Lecture 9

Compact Representation of Information

Objectives: Learn how to encode symbols generated by information

sources.
0101101 @ Encoder <]/\/\/ Source

Purpose of source encoding:

¢ to represent the source in a way that is suitable for
transmission (Recall the process of sampling and quantization)

¢ to remove source redundancy (make it more compact)
Desirable Properties of a Source Encoder (in general)

¢ as precise as possible (lossless or with a small controlled loss)

¢ as compact as possible (source compression)

¢ uniquely decodable.

¢ immediately (instantaneously) decodable

STUDENTS-HUB.com Uploaded By: Mohammad Awawdetl

Tec
Text Box
Lecture 9

Topics to be Covered in this Module

Source Encoding: Map sequences of source symbols
(messages) into binary sequences with unique decodability.

Topics to be covered
m Construction of source codes (binary case)
m Prefix-free codes for discrete sources
m Theoretical limit of the “compression”
m Source coding theorem
m Related topics:
¢ Fixed length encoding
¢ variable length encoding
¢ Kraft inequality,

STUDENTS-HUB.com Uploaded By: Mohammad AwawdeI2

Words and Terms

First, consider the source encoding on a symbol-by-symbol basis
only.

m M: The set of symbols generated by an information source.

m For each symbol in M, associate a sequence over the code
alphabet {0, 1}.

¢ codewords : binary sequences associated to symbols in M
¢ code: the set of codewords

¢ Code alphabet: {0, 1}, i.e., binary code (in this course)

¢ Source alphabet M={sunny, cloudy, rainy}, |M|=3.

M (Source)| Codewords)
SIU”ZV 00100 code C = {00, 010 and 101}
‘ o.u Y Remark: This is NOT an efficient code. Why?
rainy 101

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel3

Encoding and Decoding

m encode ... to map a codeword for each source symbol
m decode ... to retrieve the source symbol given the codeword

sunny encode 00
 cloudy | | 010 |

rainy decode 101

m NO separation symbols between codewords;

¢ 01000101 101 ... Not acceptable, 01000101101 ... OK
Why?
m {0, 1 and “space”} ... the alphabet have three symbols, not two

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel4r

Fixed Length Encoding

m Here a fixed number of digits (r) is assigned to every symbol in
the source alphabet without regard to the probability of
occurrence of the symbols.

m Choose r to be an integer that satisfies:
log,M < r <log,M +1; M is the size of the alphabet
m Example: Let the possible source symbols be the set:
S={red, blue, green, yellow, purple, magenta}; S={R, B, G, Y, P,M}
m Here, M= 6 and r= 3 bits/symbol. 2.584 < r < 3.584;
m One possible encoding scheme is:
green - 010 Red - 000 vyellow - 011 purple - 100
magenta - 101 blue - 001

Question: Can we do better than 3 bits/symbol for the fixed length
code:

Answer: Use the concept of extended source
STUDENTS-HUB.com Uploaded By: Mohammad Awawdel5

Fixed Length Encoding

m Example: If in the previous example, 3 symbols are combined
together to form a new (message). The new set of possible
messages is:

S’={RRR, RRB, RMM,...,MRM}, M’= M3 = 216; (New source alphabet)
m With M’=216, r’=8 bits/three source symbols (i.e., b bits/message)
m o’ satisfies the relation:

log,M’ < r’ <log,M’ +1; 7.75 < r’ < 8.75; bits/message

3log,M < r’ <3 log,M +1; Dividing both sides by 3, we get

log,M < r<log,M +1/3; r=8/3=2.66 bits/source symbol

In general, if we combine n source symbols together, r satisfies

log,M < r<log,M +1/n

m This says thatas n-» infinity, r -» log,M bits/source symbol
m This is the best that can be done with fixed length encoding

