

Machine Design 2 ENME 436

Department of Mechanical and Mechatronics Engineering

Dr. Rashad Mustafa

Fatigue strength means the property of a design or component, the casual occurrences during the operation elasto-plastic cyclic, quasi-static and sudden loads taking into account the environmental conditions, such as corrosion, and to maintain a high temperature and safe operation for the intended period of use.

Requirements for the fatigue strength of components and systems

- Designed for customer-specific operating and operating conditions
- Ensuring the required service life
- Ensuring the lowest possible probability of failure
- Consideration of special events and misuse

Faculty of Engineering and Technology Department of Mechanical and Mechatronics Engineering Machine Design 2 – ENME436

Text Book:

Mechanical Engineering Design, 10th Edition, Joseph E. Shigley & Charles R. Mischke

Course Content:

- 1. Friction, wear and lubrication; systems of lubrication.
- 2. Design of sliding bearings; journal and thrust bearings.
- 3. Antifriction bearings; types, selection criteria and calculation procedure.
- 4. Power transmission; Prime mover characteristics and types.
- 5. Design of gear drives; Spur gears, helical gears, bevel gears, worm gears.
- 6. Design of belt drives; Flat belts, V-belts.
- 7. Design of chain drives and rope drives.

Introduction

STUDENTS-HUB.com

Uploaded By: anonymous 5

Introduction

History

Uploaded By: anonymous 7

Chapter 11: Rolling Contact Bearing Introduction

Ancient Egyptians used timbers for transportation of stones for pyramid building. This was roller bearings start.

STUDENTS-HUB.com

Uploaded By: anonymous 8

Uploaded By: anonymous ₉

The terms "*rolling-contact bearing*", "*antifriction bearing*", and "*rolling bearing*" are all used to describe that class of bearing in which the main load is transferred through elements in rolling contact rather than in sliding contact.

Types of rolling contact bearing:

Ball bearing

Uploaded By: anonymous₁₁

Main Components

11.1 Bearing Types

11.1 Classification of Bearing Loads

- Radial (Carry radial load)
- Thrust, axial contact (carry axial loads)
- Angular-contact (curry axial and radial loads)

Radial load

11.1 Ball Bearing Types

11.1 Ball Bearing Types

Sealed Bearing

Uploaded By: anonymous $_{16}$

Shield Bearing

STUDENTS-HUB.com

11.1 Ball Bearing Types

External Self-Aligning

Internal Self-Aligning

11.1 Ball Bearing Types

Figure 11-3

Types of roller bearings: (*a*) straight roller; (*b*) spherical roller, thrust; (*c*) tapered roller, thrust; (*d*) needle; (*e*) tapered roller; (*f*) steep-angle tapered roller. (*Courtesy of The Timken Company.*)

Uploaded By: anonymous₁₈

Bearing system life

$$C_{10} = F_R = F_D \left(\frac{L_D}{L_R}\right)^{1/a} = F_D \left(\frac{\mathscr{L}_D n_D 60}{\mathscr{L}_R n_R 60}\right)^{1/a}$$

Uploaded By: anonymous₁₉

Bearing system life: Example:

Roller bearing is to withstand radial load $F_r = 4 \text{ kN}$ and have a life $L_D = 1200 \text{ hr}$ at $n_D = 600 \text{ rpm}$. What value of load rating you will select from TimKen Engineering Company catalog

11.5 Relating Load, Life, and Reliability

Figure 11-5

Constant reliability contours. Point A represents the catalog rating C_{10} at $x = L/L_{10} = 1$. Point *B* is on the target reliability design line R_D , with a load of C_{10} . Point D is a point on the desired reliability contour exhibiting the design life $x_D = L_D/L_{10}$ at the design load F_D .

$$C_{10} \approx a_f F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90 \qquad (11-10)$$

11.5 Relating Load, Life, and Reliability

$$C_{10} \approx a_f F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90 \qquad (11-10)$$

