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Presentation Outline

❖ Introduction

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

❖ Delayed Branch and Dynamic Branch Prediction
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Review: Single Cycle vs. Multiple Cycle Timing
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How Can We Make It Even Faster?

❖ Split the multiple instruction cycle into smaller and smaller 

steps

❖ There is a point of diminishing returns where as much time is 

spent loading the state registers as doing the work

❖ Start fetching and executing the next instruction before the 

current one has completed

❖ Pipelining–(all?) modern processors are pipelined for 

performance

❖ Fetch (and execute) more than one instruction at a time (out-of-

order superscalar and VLIW (epic))

❖ Fetch (and execute) instructions from more than one instruction 

stream (multithreading (hyperthreading))

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Pipelining

❖ Pipelining is a general-purpose efficiency technique

 It is not specific to processors

❖ Pipelining is used in:

 Assembly lines

 Bucket brigades

 Fast food restaurants

❖ Pipelining is used in other CS disciplines:

 Networking

 Server software architecture

❖ Useful to increase throughput in the presence of long 

latency

 More on that later…

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



❖ Laundry Example: Three Stages

1. Wash dirty load of clothes

2. Dry wet clothes

3. Fold and put clothes into drawers

❖ Each stage takes 30 minutes to complete

❖ Four loads of clothes to wash, dry, and fold

A B

C D

Pipelining Example
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❖ Sequential laundry takes 6 hours for 4 loads

❖ Intuitively, we can use pipelining to speed up laundry 

Sequential Laundry

Time

6 PM

A

30 30 30

7 8 9 10 11 12 AM

30 30 30

B

30 30 30

C

30 30 30

D
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❖ Pipelined laundry takes 3 

hours for 4 loads

❖ Speedup factor is 2 for 4 

loads

❖ Time to wash, dry, and 

fold one load is still the 

same (90 minutes)

Pipelined Laundry: Start Load ASAP

Time

6 PM

A

30

7 8 9 PM

B

30

30

C

30

30

30

D

30

30

30

30

30 30
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Pipelining Lessons

6 PM 7 8 9

Time

30 40 40 40 40 20

• Pipelining doesn’t help latency

of single load, it helps 

throughput of entire workload

• Pipeline rate limited by slowest

pipeline stage

• Multiple tasks operating 

simultaneously using different 

resources

• Potential speedup = Number 

pipe stages

• Unbalanced lengths of pipe 

stages reduces speedup

• Time to “fill” pipeline and time 

to “drain” it reduces speedup
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Serial Execution versus Pipelining

❖ Consider a task that can be divided into k subtasks

 The k subtasks are executed on k different stages

 Each subtask requires one time unit

 The total execution time of the task is k time units

❖ Pipelining is to overlap the execution

 The k stages work in parallel on k different tasks

 Tasks enter/leave pipeline at the rate of one task per time unit

1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

Without Pipelining

One completion every k time units

With Pipelining

One completion every 1 time unit
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❖ Instruction pipelining is a CPU implementation technique where multiple 

operations on a number of instructions are overlapped.

 For Example: The next instruction is fetched in the next cycle without 

waiting for the current instruction to complete.

❖ An instruction execution pipeline involves a number of steps, where 

each step completes a part of an instruction.  Each step is called a 

pipeline stage or a pipeline segment.

❖ The stages or steps are connected in a linear fashion:  one stage to the 

next to form the pipeline (or pipelined CPU datapath) -- instructions 

enter at one end and progress through the stages and exit at the other 

end.

❖ The time to move an instruction one step down the pipeline is equal to 

the machine (CPU) cycle and is determined by the stage with the 

longest processing delay.

Instruction Pipelining
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Synchronous Pipeline

❖ Uses clocked registers between stages

❖ Upon arrival of a clock edge …

 All registers hold the results of previous stages simultaneously

❖ The pipeline stages are combinational logic circuits

❖ It is desirable to have balanced stages

 Approximately equal delay in all stages

❖ Clock period is determined by the maximum stage delay

S1 S2 Sk

R
e
g
is

te
r

R
e
g
is

te
r

R
e
g
is

te
r

R
e
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te
r

Input

Clock

Output
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❖ The length of the machine clock cycle is determined by the 
time required for the slowest pipeline stage.

❖ An important pipeline design consideration is to balance the 
length of each pipeline stage. 

❖ If all stages  are perfectly balanced, then the time per 
instruction on a pipelined machine  (assuming ideal 
conditions with no stalls):

Time per instruction on unpipelined machine

Number of pipeline stages

❖ Under these ideal conditions:

 Speedup from pipelining =  the number of pipeline stages = n 

 Goal: One instruction is completed every cycle:    CPI  = 1 .

Pipelining: Design Goals
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An Ideal Pipeline

❖ Goal: Increase throughput with little increase in cost 

(hardware cost, in case of instruction processing)

❖ Repetition of identical operations

 The same operation is repeated on a large number of different 

inputs (e.g., all laundry loads go through the same steps)

❖ Repetition of independent operations

 No dependences between repeated operations

❖ Uniformly partitionable suboperations

 Processing can be evenly divided into uniform-latency 

suboperations (that do not share resources)

❖ Fitting examples: automobile assembly line, doing laundry

 What about the instruction processing “cycle”?
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Ideal Pipelining

15

combinational logic (F,D,E,M,W)
T psec

Tput=~(1/T)

Tput=~(2/T)T/2 ps (F,D,E) T/2 ps (M,W)

Tput=~(3/T)T/3
ps (F,D)

T/3
ps (E,M)

T/3
ps (M,W)

Tput = Throughput
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Instruction Pipeline: Not An Ideal Pipeline

❖ Identical operations ... NOT! 

 different instructions → not all need the same stages
Forcing different instructions to go through the same pipe stages

→ external fragmentation (some pipe stages idle for some instructions)

❖Uniform suboperations ...  NOT! 

 different pipeline stages → not the same latency
Need to force each stage to be controlled by the same clock
→ internal fragmentation (some pipe stages are fast but still have to take the 

same clock cycle time)

❖ Independent operations ... NOT!
 instructions are not independent of each other

Need to detect and resolve inter-instruction dependences to ensure the 

pipeline provides correct results

→ pipeline stalls (pipeline is not always moving)
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❖ Let ti = time delay in stage Si

❖ Clock cycle t = max(ti) is the maximum stage delay

❖ Clock frequency f =  1/t =  1/max(ti)

❖ A pipeline can process n tasks in k + n – 1 cycles

 k cycles are needed to complete the first task

 n – 1 cycles are needed to complete the remaining n – 1 tasks

❖ Ideal speedup of a k-stage pipeline over serial execution

Pipeline Speedup

k + n – 1Pipelined execution in cycles

Serial execution in cycles
== Sk → k  for large n

nk
Sk
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More Realistic Pipeline: Throughput