STUDENTS-HUB.com Uploaded By: Mohammad AwawdeI€5

Fixed Length Encoding
log,M’ < r <log,M’ +1/n;

m Let M=6; r: number of bits/symbol

n M’ log,M’ log,M’ < r’ <log,M’ +1 r=r’'/n

1 M’=6 log,M’=2.58 r’'=3 bits/mess r=3 bits/sym

3 63=216 log216=7.75 r’'=8 bits/mess r=2.666 bits/sym
4 6%=1296 10g1296=10.33 r’'=11 bits/mess r=2.75 bits/sym
6 6=46656 logM®=15.48 r’'=16 bits/mess r=2.66 bits/sym
8 62=62 log62=20.64 r’'=21 bits/mess r=2.62 bits/sym
10 619=6" |ogbl9=25.8 r'=26 bits/mess r=2.6 bits/sym

As message size n becomes larger, r approaches 2.58=100,6
This is the best that can be done with fixed length encoding.
Question: Can we do better than log, M

Answer: Yes, using variable length encoding
STUDENTS-HUB.com Uploaded By: Mohammad Awawdet?

Variable Length Source Encoding [estreto

m Basic Idea: Symbols with high probability of occurrence should
have shorter codewords than symbols with low probability of

occurrence in order to reduce the average number of bits/symbol.

m A variable length source code C assigns to each source symbol s a

codeword C(s) of length I(s).

m Example: Let the source alphabet be the set S ={ a, b, c}

C(a) = 0; I(a) = 1 bit
C(b) = 10; l(b) = 2 bits
C(c) = 11; l(c) = 2 bits.

STUDENTS-HUB.com Uploaded By: Mohammad Awawdetl

Tec
Text Box
Lecture 10

Uniquely Decodable Codes

m A code must be uniquely decodable, which means
¢ any two distinct symbols should have distinct code-words.

¢ Different symbol sequences should be encoded to different

binary sequences.
with the code C;...

a, a; 01/\>

0110
G | G G | G 4, a,== Same binary

a, 00 0 0 0 Different >equence

a, | 10 | 01 10 | 10 PEARENCES T Wwith code C,

a; | 01 | 011 | 11 | 11 %19 % . o110

a, | 11 | 111 | 01 | O

a,a,—— 11101
yes Yes "o o Diffezrlen% Different

Sequences Sequences
STUDENTS-HUB.com Uploaded By: Mohammad Awawdelz

Uniquely Decodable Codes

A Problem with C, : consider a scenario of using C, G G

» Sequence {a,, a,, a,, a,} is encoded to 01111110. Z; (1)8 81

m The receiver may decode it as: a,| 01 | 011
¢ (0)(111)(1112)(0) decoded into {a,, a,, a,, a,} a, 11 111
¢ the code is uniquely decodable, but is not instantaneously

decodable)
+ What is the difference between the two?

¢+ Uniquely decodable means we can retrieve the source
symbols from the encoded binary bits, but the first symbol
cannot be decoded without reading all the binary sequence all
the way to the end.

+ Instantaneously decodable means that once the code-word
corresponding to a symbol is received, the symbol will be
decoded instantaneously, without waiting for the next symbol

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel3

Prefix-free codes for discrete sources

m Prefix-free codes: A simple class of uniquely decodable
codes. They have the following advantages over other
uniquely-decodable codes:

<+ The decoder can decode each codeword of a prefix-free
code immediately on the arrival of the last bit in that
codeword without waiting for the entire sequence of bits to
arrive.,

< Given a probability distribution on the source symbols, it is
easy to construct a prefix-free code of minimum expected
length.

< If a uniquely-decodable code exists with a certain set of
codeword lengths, then a prefix-free code can be easily
constructed with the same set of lengths.

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel4r

Prefix-free codes for discrete sources

m Definition: A code is prefix-free if no codeword is a prefix of
any other codeword.

m Example: The code C, is not prefix free. Why? a, gl
¢ “0” is a prefix of “01” and “011” a,| 01
¢ “01” is a prefix of “011” a;| 011

m Example: The code C, is prefix free. a,| 111

m Remark 1: Every fixed-length code with distinct codewords is

prefix-free.
m Remark 2: every prefix-free code is - (C)Z
1
uniquely decodable a,| 10
as | 11

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel5

construction of prefix-free codes (binary case)

how to construct a prefix-free code with M codewords root
branch 1

1. construct a binary tree T with M leaf nodes

1. for each branch of T, assign a label in {0,1 }
e sibling branches cannot have the same label
3. for each of leaf nodes of T, traverse T from the root to the leaf,

with concatenating labels on branches. The obtained sequence
is the prefix-free codeword of the node.