Table 11-6 Typical Weibull		Ratina Life,	Weibull Parameters Rating Lives			
Parameters for Two	Manufacturer	Revolutions	X 0	θ	Ь	
Manufacturers	1 2	90(10 ⁶) 1(10 ⁶)	0 0.02	4.48 4.459	1.5 1.483	

Uploaded By: anonymous₂₂

Application factor and Life should be taken into account in the Bearing application

Table 11–4	Type of Application		Life, kh			
Bearing-Life	Instruments and apparatus for infrequent use		Up to 0.5			
Recommendations for	Aircraft engines		0.5-2			
Various Classes of Machinery	Machines for short or intermittent operation winterruption is of minor importance	Machines for short or intermittent operation where service interruption is of minor importance				
1- Life	Machines for intermittent service where reliabl is of great importance	8-14				
	Machines for 8-h service that are not always for	ully utilized	14–20			
		20-30				
	Machines for continuous 24-h service		50-60			
	Machines for continuous 24-h service where re of extreme importance	eliability is	100-200			
Table 11–5	Type of Application	Load Factor				
Load-Application Factors	Precision gearing	1.0-1.1				
	Commercial gearing	1.1–1.3				
	Applications with poor bearing seals	1.2				
2 – Application	2 – Application Machinery with no impact 1.0–1.2					
factor	Machinery with light impact					
STUDENTS-HUB.com	Machinery with moderate impact	1.5⊎pխaded By	: anonymous ₂₃			

Figure 11-6

The relationship of dimensionless group $F_e/(VF_r)$ and $F_a/(VF_r)$ and the straight-line segments representing the data.

$$\frac{F_e}{VF_r} = 1 \qquad \text{when } \frac{F_a}{VF_r} \le e$$
$$\frac{F_e}{VF_r} = X + Y \frac{F_a}{VF_r} \qquad \text{when } \frac{F_a}{VF_r} > e$$

A rotation factor V is defined such that V = 1when the inner ring rotates and V = 1.2 when the outer ring rotates

STUDENTS-HUB.com

 $\frac{F_e}{VF_r}$ 20000000 Slope YX $\frac{F_a}{VF_r}$ e 0

Uploaded By: anonymous₂₄

(11 - 12)

$F_e = X_i V F_r + Y_i F_a$

Table 11-1

Equivalent Radial Load Factors for Ball Bearings

		$F_a/(VF_r) \leq e$		$F_a/(VF_r) > e$		
F_a/C_0	е	X 1	Y ₁	X 2	Y ₂	
0.014*	0.19	1.00	0	0.56	2.30	
0.021	0.21	1.00	0	0.56	2.15	
0.028	0.22	1.00	0	0.56	1.99	
0.042	0.24	1.00	0	0.56	1.85	
0.056	0.26	1.00	0	0.56	1.71	
0.070	0.27	1.00	0	0.56	1.63	
0.084	0.28	1.00	0	0.56	1.55	
0.110	0.30	1.00	0	0.56	1.45	
0.17	0.34	1.00	0	0.56	1.31	
0.28	0.38	1.00	0	0.56	1.15	
0.42	0.42	1.00	0	0.56	1.04	
0.56	0.44	1.00	0	0.56	1.00	

*Use 0.014 if $F_a/C_0 < 0.014$.

Table 11-2

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

			Fillet	Shou	lder		Load Ra	tings, kN	
Bore,	OD,	Width,	Radius,	Diamet	er, mm	Deep 0	Groove	Angular	Contact
mm	mm	mm	mm	ds	d _H	C 10	C ₀	C 10	Co
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5