❖ Nonpipelined version with delay T 

Tput = 1 / (T+S) where S = register (sequential logic) delay

❖ k-stage pipelined version

Tputk-stage = 1 / (T/k + S )

Tputmax = 1 / (1 gate delay + S )

T ps

T/k
ps

T/k
ps

Register delay reduces throughput

(sequencing overhead b/w stages)

This picture assumes “perfect division of work between stages (T/k)”Uploaded By: Jibreel BornatSTUDENTS-HUB.com



More Realistic Pipeline: Cost

❖ Nonpipelined version with combinational cost G 

Cost = G+R where R = register cost

❖ k-stage pipelined version

Costk-stage = G + Rk

G gates

G/k G/k

Registers increase hardware cost

This picture ignores resource and register replication that is likely needed (G/k and Rk)
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MIPS Processor Pipeline

❖ Five stages, one cycle per stage

1. IF: Instruction Fetch from instruction memory

2. ID: Instruction Decode, register read, and J/Br address

3. EX: Execute operation or calculate load/store address

4. MEM: Memory access for load and store

5. WB: Write Back result to register
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Issues in Pipeline Design

❖ Balancing work in pipeline stages

 How many stages and what is done in each stage

❖ Keeping the pipeline correct, moving, and full in the presence of 

events that disrupt pipeline flow

 Handling dependences 

▪ Data

▪ Control

 Handling resource contention

 Handling long-latency (multi-cycle) operations

❖ Handling exceptions, interrupts

❖ Advanced: Improving pipeline throughput

 Minimizing stalls
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Example of Pipeline Performance

❖ Consider a 5-stage instruction execution pipeline …

 Instruction fetch = ALU = Data memory access = 350 ps

 Register read = Register write = 250 ps

❖ Compare single-cycle, multi-cycle, versus pipelined

 Assume: 20% load, 10% store, 40% ALU, and 30% branch

❖ Solution:

Instruction Fetch Reg Read ALU Memory Reg Wr Time

Load 350 ps 250 ps 350 ps 350 ps 250 ps 1550 ps

Store 350 ps 250 ps 350 ps 350 ps 1300 ps

ALU 350 ps 250 ps 350 ps 250 ps 1200 ps

Branch 350 ps 250 ps 350 ps 950 ps
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Single-Cycle, Multi-Cycle, Pipelined

Tclock = 350+250+350+350+250 = 1550 ps

CPI = 1, but long clock cycle

Tclock = 350 ps

Average CPI = 5×0.2 + 4×0.1 + 4×0.4 + 3×0.3 = 3.9

Multi-Cycle Execution:

350ps 350ps 350ps
Load = 5 cycles

Reg

350ps

ALU Reg

IF Reg

350ps 350ps 350ps

ALU

350ps 350ps 350ps

IF Reg

350ps

ALU Reg

IF350ps

MEM

ALU = 4 cycles

Branch = 3 cycles

Each instruction = 1550 ps

IF Reg ALU RegMEM

Each instruction = 1550 ps

IF Reg ALU RegMEM

Each instruction = 1550 ps

IF Reg ALU RegMEM

Single-Cycle Execution:

350ps

Pipelined Execution:

350ps 350ps 350ps

IF Reg

350ps

ALU Reg

350ps

MEM

IF Reg ALU RegMEM

IF Reg ALU RegMEM

350ps

Tclock = 350 ps = max(350, 250)

One instruction completes each cycle

Average CPI = 1

Ignore time to fill pipeline
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Single-Cycle, Multi-Cycle, Pipelined

❖ Single-Cycle CPI = 1, but long clock cycle = 1550 ps

 Time of each instruction = 1550 ps

❖Multi-Cycle Clock = 350 ps (faster clock than single-cycle)

 But average CPI = 3.9 (worse than single-cycle)

 Average time per instruction = 350 ps × 3.9 = 1365 ps

 Multi-cycle is faster than single-cycle by: 1550/1365 = 1.14x

❖ Pipeline Clock = 350 ps (same as multi-cycle)

 But average CPI = 1 (one instruction completes per cycle)

 Average time per instruction = 350 ps × 1 = 350 ps

 Pipeline is faster than single-cycle by: 1550/350 = 4.43x 

 Pipeline is also faster than multi-cycle by: 1365/350 = 3.9x
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Pipeline Performance Summary

❖ Pipelining doesn’t improve latency of a single instruction

❖ However, it improves throughput of entire workload

 Instructions are initiated and completed at a higher rate

❖ In a k-stage pipeline, k instructions operate in parallel

 Overlapped execution using multiple hardware resources

 Potential speedup = number of pipeline stages k

❖ Pipeline rate is limited by slowest pipeline stage

❖ Unbalanced lengths of pipeline stages reduces speedup

❖ Also, time to fill and drain pipeline reduces speedup
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Presentation Outline

❖ Introduction

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

❖ Delayed Branch and Dynamic Branch Prediction
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1. Analyze instruction set operations using independent                                 
RTN  =>   datapath requirements.

2. Select required datapath components and connections.

3.  Assemble an initial datapath meeting the ISA requirements.

4.  Identify pipeline stages based on operation, balancing stage delays, and 
ensuring no hardware conflicts exist when common hardware is used by two 
or more stages simultaneously in the same cycle.

5.  Divide the datapath into the stages identified above by adding buffers 
between the stages of sufficient width to hold:

▪ Instruction fields.

▪ Remaining control lines needed for remaining pipeline stages. 

▪ All results produced by a stage and any unused results of previous stages.

6. Analyze implementation of each instruction to determine setting of control 
points that effects the register transfer taking  pipeline hazard conditions into 
account .  (More on this a bit later)

7. Assemble the control logic.

Basic Pipelined CPU Design Steps
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Pipelining the MIPS ISA

❖ What makes it easy

 all instructions are the same length (32 bits) 

▪ can fetch in the 1ststage and decode in the 2ndstage

 few instruction formats (three) with symmetryacross formats

▪ can begin reading register file in 2ndstage

 memory operations can occur only in loads and stores

▪ can use the execute stage to calculate memory addresses

 each MIPS instruction writes at most one result (i.e., changes 
the machine state) and does so near the end of the pipeline 
(MEM and WB)

❖ What makes it hard

 structural hazards: what if we had only one memory?

 control hazards: what about branches?

 data hazards: what if an instruction’s input operands depend 
on the output of a previous instruction?
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Single-Cycle Datapath
❖ Shown below is the single-cycle datapath

❖ How to pipeline this single-cycle datapath?