> Here, we have 5 leaves. The codewords are: {00, 01,10, 111, 110}

STUDENTS-HUB.com Uploaded By: Mohammad Awawdelg5

The “best” among Immediately Decodable Codes

0 0
4 leaves 0
root . 0 0 oot s 00, 4 leaves
1 1 oo 1 1
C,={0, 10, 110, 111} C,={00, 010, 1010, 1011

m Lengths for C,={1, 2, 3, 3}; Lengths for C,={2, 3, 4, 4};

m C, seems to give more compact representation than C,.

m Q: Is there a more compact code than C; and C,?

m Q: Can we construct prefix-free codes with the following lengths?
¢+ codeword length =11, 1, 2, 2]?
+ codeword length = [1, 2, 2, 2]? Q: What is the criteria?

¢+ codeword length =11, 2, 2, 3]?

STUDENTS-HUB.com Uploaded By: Mohammad Awawdet?

The Kraft Inequality

m Kraft inequality is a test on the existence of prefix-
free code with a given set of codeword lengths {l(s), s
e S}

m Theorem: Every prefix-free code for an alphabet S
with codeword lengths {l(s), s € S} satisfies:

3210 <1

SeS
m Conversely, if the above inequality above holds, then
a prefix-free code with lengths {l(s)} exists.

m The proof is omitted.

STUDENTS-HUB.com Uploaded By: Mohammad AwawdeI8

The Kraft Inequality: Examples

Example: Can we construct a prefix-free code for the source
with symbols {a, b, c} with lengths {1, 1, 2}

Solution: The Kraft inequality provides a test on the existence of
prefix-free codes with a given set of codeword lengths.

271 4+271427%=125>1
The answer is NO. Recall the code {0, 1, 01} or code {0, 1, 10}

m Example: Can we construct a prefix-free code for the source
with symbols {a, b, c} and lengths {1, 2, 2}

m Solution: We test the existence of the code using the Kraft

inequality . B B B
21 +274+27°=1
The answer is YES. (recall the code 0, 10, 11)

STUDENTS-HUB.com Uploaded By: Mohammad Awawdet9

Prefix-free codes for DMS

m Let |(x) be the length of the codeword for letter x € X . The
probability of symbol x is P(x), for all x

m Then, L(X) is a random variable. The mean value of L(X) is
L=> 1(x)P(x)
X

m L is the average number of bits /source symbol.

m Example: A source emits one of four possible symbols {a, b, c,
d} every unit of time with probabilities:

P(a)=0.4 P(b)=0.3
P(c)=0,2 P(d)=0.1

m Three different prefix-free codes are proposed. We compute
the average number of bits/symbol for each code.

STUDENTS-HUB.com Uploaded By: Mohammad Awawdéo

Example: computing the average codeword length

symbol [probability| ¢, | C, | G
a 0.4 O |111/| 00
b 0.3 10 [110]| 01
c 0.2 110 | 10 | 10
d 0.1 111 0 | 11

All three codes
are prefix-free.

The average (expected) value of the length of each code is:
mC:L,=0.4X1+0.3X2+0.2X3+0.1X3=1.9 bits/symbol
mC,:L,=0.4X3+0.3X3+0.2X2+0.1X1=2.6 bits/symbol
m C:[;=:0.4%X2+0.3X2+0.2X2+0.1X2=2.0bits/symbol

C, gives the most compact representation in typical cases.

Question: Can we get an average length smaller than that of C,?

