

Reinforced Concrete Design I ENCE 335 Analysis and design of T-beams

Dr. Khalil M. Qatu

What are T-section beams

- ♦ In most cases, Slabs and beams are cast at the same time
- Forms are built for the beams' sides and bottoms as well as the bottom of the slab
- This is called Monolithic construction
- In This case, part of the slab (its transverse direction)
 will resist comp. forces with the upper part of the beam.
- This part of the slab forms the Flanges of the beam and the drop part of the beam is Stem or Web.
- ♦ The resulting cross-section is T-Shaped

What are T-section beams

- ♦ Effective width
 - ♦ For non-prestressed T-beams supporting monolithic or composite slabs.
 - ♦ The effective flange width b_f shall include the beam web width b_w plus an effective overhanging flange width in accordance with Table 6.3.2.1
 - \Leftrightarrow Where h is the slab thickness and s_w is the clear distance to the adjacent web.

Table 6.3.2.1—Dimensional limits for effective overhanging flange width for T-beams

Flange location	Effective overhanging flange width, beyond face of web	
		8 <i>h</i>
Each side of web	Least of:	<i>s</i> _w /2
		<i>l_n</i> /8
		6 <i>h</i>
One side of web	Least of:	<i>s</i> _w /2
		<i>l</i> _n /12

What are T-section beams

 ♦ In some cases, engineers choose a T-shaped cross-section to increase the available compression area in the beam.

♦ The ACI code requires :

- ♦ Flange thickness $\ge 0.5b_w$
- ♦ Effective flange width $\leq 4b_w$

- The N.A. of the beam may lie either in the FLANGE or in the WEB.
- ♦ This depends on the section geometry, material properties, and the amount of tensile steel.
- ♦ If N. A. ≤ h_f: the beam can be analyzed as a rectangular section with width B_f and depth H.
 ♦ WHY?
- ♦ If $N.A. \ge h_f$: the compression area is divided into two parts
 - \diamond The first part is the flange over-hang from each side which is coupled with part of the tension steel (A_{sf})
 - The second Part is the portion of the Web in compression which is coupled with the rest of the tension steel $(A_s A_{sf})$
- What is the Direction of the moment?? (+ or -)

 ϵ_{c}

$$\begin{array}{c}
0.85 f'_{c} \\
\overline{y} \\
\overline{y} \\
\epsilon_{s} \\
\end{array}$$

$$\begin{array}{c}
0.85 f'_{c} \\
f'_{c}$$

- Tension Reinforcement limits
 - \Leftrightarrow Minimum reinforcement remains the same ($\rho_w > \rho_{min}$)
 - \diamond Maximum reinforcement allowed by ACI code still maintains a tension strain in steel $\epsilon_t \ge 0.004$
 - ♦ We can calculate and compare the strain in the tension steel with the limit from the strain distribution

$$\epsilon_s = \epsilon_u \frac{d - \bar{y}}{\bar{y}} \ge 0.004$$

♦ Or we can use this formula (derived from strain distribution and section equilibrium)

$$\bar{\rho}_{0.004} = \rho_{0.004} + \rho_f$$

d

 ϵ_c

Example: Calculate the Moment capacity of the given cross-section

 $f_y = 420 MPa \dots f_c' = 21 MPa$

Example: Design

The floor system shown, consists of a 75mm concrete slab supported by continuous beams with 7.5 m span, and 1.2m center to center spacing. The Web dimensions were determined using the negative moment. Design the interior beam B1 indicated below knowing that the ultimate positive moment ($M_u = 750 \ kN.m$)

$$f_y = 420 MPa \dots f_c' = 21 MPa$$

$$b_{e} = min \begin{cases} 2(8h) + b_{w} = 1475 \ mm \\ 2\left(\frac{s_{w} - b_{w}}{2}\right) + b_{w} = 1200 \ mm \\ 2\left(\frac{l_{n}}{8}\right) + b_{w} = 2150 \ mm \end{cases} \end{cases}$$

Flange location	Effective overhanging flange width, beyond fac of web	
Each side of web	Least of:	8 <i>h</i>
		<i>s</i> _w /2
		<i>l_n</i> /8
One side of web	Least of:	6 <i>h</i>
		<i>s</i> _w /2
		$l_n/12$

Arbitrary cross-sections