Answer: Introduce pipeline registers at end of each stage

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB

RW
BusW

1

0

Imm16

Next PC Address

0

1

1

0

+

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWrRegDst ALUSrc MemRd MemWr WBdataPCSrc

ExtOp

Zero
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clk

Pipelined Datapath

❖ Pipeline registers are shown in green, including the PC

❖ Same clock edge updates all pipeline registers and PC

 In addition to updating register file and data memory (for store)

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

1

0

Imm16

Next PC Address

0

1

+

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWrRegDst ALUSrc MemRd MemWr

1

0

WBdataPCSrc

ExtOp

Zero

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB
RW

BusW

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta
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Graphically Representing Pipelines

❖ Multiple instruction execution over multiple clock cycles

 Instructions are listed in execution order from top to bottom

 Clock cycles move from left to right

 Figure shows the use of resources at each stage and each cycle

Time (in cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

add $s1, $s2, $s3

CC2

Reg

IM

DM

Reg

sub $t5, $s2, $t3

CC4

ALU

IM

sw  $s2, 10($t3)

DM

Reg

CC5

Reg

ALU

IM

DM

Reg

CC6

Reg

ALU DM

CC7

Reg

ALU

CC8

Reg

DM

lw $t6, 8($s5) IM

CC1

Reg

ori $s4, $t3, 7

ALU

CC3

IM
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❖ Instruction-Time Diagram shows:

 Which instruction occupying what stage at each clock cycle

❖ Instruction flow is pipelined over the 5 stages

Instruction-Time Diagram

IF

WB

–

EX

ID

WB

–

EX

WB

MEM –

ID

IF

EX

ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

MEM

EX

ID

IF

WB

MEM

EX

ID

IF

lw $t7, 8($s3)

lw $t6, 8($s5)

ori $t4, $s3, 7

sub $s5, $s2, $t3

sw $s2, 10($s3)I
ns

tr
uc

ti
on

 O
rd

e
r

Up to five instructions can be in the 

pipeline during the same cycle

Instruction Level Parallelism (ILP)

ALU instructions skip 

the MEM stage. Store 

instructions skip the 

WB stage 
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Problem with Register Destination

❖ Instruction in ID stage is different from the one in WB stage

 WB stage is writing to a different destination register

 Writing the destination register of the instruction in the ID Stage

1

RegDst

0

clk

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB
RW

BusW

1

0

Imm16

Next PC Address +

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWr ALUSrc MemRd MemWr

1

0

WBdataPCSrc

ExtOp

Zero

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta
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Registers

RA

RB

BusA

BusB

RW BusW

Pipelining the Destination Register

❖ Destination Register should be pipelined from ID to WB

 The WB stage writes back data knowing the destination register  

clk

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

Data

Memory

Address

Data_in

Data_out1

0

Imm16

Next PC Address

RegDst

+

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode

& Register Read

EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

ALUOpRegWr ALUSrc MemRd MemWr

1

0

WBdataPCSrc

ExtOp

Zero

P
C

0
0
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t
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P

C B
T
A

A
B
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m

D
R

D
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d
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R
d
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Pipelined control

❖ Data is travelling along the pipeline stages

❖ All data belonging to one instruction must be kept within the stage

❖ Information transfer only through the pipeline registers

❖ Control information must travel with the instruction

❖ Instruction fetch

 Identical for all instructions

❖ Instruction decode / register file read

 Identical for all instructions

❖ Execution / Address calculation

 RegDest, ALUOp, ALUSrc

❖ Memory access

 Branch, MemRead, MemWrite

❖ Write back

 MemToReg, RegWrite
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Control Signals

Same control signals used in the single-cycle datapath

Registers

RA

RB

BusA

BusB

RW BusW

clk

Branch Target Address

A
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Instruction

Instruction

Memory
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Rd
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Jump Target = PC[31:28] ‖ Imm26

ALU Result
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Memory

Address
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Pipelined Control – Cont'd

❖ ID stage generates all the control signals

❖ Pipeline the control signals as the instruction moves

 Extend the pipeline registers to include the control signals

❖ Each stage uses some of the control signals

 Instruction Decode and Register Read

▪ Control signals are generated

▪ RegDst and ExtOp are used in this stage, J (Jump) is used by PC control

 Execution Stage => ALUSrc, ALUOp, BEQ, BNE

▪ ALU generates zero signal for PC control logic (Branch Control)

 Memory Stage => MemRd, MemWr, and WBdata

 Write Back Stage => RegWr control signal is used in the last stage
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Pipeline Control

❖ Pass needed control signals along from one stage to the next as the 

instruction travels through the pipeline just like the needed data

C o n tro l

E X

M

W B

M

W B

W B

IF /ID ID /E X E X /M E M M E M /W B

In s t ru c t io n

IF                         ID                     EX                              MEM               WB  
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RegWr

W
B

MemRd MemWr WBdata

Pipelined Data Path with Control

PCSrc

RegDst

E
X

ExtOp

ExtOp

Registers

RA

RB

BusA

BusB

RW BusW

clk

Branch Target Address

A
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Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result
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Memory

Address

Data_in

Data_out1
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Imm16
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IF = Instruction Fetch

+1

ID = Instruction Decode EX = Execute MEM = Memory Access
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B
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1

0

R
d
2

R
d
3

R
d
4

Main & ALU

Control

Op

func

ALUSrc ALUOp

M
E

M

Pipeline control signals 

just like data

Zero

PC

Control
Zero

JBEQ, BNE
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Control Signals Summary

Op

Decode

Stage

Execute

Stage

Memory

Stage

Write

Back

PC

Control

RegDst ExtOp ALUSrc ALUOp MemRd MemWr WBdata RegWr PCSrc

R-Type 1=Rd X 0=Reg func 0 0 0 1 0 = next PC

ADDI 0=Rt 1=sign 1=Imm ADD 0 0 0 1 0 = next PC

SLTI 0=Rt 1=sign 1=Imm SLT 0 0 0 1 0 = next PC

ANDI 0=Rt 0=zero 1=Imm AND 0 0 0 1 0 = next PC

ORI 0=Rt 0=zero 1=Imm OR 0 0 0 1 0 = next PC

LW 0=Rt 1=sign 1=Imm ADD 1 0 1 1 0 = next PC

SW X 1=sign 1=Imm ADD 0 1 X 0 0 = next PC

BEQ X X 0=Reg SUB 0 0 X 0 0 or 2 = BTA

BNE X X 0=Reg SUB 0 0 X 0 0 or 2 = BTA

J X X X X 0 0 X 0 1 = jump target

PCSrc = 0 or 2 (BTA) for BEQ and BNE, depending on the zero flag
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Next . . .

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

❖ Delayed Branch and Dynamic Branch Prediction
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❖ Hazards: situations that would cause incorrect execution

 If next instruction were launched during its designated clock cycle

1. Structural hazards

 Caused by resource contention

 Using same resource by two instructions during the same cycle

2. Data hazards

 An instruction may compute a result needed by next instruction

 Data hazards are caused by data dependencies between instructions

3. Control hazards

 Caused by instructions that change control flow (branches/jumps)

 Delays in changing the flow of control

❖ Hazards complicate pipeline control and limit performance

Pipeline Hazards
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How do we deal with hazards?