STUDENTS-HUB.com

Uploaded By: Mohammad Awawdéﬂ-

Prefix-free codes with minimum average length
m Let X ={1, 2,..., M} be the source alphabet with a known
probability mass function (pmf) P(X=x)={p4, p,, ... My}

m Let |[(x) be the length of a codeword in a prefix-free code for
letter x € X . These lengths are unknown and they should be
Integers.

m Objective: Choose the lengths I(x) so that the average length of
codeword is minimized and at the same time maintain the
prefix-free property of the code.

m The problem then becomes

Given p(1),p(2).....p(M),find 1(1),1(2).....|(M)that
minimize L= p(x)I(x)

subject to: » 27 <1; Kraft Inequality

STUDENTS-HUB.com Uploaded By: Mohammad Awawdg@

Prefix-free codes with minimum average length
m The problem:

Find 1(1),1(2),....I(M) that
Minimize L= p(x)I(x) Subject to: » 27 <1; KLI.

X
m This is a constrained optimization problem which can be solved
using Lagrange method. The derivation is carried out on the
next slide.

m The Optimum Solution to the problem (lifting the condition
that I(x) is an integer) is:

1(x) =—log p(x)

Luin == P(X)og p(x) = H (X)

STUDENTS-HUB.com Uploaded By: Mohammad Awawdés

Optimal Codes

Minimize | = 3 p;l; under the constraintfp -2 " < 1.

I I

Average codeword length [bits/codeword] Kraft's Inequality

Disregarding integer constraints, we get that

J=S"p;-l; + A> 274 should be minimized.

J: Objective Function
A: Lagrange Multiplier
Differentiate: % = (to be determined)
'

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh

Optimal Codes

Minimize | = > p;l; under the constraint

p(x)=2"t® I[(x) = —logp(x)

M M
Lnin = Z 1(0)p(x) = — ;mx)logp(x) = H(X)

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh

Prefix-free codes with minimum average length

L, =2p@)l(x) = Y px)logp(x) = H

m The best average length per symbol is the source entropy and
this is achieved when

m symbol x with prob. p(x) is assigned a length [(x) = —logp(x)
m But, [(x) is not necessarily an integer, in general.
m Then, we take the closest higher integer value, i.e., choose
ml(x) = —logp(x) + s(x), where 0 < s(x) <1,
m Hence, the practical bounds on the average length
s =Y p()logp(x) < L < Y p(x)logp(x) + X p(x)s(x)
s — Y2 p()logp(x) < L <Y p(x)logp(x) +1
m H< L<H+1

STUDENTS-HUB.com Uploaded By: Mohammad Awawdgﬁ5

The Source Coding Theorem

m Assume that the source X is memory-less.

m If we take massages of length n symbols and encode
them, the bounds on the average length per message
becomes:

nH (X)<nL <nH (X)+1

From which we get the bounds on the average length
per symbol as:

H(X)SESH(X)+%

m We can come arbitrarily close to the entropy as the
sise of the message n increases!

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh

Prefix-free codes with minimum average length

I(X)=—logP(x) Lmin=—2 P()log P(x) = H(X)

m The lower bound on the average length per symbol is achieved
when:

P(x) = 2"

m Example: Let P(a)=0.5, P(b)=0.25, P(c)=0.25

m Note that: Let P(a)=0.5 = 2, P(b)=0.25 = 22, P(c)=0.25 =272
m [(a) =1; I(b)=2; I(c)=2;

m The Code: {0, 10, 11} has an average length = Entropy H

STUDENTS-HUB.com Uploaded By: Mohammad Awawdg@

Creating a Code: The Data Compression Problem

m Assume a source with an alphabet X and known symbol
probabilities {P(x)}. ecture 1

m Basic properties needed for source coding

¢ as precise as possible (lossless or with small loss)
¢ as compact as possible
¢ Prefix-free code (instantaneously decodable)
m Goal: Choose the codeword lengths as to minimize the
average number of bits per symbol L =), l(x)P(x)

m Restriction: We want an instantaneous code, so .27 < 1
(Kraft inequality) must be valid

m Solution : at least in theory, we must have [(x) = —logP(x)

STUDENTS-HUB.com Uploaded By: Mohammad Awawdetl

Tec
Text Box
Lecture 11

Huffman Code

m Huffman coding is a technique used to compress files for
transmission

m Works well for text and fax transmissions
m Huffman algorithm gives a clever way to construct
a code with small average codeword length.