Table 11-3

Dimensions and Basic Load Ratings for Cylindrical Roller Bearings

		02-Se	eries		03-Series				
Bore,	OD,	Width,	Load Ra	ting, kN	OD,	Width,	Load Ra	ting, kN	
mm	mm	mm	C 10	Co	mm	mm	C 10	Co	
25	52	15	16.8	8.8	62	17	28.6	15.0	
30	62	16	22.4	12.0	72	19	36.9	20.0	
35	72	17	31.9	17.6	80	21	44.6	27.1	
40	80	18	41.8	24.0	90	23	56.1	32.5	
45	85	19	44.0	25.5	100	25	72.1	45.4	
50	90	20	45.7	27.5	110	27	88.0	52.0	
55	100	21	56.1	34.0	120	29	102	67.2	
60	110	22	64.4	43.1	130	31	123	76.5	
65	120	23	76.5	51.2	140	33	138	85.0	
70	125	24	79.2	51.2	150	35	151	102	
75	130	25	93.1	63.2	160	37	183	125	
80	140	26	106	69.4	170	39	190	125	
85	150	28	119	78.3	180	41	212	149	
90	160	30	142	100	190	43	242	160	
95	170	32	165	112	200	45	264	189	
STODEN-	TS-HUB.com	34	183	125	215	47 Uplo	baded ⁰ By: an	onymous ₂₇	

Figure 11-7: The basic ABMA plan for boundary dimensions.

It shows the variety of bearings that may be obtained with a particular bore

The bearings are identified by a two-digit number called the *dimension-series code*.

- The first number in the code is from the *width series*.
- The second number is from the *diameter series* (outside).

Since the dimension series code does not reveal the dimensions directly, it is necessary to resort to tabulations. Uploaded By: anonymous₂₉

Problem 11-35

The worm shaft shown in part a of the figure transmits 1.2 hp at 500 rev/min. A static force analysis gave the results shown in part b of the figure. Bearing A is to be an angular-contact ball bearing selected from Table 11–2, mounted to take the 555-lbf thrust load. The bearing at B is to take only the radial load, so an 02-series cylindrical roller bearing from Table 11–3 will be employed. Use an application factor of 1.2, a desired life of 30 kh, and a combined reliability goal of 0.99, assuming distribution data from manufacturer 2 in Table 11–6. Specify each bearing.

Problem 11-35

Uploaded By: anonymous₃₁

11.5 Relating Load, Life, and Reliability

$$C_{10} \approx a_f F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90 \qquad (11-10)$$

Table 11–6 Typical Weibull		Ratina Life,	Weibull Parameters Rating Lives			
Parameters for Two	Manufacturer	Revolutions	X 0	θ	Ь	
Manufacturers	1 2	90(10 ⁶) 1(10 ⁶)	0 0.02	4.48 4.459	1.5 1.483	

Uploaded By: anonymous₃₂

Table 11-3

Dimensions and Basic Load Ratings for Cylindrical Roller Bearings

		02-Se	eries		03-Series				
Bore,	OD,	Width,	Load Ra	ting, kN	OD,	Width,	Load Ra	ting, kN	
mm	mm	mm	C 10	Co	mm	mm	C 10	Co	
25	52	15	16.8	8.8	62	17	28.6	15.0	
30	62	16	22.4	12.0	72	19	36.9	20.0	
35	72	17	31.9	17.6	80	21	44.6	27.1	
40	80	18	41.8	24.0	90	23	56.1	32.5	
45	85	19	44.0	25.5	100	25	72.1	45.4	
50	90	20	45.7	27.5	110	27	88.0	52.0	
55	100	21	56.1	34.0	120	29	102	67.2	
60	110	22	64.4	43.1	130	31	123	76.5	
65	120	23	76.5	51.2	140	33	138	85.0	
70	125	24	79.2	51.2	150	35	151	102	
75	130	25	93.1	63.2	160	37	183	125	
80	140	26	106	69.4	170	39	190	125	
85	150	28	119	78.3	180	41	212	149	
90	160	30	142	100	190	43	242	160	
95	170	32	165	112	200	45	264	189	
	rs-HUB.com	34	183	125	215	47 Uplo	baded ⁰ By: an	onymous ₃₃	

