



on operating pitch circle:
$$\frac{d}{d} + \frac{d}{d} + \frac{d}{d} = \frac{2\pi R_{2}^{2}}{R^{2}}$$
 $R = Racklash$

$$\frac{d}{d} = \frac{d}{d} = \frac{d}{$$

B = Ft [Lewis equation]. Gears are made to Standard Value of (P). $P = \frac{\pi}{P} \quad \Rightarrow = \frac{Y}{T}$ $\Rightarrow \delta = \frac{F_t P}{b y}$ - English Units $O = \frac{Ft}{mbY} - SI Units.$ Y = Lewis form factor function of P. Yy function of tooth shape 2020/6/5 18:07

Gear - tooth bending stress: The factors that affect gear - tooth bending stress 1- Pitch-line velocity: The greater V -> the greater the impact loading V 1 -> Increases the no. of teeth that come in contact. (teeth can never be made with absolute perfection). 2 - Manufacturing accuracy: affect the contact ratio > Impact loading 3- Contact ratio: precision gears > [1 < c.R. (2] The load transmitted is divided among two pairs of teeth. > Two condition occurs: a- Haif the load is applied at the tip of single tooth. 6- full load is carried at tip of single tooth 4- Stress concentration: at the base of the tooth. 5- Degree of Shock loading [load factor] 6- Accuracy and rigidity of mounting. Moment of inertia of gears and attached rotating member AGMA: American Gear Manufacturing Ass Suggest a modification factors to be applied to lewis formula In order to take these factors into account. AGMA Stress formula: 0 = Ft P Ko Km. [U.S. Units]., 6 = Ft Ko Km [SI Units] b = face width of the tooth J = Spur gear geometry factor Include Lewis form factor (Y) and Stress concentration factor based on filled radius $Yf = \frac{0.35}{P}$ $J = \frac{7}{K_f mN}$ J - depends on number of teeth in mating gears -2020/6/5 18:08

Kv = velocity or dynamic Kv = $f(V = pitch line velocity)$ Kv = $\begin{pmatrix} A \\ A + \sqrt{200}V' \end{pmatrix}$ V = Where: $A = 50 + 56$ B = $\begin{pmatrix} 12 - Qv \end{pmatrix}$ Qv = 3 - 7 Comertial - $qvQv = 8 - 12$ precision - $qvQv = 8 - 12$ precision - $qvDynamic factor (Kv) accounts - Error in tooth spacing.- Vibration of tooth oline to - qvWear and deformation of - qvWear and deformation of - qvWear and deformation of - qvTooth friction.Over load factor (Ko): Figure 1.$	c factor > Indicated and locity of manufacture of the min. = m/s. (1-B) , Qv vality gears vality gears vality. o tooth stiffness tice. contacting ports t.	= AGMA quality no.	pact loading.
Reflect the degree of: non-uniformity of driving and load torques.			
Driver (Source of power)	Uniform	ven Machine.	
Uniform.		Moderate shock	Heavy shock
	1.0	1.25	1.75
Light shock	1.25	2020/6/5	18:09
Medium shock	1.5	1.75	2.25

Reflect degree of accuracy of mating gears alignment affect load distribution, and accounts for misalignment and deflection of rotational axis Km is applied under the following conditions: 1- b 62" 2 - Gears mounted between Brgs. 4- Contact when load across full width of varrowest member 9 Km = 1 + Cmc [Cpf Cpm + Cma Ce] Cmc = { 1, uncrowned teeth } cmc = { 0.8, for crowned teeth. $C_{pf} = \begin{cases} \frac{b}{10d} - 0.025 \\ \frac{b}{10d} - 0.0375 + 0.0125b \\ \frac{b}{10d} - 0.1109 + 0.0207 b - 0.000228 b^{2}, \quad 17 < b \le 40 \end{cases}$ $\frac{b}{10d} = 0.05$ for $\frac{b}{10d} < 0.05$ Cpm = $\frac{SI}{III}$, for Straddle-mounted Pinion with $\frac{SI}{S} < 0.175$ Ce = { 0.8 , for gearing adjusted at assembly, or compadibility is improved by lapping, or both , for all other conditions. Cma = A + B b + C b2 Fig. [14-11] Cma Vs b , Table [14-9] A, B. C