❖ Often, pipeline must be stalled

❖ Stalling pipeline usually lets some instruction(s) in pipeline 

proceed, another/others wait for data, resource, etc.

❖ A note on terminology:

 If we say an instruction was “issued later than instruction x”, we mean that 

it was issued after instruction x and is not as far along in the pipeline

 If we say an instruction was “issued earlier than instruction x”, we mean 

that it was issued before instruction x and is further along in the pipeline
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Stalls and performance

❖ Stalls impede progress of a pipeline and result in deviation from 1 

instruction executing/clock cycle

❖ Pipelining can be viewed to:

 Decrease CPI or clock cycle time for instruction

 Let’s see what affect stalls have on CPI…

❖ CPI pipelined = Ideal CPI + Pipeline stall cycles per instruction

= 1 + Pipeline stall cycles per instruction

❖ Ignoring overhead and assuming stages are balanced:

ninstructiopercyclesstallpipeline

dunpipelineCPI
Speedup

+
=

1
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Even more pipeline performance issues!

❖ This results in:

❖ Which leads to:

❖ If no stalls, speedup equal to # of pipeline stages in ideal case

depthPipeline

dunpipelinecycleClock
pipelinedcycleClock =

pipelinedcycleClock

dunpipelinecycleClock
depthPipeline =

pipelinedcycleClock

dunpipelinecycleClock

ninstructiopercyclesstallPipeline
pipeliningfromSpeedup 

+
=

1

1

depthPipeline
ninstructiopercyclesstallPipeline


+
=

1

1
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Structural Hazards

❖ Problem

 Attempt to use the same hardware resource by two different

instructions during the same clock cycle

❖ Example

 Writing back ALU result in stage 4

 Conflict with writing load data in stage 5

WB

WB

EX

ID

WB

EX MEM

IF ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

EX

ID

IF

MEM

EX

ID

IF

lw $t6, 8($s5)

ori $t4, $s3, 7

sub $t5, $s2, $s3

sw $s2, 10($s3)I
ns

tr
uc

ti
on

s

Structural Hazard

Two instructions are 

attempting to write the 

register file during 

same cycle 
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❖ Redesign the register file to 

have two write ports

 First write port can be 

used to write back ALU 

results in stage 4

 Second write port can be 

used to write back load 

data in stage 5

Handling Write Access To Register Bank

Two Port Write and Two Port Read Register File with 4 Registers
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

https://electronics.stackexchange.com/questions/272437/build-a-two-port-write-and-two-port-read-register-file-with-4-registers


IM Reg DM Reg

IM Reg DM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $10, 20($1)

Program 

execution 

order 

(in instructions)

sub $11, $2, $3

ALU

ALU

❖ Two instructions need to access the register bank in the same cycle:

 One instruction to read operands in its instruction decode (ID) cycle.

 The other instruction to write to a destination register in its Write Back (WB) 

cycle.

❖ This represents a potential hardware conflict over access to the register bank.

❖ Solution: Coordinate register reads and write in the same cycle as follows:

• Register write in Write Back WB cycle 

occur in  the first half of the cycle.  

(indicated here by the dark shading of the       

first half  of the WB cycle)

• Operand register reads in Instruction Decode 

ID cycle occur in the second half of the cycle

(indicated here by  the dark shading of the 

second half of the cycle)

Handling Read/Write Access To Register Bank
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Example 3 of Structural Hazard

❖ One Cache Memory for both Instructions & Data

 Instruction fetch requires cache access each clock cycle

 Load/store also requires cache access to read/write data

 Cannot fetch instruction and load data if one address port

Time (in cycles)

Pr
og

ra
m

 O
rd

e
r

add r9, r8, r7

CC2

Reg

Mem

Mem

Reg

sub r5, r2, r3

CC4

ALU

Mem

Mem

Reg

CC5

Reg

ALU Mem

CC6

Reg

ALU Mem

CC7

Reg

CC8

Reg

lw r6, 8(r5) Mem

CC1

Reg

ori  r4, r3, 7

ALU

CC3

Mem

Structural

Hazard
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Stalling the Pipeline

❖ Delay Instruction Fetch ➔ Stall pipeline (inject bubble)

 Reduces performance: Stall pipeline for each load and store!

❖ Better Solution: Use Separate Instruction & Data Caches

 Addressed independently: No structural hazard and No stalls

Time (in cycles)

Pr
og

ra
m

 O
rd

e
r

add r9, r8, r7

CC2

Reg

Mem

Mem

Reg

CC4

ALU Mem

CC5

Reg

ALU Mem

CC6

Reg

CC7

Reg

CC8

lw r6, 8(r5) Mem

CC1

Reg

ori  r4, r3, 7

ALU

CC3

Mem

Stall Pipeline

Inject Bubble

sub r5, r2, r3 Mem Reg ALU Mem Reg

bubble bubble bubble bubble bubble
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RegWr

W
B

MemRd MemWr WBdata

Handling Other Cases

PCSrc

RegDst

E
X

ExtOp

ExtOp

Registers

RA

RB

BusA

BusB

RW BusW

clk

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU Result

Data

Memory

Address

Data_in

Data_out1

0

Imm16

Next PC Address +

0

1

2

IF = Instruction Fetch

+1

ID = Instruction Decode EX = Execute MEM = Memory Access

W
B

 =
 W

ri
te

 B
a

c
k

1

0

P
C

0
0

In
s
t

N
P

C B
T
A

A
B

Im
m

D
R

D
a
ta

1

0

R
d
2

R
d
3

R
d
4

Main & ALU

Control

Op

func

ALUSrc ALUOp

M
E

M

Zero

PC

Control
Zero

JBEQ, BNE
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Resolving Structural Hazards Summary

❖ Serious Hazard:

 Hazard cannot be ignored

❖ Solution 1: Delay Access to Resource

 Must have mechanism to delay instruction access to resource

 Delay all write backs to the register file to stage 5

▪ ALU instructions bypass stage 4 (memory) without doing anything

❖ Solution 2: Add more hardware resources (more costly)

 Add more hardware to eliminate the structural hazard

 Redesign the register file to have two write ports

 Adding two memories caches 

 Adding adders 
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Data Hazards
❖ Data hazards occur when the pipeline changes the order of 

read/write accesses to instruction operands in such a way that the 

resulting access order differs from the original sequential 

instruction operand access order of the unpipelined CPU resulting 

in incorrect execution.

❖ Data hazards may require one or more instructions to be stalled in 

the pipeline to ensure correct execution.

❖ Example:

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

 All the instructions after the sub instruction use its result data  in register $2

 As part of pipelining, these instruction are started before sub is completed:

▪ Due to this data hazard instructions need to be stalled for correct execution.

