrix}^2$ is a basis for $\mathcal{M}(\mathcal{A} - \mathcal{A}_2 \mathbb{T})$.
Nok that in Eq. $\Rightarrow tr(\mathcal{A}) = 2 = \lambda_1 + \lambda_2$
 $\Rightarrow |\mathcal{A}| = 5 = (\lambda_1)(\lambda_2)$
Def The matrix β is similar to matrix A if there
 $exists$ a nonsingular matrix S st $B = S^2 A S$.
End similar matrix B to A .
 $B = S^2 A S = \begin{bmatrix} 5 & 3 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 6 & 6 \end{bmatrix}$
The left A and B be nxn matrices. If B is similar to A ,
then the two matrices have the same characteristic
polynomial and hence, the same eigenvalues.
In Eq. a bove: B similar to A the eigenvalues of B are $\lambda_1 = 2$
STUDENTS. HUB.com
 $B = \lambda I = 0 \Leftrightarrow \begin{bmatrix} -1 - \lambda - 2 \\ 6 & 6 - \lambda \end{bmatrix} = 0 \Leftrightarrow (1-\lambda)(6-\lambda) + 12 = 0$
 $\Rightarrow \lambda^2 - 5\lambda + 6 = 0 \Leftrightarrow (\lambda - 2)(\lambda - 3) = 0 \Leftrightarrow \lambda_1 = 2, \lambda_2 = 3$