Table 11-2

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

			Fillet	Shoulder		Load Ratings, kN			
Bore,	OD,	Width,	Radius,	Diame	ter, mm	Deep	Groove	Angular	Contact
mm	mm	mm	mm	ds	d _H	C 10	Co	C 10	C _o
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0
90	160	30	2.0	104	146	95.6	62.0	106	73.5
95	170	32	2.0	110	156	108	69.5	121	85.0

 $F_e = X_i V F_r + Y_i F_a$

11	1 1	1 1	2
		_	
•			_

Table 11-1			F _a /(VF,) ≤ e	$F_a/(VF_r) > e$		
Equivalent Radial Load	F_a/C_0	е	X 1	Y ₁	X 2	Y ₂	
Factors for Ball Bearings	0.014*	0.19	1.00	0	0.56	2.30	
	0.021	0.21	1.00	0	0.56	2.15	
0.0392	0.028	2 0.22	1.00	0	0.56	1.99	
	0.042	0.24	1.00	0	0.56	1.85	
	0.056	0.26	1.00	0	0.56	1.71	
	0.070	0.27	1.00	0	0.56	1.63	
	0.084	0.28	1.00	0	0.56	1.55	
	0.110	0.30	1.00	0	0.56	1.45	
	0.17	0.34	1.00	0	0.56	1.31	
	0.28	0.38	1.00	0	0.56	1.15	
	0.42	0.42	1.00	0	0.56	1.04	
	0.56	0.44	1.00	0	0.56	1.00	

*Use 0.014 if $F_a/C_0 < 0.014$.

Figure 11-9

Plot of F^a as ordinate and L as abscissa for F^aL = constant. The linear damage hypothesis says that in the case of load F_1 , the area under the curve from L = 0 to $L = L_A$ is a measure of the damage $D = F_1^a L_A$. The complete damage to failure is measured by $C_{10}^a L_B$.

$$F^{a}L = \text{constant} = K$$

(a)

11.7 Variable Loading

Figure 11-10 F^a A three-part piecewise-
continuous periodic loading
cycle involving loads F_{e1} , F_{e2} ,
and F_{e3} . F_{eq} is the equivalent
steady load inflicting the
same damage when run for
 $l_1 + l_2 + l_3$ revolutions, doing
the same damage D per period.

$$D = F_{e_1}^a l_1 + F_{e_2}^a l_2 + F_{e_3}^a l_3$$

$$F_{e1}^{a}$$

$$F_{e3}^{a}$$

$$I_{1}$$

$$I_{2}$$

$$I_{3}$$

$$F_{e3}^{a}$$

$$I_{1}$$

$$I_{2}$$

$$I_{3}$$

$$I_{1}$$

$$I_{2}$$

$$I_{1}$$

$$I_{2}$$

$$D = F_{\rm eq}^a (l_1 + l_2 + l_3)$$

11.7 Variable Loading

Equation 1:

$$D = F_{e_1}^a l_1 + F_{e_2}^a l_2 + F_{e_3}^a l_3$$

Equation 2:

$$D = F_{\rm eq}^a (l_1 + l_2 + l_3)$$

Equating Equation 1 and 2, we get the $oldsymbol{F_{eq}}$

$$F_{\rm eq} = \left[\frac{F_{e1}^a l_1 + F_{e2}^a l_2 + F_{e3}^a l_3}{l_1 + l_2 + l_3}\right]^{1/a} = \left[\sum f_i F_{ei}^a\right]^{1/a}$$

Uploaded By: anonymous₃₈

11.7 Variable Loading

$$F_{\rm eq}^{a}L_{\rm eq} = F_{e1}^{a}l_{1} + F_{e2}^{a}l_{2} + F_{e3}^{a}l_{3}$$

and note that

$$K = F_{e1}^a L_1 = F_{e2}^a L_2 = F_{e3}^a L_3$$

and *K* also equals

$$K = F_{e_1}^a l_1 + F_{e_2}^a l_2 + F_{e_3}^a l_3 = \frac{K}{L_1} l_1 + \frac{K}{L_2} l_2 + \frac{K}{L_3} l_3 = K \sum \frac{l_i}{L_i}$$

From the outer parts of the preceding equation we obtain

$$\sum \frac{l_i}{L_i} = 1$$

Uploaded By: anonymous₃₉

Problem 11 - 38

Estimate the remaining life in revolutions of an 02-30 mm angular-contact ball bearing already subjected to 200 000 revolutions with a radial load of 18 kN, if it is now to be subjected to a change in load to 30 kN.