m Uses statistical coding David Huffman

+ symbols with high probability have shorter code words > 7%

m The idea is to assign to each symbol in the source alphabet a
number of binary digits equal roughly to the amount of
information carried by that symbol [(x) = —logP(x)

m If P(i) > P(j), then I(i) < L(j).

m The end result is a code whose average length approaches the
entropy limit; [H(X) < L < H(X) +1].

m Huffman code satisfies this condition H(X) < L < H(X) +1 (for a
STUD%T@%%%@@]C |ength n=1)_ Uploaded By: Mohammad Awawdel2

Huffman Encoding Algorithm
1. Arrange the source symbols in a decreasing order of
probability. (sorting stage)

2. The last two symbols of lowest probability are assigned
a 0 and 1. This step is referred to as a splitting stage.

3. The probability of the last two symbols are tied
together to form a new symbol with prob. = sum of
prob. of last two symbols (merge stage)

4. Arrange the new set of symbols in a decreasing order of
prob. (sorting stage)

5. The last two symbols of lowest probability are assigned
a 0 and 1 (splitting stage)

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel3

Huffman Encoding Algorithm

s. The probability of the new last two symbols are
tied together to form another new symbol with

prob. = sum of prob. of last two symbo
7. The procedure is repeated until we enc

only two symbols. Assign to them the ¢
and 1.

S.

up with
1gits O

8. The code for each source symbol is found by
working backward and tracing the sequence of

0’s and 1’s assigned to that symbol and
SUCCEeSSOrs.

Its

9. Result: Huffman code is an optimal code

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel4r

Huffman Coding
- Two-step algorithm:
Iterate:
— Merge the least two probable symbols.

— Arrange symbols in a decreasing order of probability
(sort)

1. Assign binary bits to each source symbol (codewords)

2. Example: Find the Huffman code for a source with
probabilities {0.5, 0.25, 0.125, 0.125}.

3. Show that: L=1.75, H = 1.75; explain why

0
0.5 0.5 Merge

025 L Lo | sort |
| Assign |

1
— 0.25 —

STUDENTSE

Huffman Code Example: P(X)= {0.4, 0.2, 0.1, 0.1, 0.1, 0.1}

0.4
0.2
0.1
0.1
0.1
0.1

o O O Q2

*(‘D

0.4
0.2
0.2
0.1

0p.2

04 04 06 ¢
02 04 0.4
OZOQG 1
0.2 :
0pq 1
0.2, L = 2.4, H =2.32 (bits/symbol)
. Comparison:
The Code: ki ed Length:3 bits/symbol
A 00 Limit of fixed length:log,6=2.58
B 11 Huffman Code: 2.4
C 010 Limit of variable length: 2.32
D 011
E 100
F 101

Coding for Extended Information Sources
The Huffman code is the best symbol-by-symbol code, but...

¢ the average code length L > 1

¢ not good for encoding binary information sources (on a bit
by bit basis). The average is 1 bit regardless of the bit

probabilities
symbol |prob| C, | G,
A 08 O 1
B 0.2 1 0
average 1.0 | 1.0

If we encode several symbols in a block, then...

¢ L (per symbol) can be improved as we shall see next

STUDENTS-HUB.com

Uploaded By: Mohammad Awawdet?

Example:

Coding for Binary DMS Information Sources

prob.|codeword = The Huffman Code {0, 1}
g‘ 8523 0 m L=0.8%X1+0.2 %X 1=1.0 bit/source symbol
A message with two source symbols
prob.|codeword = The Huffman Code: {0, 10, 110, 111}
2@ 8-5152 0 m [=0.64*1+ 0.16*2+0.16*3+0.04*3 = 1.56
aA| 0.16 110 bit/message
BBl 0.04| 111 m 1.56 /2 =0.78 bit/source symbol

STUDENTS-HUB.com

O

improvement

Uploaded By: Mohammad AwawdeI8

Example: Coding for Binary Information Sources

prob. [codeword message with three symbols

AAA | 0.512 0 + 9 Y
AAB | 0.128 100 O lb,:[0.512 1+...+0.008 X5=2.184
ABA | 0.128 101 it per message
ABB |0.032| 11100 = 2.184 /3 =0.728 bit/source symbol
BAA [0.128 110
BAB | 0.032| 11101
BBA |0.032| 11110
BBB |0.008| 11111
block size L per symbol

. L0 larger block size

2 0.78

—> more compact
3 0.728
STUDENTS-HUB com H(S) = 0723 Uploaded By: Mohammad Awawdet9

What Shannon Source Coding Theorem Means

m Shannon’s source coding theorem:

The average length progressively approaches the limit H as

the word size of n symbols increases

m Use block Huffman codes, and you can approach the limit.