1

2

3

4

5

✓ Arrows represent data dependencies between 

instructions

✓ Instructions that have no dependencies among 

them are said to be parallel or independent 

✓ A high degree of  Instruction-Level Parallelism 

(ILP)  is present in a given code sequence if it has 

a large  number of parallel instructions 
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Data Hazard Classification

❖ Given two instructions  I,  J,  with  I occurring before  J 
in an instruction stream:

 RAW (read after write):    A true data dependence

J tried to read a source before I writes to it, so  J
incorrectly gets the old value.

 WAW (write after write):    A name dependence

J tries to write an operand before it is written by  I

The writes end up being performed in the wrong order.

 WAR (write after read):    A name dependence

J tries to write to a destination before it is read by I,

so I incorrectly gets the new value.

 RAR (read after read): Not a hazard.

I

..

..

J

Program

Order
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Read after write (RAW) hazards

❖ With RAW hazard, instruction j tries to read a source operand before 

instruction i writes it.

❖ Thus, j would incorrectly receive an old or incorrect value

❖ Graphically/Example:

❖ Can use stalling or forwarding to resolve this hazard

… j i …

Instruction j is a

read instruction

issued after i

Instruction i is a

write instruction

issued before j

i:  ADD R1, R2, R3

j:  SUB R4, R1, R6

i:  Lw R1, Off(R3)

j:  SUB R4, R1, R6

i:  ADD R1, R2, R3

j:  Sw R1, Off(R6)

i:  Lw R1, Off(R3)

j:  Sw R1, Off(R6)
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DMReg

IM

Reg

ALU

IM

DM

Reg

Reg

ALU

IM

DM

Reg

Reg

ALU DM

Reg

ALU

Reg

DM

IM

Reg

ALU

IM

Time (cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

value of $s2

sub $s2, $t1, $t3

CC1
10

CC2

add $s4, $s2, $t5

10

CC3

or $s6, $t3, $s2

10

CC4

and $s7, $t4, $s2

10

CC6
20

CC7
20

CC8
20

CC5

sw $t8, 10($s2)

10

Example of a RAW Data Hazard

❖ Result of sub is needed by add, or, and, & sw instructions

❖ Instructions add & or will read old value of $s2 from reg file

❖ During CC5, $s2 is written at end of cycle, old value is read
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Write after write (WAW) hazards

❖ With WAW hazard, instruction j tries to write an operand before instruction i

writes it.

❖ The writes are performed in wrong order leaving the value written by earlier 

instruction

❖ Graphically/Example:

… j i …

Instruction j is a

write instruction

issued after i

Instruction i is a

write instruction

issued before j

i:  DIV F1, F2, F3

j:  SUB F1, F4, F6

i:  Sw F1, off(F2)

j:  Sw F1, off(F2)

i:  Lw F1, off(F2)

j:  SUB F1, F4, F6
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Write after read (WAR) hazards

❖ With WAR hazard, instruction j tries to write an operand before instruction i

reads it.

❖ Instruction i would incorrectly receive newer value of its operand; 

 Instead of getting old value, it could receive some newer, undesired 

value:

❖ Graphically/Example:

… j i …

Instruction j is a

write instruction

issued after i

Instruction i is a

read instruction

issued before j

i:  DIV F7, F1, F3

j:  SUB F1, F4, F6

i:  Sw F1, off(F3)

j:  SUB F1, F4, F6

i:  Lw F1, off(F3)

j:  Sw F2, off(F3)
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Data Hazard Resolution: Stall Cycles  
❖ Stall the pipeline by a number of cycles.

❖ The control unit must detect the need to insert stall cycles.

❖ In this case two stall cycles are needed.

IM Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program

execution
order

(in instructions)

and $12, $2, $5

CC 7 CC 8

10 10 10 10 10/– 20 – 20 – 20 – 20

CC 9

– 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of

register $2:

DM Reg

Reg

IM Reg DM Reg

IM DM Reg

IM DM Reg

Reg

Reg

Reg

DM
STALL STALL

CC 10

– 20

CC 11

– 20

STALL STALL

1

2

3

4

5 2 Stall cycles inserted here to 

resolve  data hazard and ensure 

correct execution
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❖ Observation: why not use temporary results produced by 
memory/ALU and not wait for them to be written back in the 
register bank.

❖ Data Forwarding is a hardware-based technique (also called 
register bypassing or register short-circuiting) used to eliminate 
or minimize data hazard stalls that makes use of this observation.

❖ Using forwarding hardware, the result of an instruction is copied 
directly (i.e. forwarded) from where it is produced (ALU, memory 
read port etc.),  to where  subsequent instructions need it (ALU 
input register, memory write port etc.)

Data Hazard Resolution/Stall Reduction: 
Data Forwarding  
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Forwarding In MIPS Pipeline

❖ The ALU result from the EX/MEM register may be forwarded or fed back to 
the ALU  input latches as needed instead of the register operand value read 
in the  ID stage.

❖ Similarly, the Data Memory Unit result from the MEM/WB  register may be fed 

back to the ALU input latches as needed .

❖ If the forwarding hardware detects that a previous ALU operation is to write 
the register corresponding to a source for the current ALU operation, control 
logic selects  the  forwarded result as the ALU input rather than the value 
read from the register file.

❖ Hazard types

1a EX/MEM.RegisterRd = ID/EX.RegisterRs

1b EX/MEM.RegisterRd = ID/EX.RegisterRt

2a MEM/WB.RegisterRd = ID/EX.RegisterRs

2b MEM/WB.RegisterRd = ID/EX.RegisterRt
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Implementing Forwarding

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs

In
s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B

D
a
ta

D

Im
m

32

R
e
g

is
te

r 
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

❖ Two multiplexers added at the inputs of A & B registers

 Data from ALU stage, MEM stage, and WB stage is fed back

❖ Two signals: ForwardA and ForwardB to control forwarding

ForwardA

ForwardB

32

Rd
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Forwarding Control Signals

Signal Explanation

ForwardA = 0 First ALU operand comes from register file = Value of (Rs)

ForwardA = 1 Forward result of previous instruction to A (from ALU stage)

ForwardA = 2 Forward result of 2nd previous instruction to A (from MEM stage)

ForwardA = 3 Forward result of 3rd previous instruction to A (from WB stage)

ForwardB = 0 Second ALU operand comes from register file = Value of (Rt)

ForwardB = 1 Forward result of previous instruction to B (from ALU stage)

ForwardB = 2 Forward result of 2nd previous instruction to B (from MEM stage)

ForwardB = 3 Forward result of 3rd previous instruction to B (from WB stage)
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Forwarding Example