Problem 11 - 38

Table 11-3

Dimensions and Basic Load Ratings for Cylindrical Roller Bearings

		02-Se	eries		03-Series				
Bore,	OD,	Width,	Load Ra	ting, kN	OD,	Width,	Load Ra	ting, kN	
mm	mm	mm	C 10	C ₀	mm	mm	C 10	Co	
25	52	15	16.8	8.8	62	17	28.6	15.0	
30	62	16	22.4	12.0	72	19	36.9	20.0	
35	72	17	31.9	17.6	80	21	44.6	27.1	
40	80	18	41.8	24.0	90	23	56.1	32.5	
45	85	19	44.0	25.5	100	25	72.1	45.4	
50	90	20	45.7	27.5	110	27	88.0	52.0	
55	100	21	56.1	34.0	120	29	102	67.2	
60	110	22	64.4	43.1	130	31	123	76.5	
65	120	23	76.5	51.2	140	33	138	85.0	
70	125	24	79.2	51.2	150	35	151	102	
75	130	25	93.1	63.2	160	37	183	125	
80	140	26	106	69.4	170	39	190	125	
85	150	28	119	78.3	180	41	212	149	
90	160	30	142	100	190	43	242	160	
95	170	32	165	112	200	45	264	189	
STODENT	S-HUB.com	34	183	125	215	⁴⁷ Upl	oaded ⁰ By: an	ony_{10}^{220}	

Problem 11 - 38

Table 11-2

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

			Fillet	Shoulder		Load Ratings, kN			
Bore,	OD,	Width,	Radius,	Diame	ter, mm	Deep	Groove	Angular	Contact
mm	mm	mm	mm	ds	d _H	C 10	Co	C 10	Co
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0
90	160	30	2.0	104	146	95.6	62.0	106	73.5
95	170	32	2.0	110	156	108	69.5	121	85.0

Figure 11-13

Nomenclature of a tapered roller bearing. Point *G* is the location of the effective load center; use this point to estimate the radial bearing load. (*Courtesy of The Timken Company.*)

STUDENTS-HUB.com

Indirect mounting Figure 11-14 а Comparison of mounting B_c A_{c} stability between indirect and direct mountings. (Courtesy of Cone face The Timken Company.) *(a)* facing each 90⁶ other Bearing A Bearing B B'_o `A Cone back facing each (b) other B_c A_c a, Direct mounting

STUDENTS-HUB.com

Uploaded By: anonymous₄₄

Using F_i for the induced thrust load from a radial load, Timken provides the equation:

Figure 11-16

Direct-mounted tapered roller bearings, showing radial, induced thrust, and external thrust loads.

$$\begin{array}{ll} \mbox{If} & F_{iA} > (F_{iB} + F_{ae}) & \begin{cases} F_{eB} = 0.4F_{rB} + K_B(F_{iA} - F_{ae}) & (11\mbox{-}20a) \\ F_{eA} = F_{rA} & (11\mbox{-}20b) \\ \end{bmatrix} \\ \begin{array}{l} \mbox{STUDENTS-HUB.com} & \mbox{Uploaded By: anonymous}_{46} \end{cases} \end{array}$$

Example 11-8

The shaft depicted in Fig. 11–18*a* carries a helical gear with a tangential force of 3980 N, a radial force of 1770 N, and a thrust force of 1690 N at the pitch cylinder with directions shown. The pitch diameter of the gear is 200 mm. The shaft runs at a speed of 800 rev/min, and the span (effective spread) between the direct-mount bearings is 150 mm. The design life is to be 5000 h and an application factor of 1 is appropriate. If the reliability of the bearing set is to be 0.99, select suitable single-row tapered-roller Timken bearings.