= You never overcome the limit (L never goes below H(X))

Source

prob.

A
B

0.8
0.2

$

H(S) = 0.723

STUDENTS-HUB.com

block size ACL per symbol
1 1.0
2 0.78
3 0.728
0.723 + ¢

Uploaded By: Mohammad Awawngfo

Huffman Code Example

m Encode the following short text using Huffman encoding

Eerie eyes seen near lake.

m The sentence has 26 characters. Their frequency of
occurrence Is

Char Freq. Char Freq. Char Freq.

E 1 Y 1 k 1
e 8 = 2 . 1
r 2 n 2
i 1 a 2
space 4 1 1

m The probability of occurrence of each character can be
determined and will be used in the Huffman code.

mP(E)=1/26, P(e) = 8/26, P(space) =4/26, P(.)=1/26

STUDENTS-HUB.com Uploaded By: Mohammad Awawdgﬂ-

Huffman Code Example

Summary of Results
H=3.16

L =3.23 bits/character.
Total number of bits in
message =84 bits.

If ASCII code is used,
we need 26*8= 208
Compression:

*100% = 40.36%

208

Sentence: Eerie eyes seen near lake.
Code: 1000111001..... 10000

STUDENTS-HUB.com Uploaded By: Mohammad Awawdg@

Lempel-Ziv Code

m Huffman codes have some shortcomings
¢ Know symbol probability information a priori
¢+ Re-compute entire code if symbol probability changes

¢ If source symbol probabilities are not known, one has to
estimate them first.

¢ Coding tree must be known at coder/decoder
¢ Recall example: (Eerie eyes seen near lake.)

¢ Based on the frequency, each symbol has a given
codeword.

¢ Now change to: (Eerie Eyes Seen Near Lake.)
¢ The symbols here have different codewords. Why?

¢ Capital letters have replaced small letters, thus affecting
the frequency of symbols (probabilities). .

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh

Lecture 12

Tec
Text Box
Lecture 12

Lempel-Ziv Code

m Lempel-Ziv algorithm, named after its inventors, does
not require prior knowledge of the source probabilities
and uses the source output sequence itself to iteratively
construct the code

m Used in gzip, UNIX compress, LZW algorithms
m It is a variable to fixed length coding scheme

m Any sequence of source symbols is uniquely parsed into
phrases of varying length.

m Each phrase is then coded using equal length codewords

Variable Equal length
length phrases codewords
2

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh

Lempel-Ziv Code

m Works by identifying phrases of the smallest length that have
not appeared so far, and maintaining these phrases in a
dictionary. When a new phrase is identified, it is encoded as
the concatenation of the previous phrase and the new source
output.

m Number the phrases starting from 1 (0 is the empty string)

m Each phrase consists of a previously occurring phrase (head)
followed by the new source output (tail).

m Encoding: give location of (head) followed by the additional
symbol as (tail)

m Decoder uses a similar dictionary

New phrase=previously Codeword=location of
occurring phrase + new —> previously occurring phrase +
symbol new symbol

STUDENTS-HUB.com Uploaded By: Mohammad Awawdel3

LZ Coding : Example 1

mEncode [abaababbbbbbbabbbb]
mEncode [a, b, aa, ba, bb, bbb, bba, bbbb]

Code Dictionar
Address Contentsy Encoded Packets Transmitted code

1 a <0,a> (000a)
2 b <0,b> (000b)
3 aa <l,a> (00la)
4 ba <2,a> (010a)
5 bb <2,b> (010b)
6 bbb <5,b> (101b)
7 bba <5,a> (101a)
8 bbbb <6,b> (110b)