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs

In
s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B

D
a
ta

D

Im
m

32

R
e
g

is
te

r 
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Instruction sequence:

lw $t4, 4($t0)

ori $t7, $t1, 2

sub $t3, $t4, $t7

When sub instruction in ID stage

ori will be in the ALU stage

lw will be in the MEM stage

lw $t4,4($t0)ori $t7,$t1,2sub $t3,$t4,$t7

ForwardA = 2 (from MEM stage)

ForwardB = 1 (from ALU stage)
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RAW Hazard Detection

❖ Current instruction is being decoded in the Decode stage

❖ Previous instruction is in the Execute stage

❖ Second previous instruction is in the Memory stage

❖ Third previous instruction is in the Write Back stage

If      ((Rs != 0) and (Rs == Rd2) and (EX.RegWr))  ForwardA = 1

Else if ((Rs != 0) and (Rs == Rd3) and (MEM.RegWr)) ForwardA = 2

Else if ((Rs != 0) and (Rs == Rd4) and (WB.RegWr))  ForwardA = 3

Else    ForwardA = 0

If      ((Rt != 0) and (Rt == Rd2) and (EX.RegWr))  ForwardB = 1

Else if ((Rt != 0) and (Rt == Rd3) and (MEM.RegWr)) ForwardB = 2

Else if ((Rt != 0) and (Rt == Rd4) and (WB.RegWr)) ForwardB = 3

Else    ForwardB = 0
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Hazard Detecting and Forwarding Logic

ForwardB ForwardA

Rs

Rt

Hazard

Detect &

Forward

0

1

2

3

0

1

2

3

R

3232

clk

32

Rs

In
s
tr

u
c
ti
o

n

0

1

ALU result

32

0

1

Data

Memory

Address

Data_in

Data_out

32

R
d
4

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B

D
a
ta

D

Im
m

32

R
e
g

is
te

r 
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Main

& ALU

Control

Op

func

W
B

RegDst

E
X

ExtOp

ExtOp

ALUSrc

ALUOp

M
E

M

MemRd

MemWr

WBdata

RegWr RegWrRegWr
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Next . . .

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

❖ Delayed Branch and Dynamic Branch Prediction
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Reg

Reg

Reg

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2

add $s4, $s2, $t5

Reg

IF

CC3

or $t6, $t3, $s2

ALU

IF

CC6

Reg

DM

ALU

CC7

Reg

Reg

DM

CC8

Reg

lw $s2, 20($t1) IF

CC1 CC4

and $t7, $s2, $t4

DM

ALU

IF

CC5

DM

ALU

Load Delay

❖ Unfortunately, not all data hazards can be forwarded

 Load has a delay that cannot be eliminated by forwarding

❖ In the example shown below …

 The LW instruction does not read data until end of CC4

 Cannot forward data to ADD at end of CC3 - NOT possible

However, load can 

forward data to 2nd next 

and later instructions
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Detecting RAW Hazard after Load

❖ Detecting a RAW hazard after a Load instruction:

 The load instruction will be in the EX stage

 Instruction that depends on the load data is in the decode stage

❖ Condition for stalling the pipeline

if ((EX.MemRd == 1)  // Detect Load in EX stage

and (ForwardA==1 or ForwardB==1)) Stall  // RAW Hazard

❖ Insert a bubble into the EX stage after a load instruction

 Bubble is a no-op that wastes one clock cycle

 Delays the dependent instruction after load by one cycle

▪ Because of RAW hazard
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Regor $t6, $s3, $s2 IM DM RegALU

RegALU DMReg

add $s4, $s2, $t5 IM

Reglw $s2, 20($s1) IM

stall

ALU

bubble bubble bubble

DM Reg

Stall the Pipeline for one Cycle

❖ ADD instruction depends on LW ➔ stall at CC3

 Allow Load instruction in ALU stage to proceed

 Freeze PC and Instruction registers (NO instruction is fetched)

 Introduce a bubble into the ALU stage (bubble is a NO-OP)

❖ Load can forward data to next instruction after delaying it

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2 CC3 CC6 CC7 CC8CC1 CC4 CC5
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lw $s2, 8($s1) MEM WBEXIDStallIF

lw $s1, ($t5) MEM WBEXIDIF

Showing Stall Cycles

❖ Stall cycles can be shown on instruction-time diagram

❖ Hazard is detected in the Decode stage

❖ Stall indicates that instruction is delayed

❖ Instruction fetching is also delayed after a stall

❖ Example:

add $v0, $s2, $t3 - WBEXIDStallIF

sub $v1, $s2, $v0 - WBEXIDIF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3 CC10

Data forwarding is shown using green arrows
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Hazard Detecting and Forwarding Logic

ForwardB ForwardA
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Static Compiler Instruction Scheduling (Re-
Ordering)  for Data Hazard Stall Reduction
❖ Many types of stalls resulting from data hazards are very frequent.  

For example:  

A  =  B +  C 

produces a stall when loading the second data value (B).

❖ Rather than allow the pipeline to stall, the compiler could sometimes 

schedule the pipeline to avoid stalls.

❖ Compiler pipeline or instruction scheduling involves rearranging the 

code sequence (instruction reordering) to eliminate or reduce the 

number of stall cycles.

Static =  At  compilation time by the compiler

Dynamic = At run time by hardware in the CPU
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Compiler Scheduling Example

❖ Reorder the instructions to avoid as many pipeline stalls as possible:

lw $15, 0($2)
lw $16, 4($2)
add $14, $5, $16
sw $16, 4($2)

❖ The data hazard occurs on register $16 between the second lw and the add 

instruction resulting in a stall cycle even with forwarding

❖ With forwarding we (or the compiler) need to find only one independent 

instruction to place between them, swapping the lw instructions works:

lw $16, 4($2)
lw $15, 0($2)
nop
add $14, $5, $16 
sw $16, 4($2)

❖ Without forwarding we need two independent instructions to place between 

them,  so in addition a nop is added (or the hardware will insert a stall).

lw $16, 4($2)
lw $15, 0($2)
add $14, $5, $16
sw $16, 4($2)

Stall

Or stall cycle
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Compiler Scheduling Example

❖ Consider the translation of the following statements:

A = B + C; D = E – F;  // A thru F are in Memory

❖ Slow code:

lw $t0, 4($s0) # &B = 4($s0)

lw $t1, 8($s0) # &C = 8($s0)

add $t2, $t0, $t1 # stall cycle

sw $t2, 0($s0) # &A = 0($s0)

lw $t3, 16($s0) # &E = 16($s0)

lw $t4, 20($s0) # &F = 20($s0)

sub $t5, $t3, $t4 # stall cycle

sw $t5, 12($0) # &D = 12($0)

❖ Fast code: No Stalls

lw $t0, 4($s0)

lw $t1, 8($s0)

lw $t3, 16($s0)

lw $t4, 20($s0)

add $t2, $t0, $t1

sw $t2, 0($s0)

sub $t5, $t3, $t4

sw $t5, 12($s0)
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Next . . .