Example 11-8

11.5 Relating Load, Life, and Reliability

$$C_{10} \approx a_f F_D \left[\frac{x_D}{x_0 + (\theta - x_0)(1 - R_D)^{1/b}} \right]^{1/a} \qquad R \ge 0.90 \qquad (11-10)$$

Table 11-6 Typical Weibull		Ratina Life,	Weibull Parameters Rating Lives					
Parameters for Two	Manufacturer	Revolutions	X 0	θ	Ь			
Manufacturers	1 2	90(10 ⁶) 1(10 ⁶)	0 0.02	4.48 4.459	1.5 1.483			

Uploaded By: anonymous₄₉

Example 11-8

Trail 1

$$C_{10} = (1)(4651) \left[\frac{2.67}{(4.48)(1 - 0.995)^{2/3}} \right]^{3/10} = 11\,486\,\mathrm{N}$$

From Fig. 11–15, tentatively select type TS 15100 cone and 15245 cup, which will work: $K_A = 1.67$, $C_{10} = 12$ 100 N.

For bearing B, from Eq. (11–10), the catalog entry C_{10} should equal or exceed

$$C_{10} = (1)2654 \left[\frac{2.67}{(4.48)(1 - 0.995)^{2/3}} \right]^{3/10} = 6554 \text{ N}$$

Tentatively select the bearing identical to bearing A, which will work: $K_B = 1.67$, $C_{10} = 12 \ 100 \ \text{N}$.

Uploaded By: anonymous₅₀

Figure 11 - 15

Catalog entry of single-row straightbore Timken roller bearings

SINGLE-ROW STRAIGHT BORE

								cone				cup				
bore of	outside diameter	width	rat 500 3000 one-	ting at rpm for hours L ₁₀	fac- tor	eff. load center	part numbers		max shaft fillet radius	max shaft fillet width radius	backing shoulder diameters		max hous- ing fillet	width	backing shoulder diameters	
d	D	Т	row radial N lbf	nrust N lbf	K	a ^②	cone	cup	R①	В	d _b	d _a	radius r①	С	D _b	D _a
25.400 1.0000	50.292 1.9800	14.224 0.5600	7210 1620	4620 1040	1.56	- 3.3 -0.13	L44642	L44610	3.5 0.14	14.732 0.5800	36.0 1.42	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25.400 1.0000	50.292 1.9800	14.224 0.5600	7210 1620	4620 1040	1.56	- 3.3 -0.13	L44643	L44610	1.3 0.05	14.732 0.5800	31.5 1.24	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25.400 1.0000	51.994 2.0470	15.011 0.5910	6990 1570	4810 1080	1.45	- 2.8 -0.11	07100	07204	1.0 0.04	14.260 0.5614	30.5 1.20	29.5 1.16	1.3 0.05	12.700 0.5000	45.0 1.77	48.0 1.89
25.400 1.0000	56.896 2.2400	19.368 0.7625	10900 2450	5740 1290	1.90	- 6.9 -0.27	1780	1729	0.8 0.03	19.837 0.7810	30.5 1.20	30.0 1.18	1.3 0.05	15.875 0.6250	49.0 1.93	51.0 2.01
25.400 1.0000	57.150 2.2500	19.431 0.7650	11700 2620	10900 2450	1.07	- 3.0 -0.12	M84548	M84510	1.5 0.06	19.431 0.7650	36.0 1.42	33.0 1.30	1.5 0.06	14.732 0.5800	48.5 1.91	54.0 2.13