Variable length Equal length
phrases codewords 4

STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh

LZ Encoding of Binary Data: Example 2

Example (from Proakis):

Let us assume that we want to parse and encode the following sequence:

010000177000017070000017070000011700000707000017007001 :? Binary
Igits
Parsing the sequence by the rules explained before results in the
following phrases:

0,1,00, 001,10, 000, 101, O000, 01, 010, 00001, 100, 0001, 0100, 0010,
01001, ... Parsing, 16 phrases

It is seen that all the phrases are different and each phrase is a previous
phrase concatenated with @ new source output. The number of phrases is

16. This means that for each phrase we need 4 bits, plus an extra bit to
represent the new source output. The above sequence Is encoded by

16 ohrases require Extra bit for new 5
> a EDH source symbol y bi h
4 bits (head) (tail) its/phrase

STHIBENTS-HUB€com Uploaded By: Mohammad Awawdel5

LLZ Encoding of Binary Data: Example 2 Continued

Q000 O, DOO0 1, 0001 0, 00111, 00100, 00110, 0101 1, 110 O,
0001 1,1001 0,1000 1, 0701 0,0110 1, 1010 0, 07100 O, 11710 1, ...

Total number of bits
in encoded message
=16 phrases * 5

bits/phrase = 80 bits

Original message
= 49 bits

Error

* Note: 49 data bits are

— Ty encoded into 80 bits
Dictaonary Dichonary :
Lacation Cortarte Codeword - Question: Where does the

0001 0 0000 compression come from?
0010 1 0a0a Answer: In short sentences,
0011 0a 0001 a saving can hardly be

100 001 o011

noticed. But in a long text,

0110 000 0011 many phrases of longer
0111 101 010 lengths become more

o101 10 aa10

1001 vl OO long phrases will be

1010 a1 1001 .
1011 00001 1000 encoded into smaller
number of bits.

11040 1040 011
1101 001 0114d

here

STUDENTS-HUB.com

0100
0010
01001

1110 0010 1010
1111 0010 0100

a
1
i
1
d
i
1
1000 0000 0110 '3 frequent, and as such these
i
1
a
1
d
i
1110 1

=k b =k =k =k =k =k
M oin Bl Gy b ey OO 3 L b=

Uploaded By: Mohammad AwawdeI€5

LLZ Compression (non-binary case): Example 3

Example 1: Use the LZ78 algorithm to encode the message

ABBCBCABABCAABCAAB (18 characters)

Solution: The encoding process is presented below in which:
« The symbols are parsed as:

A, B, BC, BCA, BA, BCAA, BCAAB

= We have 7 different phrases
« Therefore, we need three digits to represent each phrase

n A 1, B 2, BC 3, BCA 4

x BA S, BCAA 6, BCAAB 7

s Encoding:

» <(0,A)><(0,B)><(2,C)><(3,A)><(2,A)><(4,A)><(6,B)>

7
STUDENTS-HUB.com Uploaded By: Mohammad Awawdeh

LLZ Compression (non-binary case): Example 3

« Now, we calculate the number of bits needed to represent the coded

Information
<(0,A)><(0,B)><(2,C)><(3,A)><(2,A)><(4,A)><(6,B)>
« We need 8 bits to represent each character using the ASCII code

= Thus, we see that the number of bits required when the string

ABBCBCABABCAABCAAB: has 18 characters
« With LZ compression, the number of bits needed is:
= (3+8)+(3+8)+(3+8)+(3+8)+(3+8)+(3+8)+(3+8) = 77 bits
= With no compression, the number of binary bits is:

= (18 characters)*(8 bits/character)=144 bits.

- ~ 8
éTl%:IIhqjg—ﬂ8¥.E)n§77/144)*100_53'47% Uploaded By: Mohammad Awawdeh

	L9. Compact representation of sources-part 1.pdf
	L10. Compact representation of sources-part 2.pdf
	L11. Source Coding Algorithmas-part 1.pdf
	L12. Source Coding Algorithms-part 2.pdf