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

❖ Delayed Branch and Dynamic Branch Prediction
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Control Hazards

❖ Jump and Branch can cause great performance loss

❖ Jump instruction needs only the jump target address

❖ Branch instruction needs two things:

Branch Result Taken or Not Taken

Branch Target Address

▪ PC + 4 If Branch is NOT taken

▪ PC + 4 + 4 × immediate If Branch is Taken

❖ Jump and Branch targets are computed in the ID stage

At which point a new instruction is already being fetched

 Jump Instruction: 1-cycle delay

Branch: 2-cycle delay for branch result (taken or not taken)
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What is needed to Calculate next PC?

❖ For Unconditional Jumps

 Opcode (J or JAL), PC and 26-bit address (immediate)

❖ For Jump Register

 Opcode + function (JR or JALR) and Register[Rs] value

❖ For Conditional Branches

 Opcode, branch outcome (taken or not), PC and 16-bit offset

❖ For Other Instructions

 Opcode and PC value

❖ Opcode is decoded in ID stage ➔ Jump delay = 1 cycle

❖ Branch outcome is computed in EX stage

 Branch delay = 2 clock cycles
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1-Cycle Jump Delay

❖ Control logic detects a Jump instruction in the 2nd Stage

❖ Next instruction is fetched anyway

❖ Convert Next instruction into bubble (Jump is always taken)

J L1 IF

cc1

Next instruction

. . .

L1: Target instruction

cc2

ID

IF

Jump

Target

Addr

cc4 cc5 cc6 cc7cc3

BubbleBubble BubbleBubble

IF Reg DMALU Reg
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2-Cycle Branch Delay

❖ Control logic detects a Branch instruction in the 2nd Stage

❖ ALU computes the Branch outcome in the 3rd Stage

❖ Next1 and Next2 instructions will be fetched anyway

❖ Convert Next1 and Next2 into bubbles if branch is taken

Beq $t1,$t2,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc4 cc5 cc6 cc7

IF Reg DMALU

BubbleBubble Bubble

BubbleBubble BubbleBubble

L1: target instruction

cc3

Branch

Target

Addr

ALU

Reg

IF

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Predict Branch NOT Taken

❖ Branches can be predicted to be NOT taken

❖ If branch outcome is NOT taken then

 Next1 and Next2 instructions can be executed

 Do not convert Next1 & Next2 into bubbles

 No wasted cycles

Beq $t1,$t2,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc3

NOT TakenALU

Reg

IF Reg

cc4 cc5 cc6 cc7

ALU DM

ALU DM

Reg

Reg

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



J

J

Pipelined Jump and Branch

Main

& ALU

Control

Op

func

ForwardB

ForwardA

Rs

Rt
Forward & Stall

Rd2, Rd3, Rd4

RegWr2,3,4, MemRd

Bubble = 0

Stall

D
is

a
b
le

 P
C

D
is

a
b
le

 I
RKill1

Jump

kills next 

instruction

Kill2

Taken 

branch 

kills two M
E

M

Control Signals
0

1

Control Signals

E
X

PC

Control

PCSrc

JR, BEQ, BNE
JR, BEQ, BNEZero

0

1

2

3

0

1

2

3

R

32

32

Rs

In
s
tr

u
c
ti
o

n

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B D

Im
m

32

R
e
g

is
te

r 
F

il
e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Zero

Address

Instruction

Instruction

Cache

PC+1 +

0

1

3

2

+1

P
C

0
0

N
P

C

0

1

Bubble = NOP

R31

0

2

1

B
T
A

Jump Target Address

Jump Register Address

Branch Target Address

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



PC Control for Pipelined Jump and Branch

if ((BEQ && Zero) || (BNE && !Zero))

{ Jmp=0; Br=1; Kill1=1; Kill2=1; }

else if (J)

{ Jmp=1; Br=0; Kill1=1; Kill2=0; }

else

{ Jmp=0; Br=0; Kill1=0; Kill2=0; }

Br = (( BEQ · Zero ) + (BNE · Zero ))

Jmp = J · Br

Kill1 = J + Br

Kill2 = Br

PCSrc = { Br, Jmp } // 0, 1, or 2

Br JmpKill1Kill2

BEQ BNE J

Zero

PCSrc
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Hardware Reduction of Branch Stall Cycles

❖ Pipeline hardware measures to reduce branch stall cycles:

1- Find out whether a branch is taken earlier in the pipeline. 

2- Compute the taken PC earlier in the pipeline.

❖ In MIPS:

 In MIPS branch instructions BEQ, BNE, test a register for equality to 

zero.

 This can be completed in the ID cycle by moving the zero test into that 

cycle.

 Both PCs (taken and not taken) must be computed early.

 Requires an additional adder because the current ALU is not useable 

until EX cycle.

 This results in just a single cycle stall on branches. 

▪ Branch Penalty when taken = stage resolved - 1 = 2 - 1 = 1

i.e Resolve the branch in an early stage in the pipeline
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Reducing Delay (Penalty) of Taken Branches

❖ So far: Next PC of a branch known or resolved  in EX stage: 

❖ Costs two lost cycles if the branch is taken.

❖ If next PC of a branch is known or resolved in ID stage, one 

cycle is saved.

❖ Branch address calculation can be moved to ID stage (stage 2) 

using a register comparator, costing only one cycle if branch is 

taken as shown below.  

❖ Branch Penalty = stage 2 -1  = 1 cycle
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Jump and Branch Impact on CPI

❖ Base CPI = 1 without counting jump and branch stalls

❖ Unconditional Jump = 5%, Conditional branch = 20%

and 90% of conditional branches are taken

❖ 1 stall cycle per jump, 2 stall cycles per taken branch

❖What is the effect of jump and branch stalls on the CPI?

Solution:

❖ Jump adds 1 stall cycle for 5% of instructions = 1 × 0.05

❖ Branch adds 2 stall cycles for 20% × 90% of instructions

= 2 × 0.2 × 0.9 = 0.36

❖ New CPI = 1 + 0.05 + 0.36 = 1.41
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Next . . .

❖ Pipelined Datapath and Control

❖ Pipeline Hazards

❖ Data Hazards and Forwarding

❖ Load Delay, Hazard Detection, and Stall

❖ Control Hazards

❖ Delayed Branch and Dynamic Branch Prediction
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Branch Hazard Alternatives

❖ Predict Branch Not Taken (previously discussed)

 Successor instruction is already fetched

 Do NOT kill instructions if the branch is NOT taken

 Kill only instructions appearing after Jump or taken branch

❖ Delayed Branch

 Define branch to take place AFTER the next instruction

 Compiler/assembler fills the branch delay slot (for 1 delay cycle)

❖ Dynamic Branch Prediction

 Loop branches are taken most of time

 Must reduce the branch delay to 0, but how?