Figure 11 - 15

							co	ne			cu					
bore outside diameter	outside		rating at 500 rpm for 3000 hours L ₁₀		fac-	fac- eff. tor load center	part numbers		max shaft	midth	backing shoulder		max hous-		backing shoulder	
	widui	one- row radial	thrust		cone		cup	radius	width	ulani		fillet radius	widui			
d	D	Т	N lbf	N lbf	K	a ②	a@	cup	R①	В	d _b	d _a	r①	С	D _b	D _a
25.400 1.0000	50.292 1.9800	14.224 0.5600	7210 1620	4620 1040	1.56	-3.3 -0.13	L44643	L44610	1.3 0.05	14.732 0.5800	31.5 1.24	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25.400 1.0000	51.994 2.0470	15.011 0.5910	6990 1570	4810 1080	1.45	- 2.8 -0.11	07100	07204	1.0 0.04	14.260 0.5614	30.5 1.20	29.5 1.16	1.3 0.05	12.700 0.5000	45.0 1.77	48.0 1.89
25.400 1.0000	56.896 2.2400	19.368 0.7625	10900 2450	5740 1290	1.90	- 6.9 -0.27	1780	1729	0.8 0.03	19.837 0.7810	30.5 1.20	30.0 1.18	1.3 0.05	15.875 0.6250	49.0 1.93	51.0 2.01
25.400 1.0000	57.150 2.2500	19.431 0.7650	11700 2620	10900 2450	1.07	- 3.0 -0.12	M84548	M84510	1.5 0.06	19.431 0.7650	36.0 1.42	33.0 1.30	1.5 0.06	14.732 0.5800	48.5 1.91	54.0 2.13
25.400 1.0000	58.738 2.3125	19.050 0.7500	11600 2610	6560 1470	1.77	- 5.8 -0.23	1986	1932	1.3 0.05	19.355 0.7620	32.5 1.28	30.5 1.20	1.3 0.05	15.080 0.5937	52.0 2.05	54.0 2.13
25.400 1.0000	59.530 2.3437	23.368 0.9200	13900 3140	13000 2930	1.07	- 5.1 -0.20	M84249	M84210	0.8 0.03	23.114 0.9100	36.0 1.42	32.5 1.27	1.5 0.06	18.288 0.7200	49.5 1.95	56.0 2.20
25.400 1.0000	60.325 2.3750	19.842 0.7812	11000 2480	6550 1470	1.69	- 5.1 -0.20	15578	15523	1.3 0.05	17.462 0.6875	32.5 1.28	30.5 1.20	1.5 0.06	15.875 0.6250	51.0 2.01	54.0 2.13
25.400 1.0000	61.912 2.4375	19.050 0.7500	12100 2730	7280 1640	1.67	- 5.8 -0.23	15101	15243	0.8 0.03	20.638 0.8125	32.5 1.28	31.5 1.24	2.0 0.08	14.288 0.5625	54.0 2.13	58.0 2.28
25.400 1.0000	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	- 5.8 -0.23	15100	15245	3.5 0.14	20.638 0.8125	38.0 1.50	31.5 1.24	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28
25.400 1.0000	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	- 5.8 -0.23	15101	15245	0.8 0.03	20.638 0.8125	32.5 1.28	31.5 1.24	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28

Trail 2

For bearing A, from Eq. (11–10) the corrected catalog entry C_{10} should equal or exceed

$$C_{10} = (1)(4938) \left[\frac{2.67}{(4.48)(1 - 0.995)^{2/3}} \right]^{3/10} = 12\ 195\ \text{N}$$

Although this catalog entry exceeds slightly the tentative selection for bearing A, we will keep it since the reliability of bearing B exceeds 0.995. In the next section we will quantitatively show that the combined reliability of bearing A and B will exceed the reliability goal of 0.99.

For bearing *B*, $F_{eB} = F_{rB} = 2654$ N. From Eq. (11–10),

$$C_{10} = (1)2654 \left[\frac{2.67}{(4.48)(1 - 0.995)^{2/3}} \right]^{3/10} = 6554 \text{ N}$$

Uploaded By: anonymous₅₃