 How to predict branch behavior at runtime?
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❖ Define branch to take place after the next instruction

❖MIPS defines one delay slot

 Reduces branch penalty

❖ Compiler fills the branch delay slot

 By selecting an independent instruction

from before the branch

 Must be okay to execute instruction in the

delay slot whether branch is taken or not

❖ If no instruction is found

 Compiler fills delay slot with a NO-OP

Delayed Branch

label:

. . .

add $t2,$t3,$t4

beq $s1,$s0,label

Delay Slot

label:

. . .

beq $s1,$s0,label

add $t2,$t3,$t4
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❖ Schedule the following MIPS code for the pipelined MIPS CPU with forwarding and 

reduced branch delay using a single branch delay slot to minimize stall cycles:

loop: lw $1,0($2) #  $1 array element

St……..

add $1, $1, $3 # add constant in $3

sw $1,0($2) # store result array element

addi $2, $2, -4 # decrement address by 4

St…….

bne $2, $4, loop # branch if $2 != $4 

May st

❖ Assuming the initial value of   $2  =  $4 +  40

(i.e it loops 10 times)

 What is the CPI and total number of cycles needed to run the code with and without 

scheduling?

Compiler Instruction Scheduling Example
With Branch Delay Slot
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❖ Without compiler scheduling

loop: lw $1,0($2)

Stall

add $1, $1, $3

sw $1,0($2)

addi $2, $2, -4

bne $2, $4, loop

Stall (or NOP)

Ignoring the initial 4 cycles to fill the 

pipeline:

Each iteration takes = 7 cycles

CPI =  7/5 =  1.4

Total cycles = 7 x 10 = 70 cycles

❖ With compiler scheduling

loop: lw $1,0($2)

addi $2, $2, -4

add $1, $1, $3

bne $2, $4, loop

sw $1, 4($2)

Ignoring the initial 4 cycles to fill the 

pipeline:

Each iteration takes = 5 cycles

CPI =  5/5 =  1  

Total cycles = 5 x 10 = 50 cycles

Speedup =  70/ 50 =  1.4

Adjust

address

offset

Compiler Instruction Scheduling Example 
With Branch Delay Slot)
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❖ New meaning for branch instruction

 Branching takes place after next instruction (Not immediately!)

❖ Impacts software and compiler

 Compiler is responsible to fill the branch delay slot

❖ However, modern processors and deeply pipelined

 Branch penalty is multiple cycles in deep pipelines

 Multiple delay slots are difficult to fill with useful instructions

❖MIPS used delayed branching in earlier pipelines

 However, delayed branching lost popularity in recent processors

 Dynamic branch prediction has replaced delayed branching

Drawback of Delayed Branching
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Dynamic Branch Prediction

❖ Prediction of branches at runtime using prediction bits

❖ Prediction bits are associated with each entry in the BTB

 Prediction bits reflect the recent history of a branch instruction

❖ Typically few prediction bits (1 or 2) are used per entry

❖We don’t know if the prediction is correct or not

❖ If correct prediction …

 Continue normal execution – no wasted cycles

❖ If incorrect prediction (misprediction) …

 Kill the instructions that were incorrectly fetched ➔ wasted cycles

 Update prediction bits and target address for future use
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❖ Prediction is just a hint that is assumed to be correct

❖ If incorrect then fetched instructions are killed

❖ 1-bit prediction scheme is simplest to implement

 1 bit per branch instruction (associated with BTB entry)

 Record last outcome of a branch instruction (Taken/Not taken)

 Use last outcome to predict future behavior of a branch

1-bit Prediction Scheme

Predict 

Not Taken

Taken

Predict 

Taken

Not

Taken

Not Taken

Taken
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1-Bit Predictor: Shortcoming

❖ Inner loop branch mispredicted twice!

Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of inner loop 

next time around

outer: …
…

inner: …
…
bne …, …, inner
…
bne …, …, outer
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Pipeline Performance Example

❖ Assume the following MIPS instruction mix:

❖What is the resulting CPI for the pipelined MIPS with 

forwarding and branch address calculation in ID stage when 

using the branch not-taken scheme?

❖ CPI  = Ideal CPI  +  Pipeline stall clock cycles per instruction

=          1    +              stalls by loads   +    stalls by branches

=           1   +                 .3 x .25 x 1       +            .2 x .45 x 1

=           1   +                 .075                  +              .09        

=        1.165

Type Frequency

Arith/Logic 40%

Load 30%         of which 25% are followed immediately by 

an instruction using the loaded value 

Store 10%

branch 20%         of which 45% are taken
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Exceptions

❖ Some exception types

 Overflow

 Illegal instruction

 I/O device request

❖ Instruction causing an overflow

add $1, $2, $1

❖ Action

 Load PC with exception handling address

 Flush the remaining instructions from pipeline immediately

 Leave registers untouched

Example old/new value of $1
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Exceptions Handling 

❖ A pipelined implementation treats exceptions as another form of control 

hazard.

❖ We will use the same mechanism we used for taken branches, but this 

time the exception causes the deasserting of control lines.

❖ To flush instructions in the ID stage, we use the multiplexor already in the 

ID stage that zeros control signals for stalls. A new control signal, called 

ID.Flush, is ORed with the stall signal from the hazard detection unit to fl

ush during ID. To flush the instruction in the EX phase, we use a new 

signal called EX.Flush to cause new multiplexors to zero the control lines. 

❖ To start fetching instructions from location 8000 0180hex, which is the 

MIPS exception address, we simply add an additional input to the PC 

multiplexor that sends 8000 0180hex to the PC.

❖ Save the address of the off ending instruction in the exception program 

counter (EPC).
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Modified CPU Data-path
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The datapath with controls to handle exceptions

❖The key additions include:

 A new input with the value 8000 0180hex in the multiplexor that supplies the 
new PC value;

 A Cause register to record the cause of the exception; 

 And an Exception PC register to save the address of the instruction that caused 
the exception. 

❖The 8000 0180hex input to the multiplexor is the initial 
address to begin fetching instructions in the event of an 
exception. 

❖Although not shown, the ALU overflow signal is an input to 
the control unit.
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Example

❖ Given this instruction sequence,

40hex sub $11, $2, $4

44hex and $12, $2, $5

48hex or $13, $2, $6

4Chex add $1, $2, $1

50hex slt $15, $6, $7

54hex lw $16, 50($1)

❖ Assume the instructions to be invoked on an exception 

begin like this:

4000 0040 sw $25, 1000($0)

4000 0044 sw $26, 1004($0)
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Overflow handling

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



Overflow handling
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The result of an exception due to arithmetic 
overflow ow in the add instruction.

❖The overflow is detected during the EX stage of clock 6

 Saving the address following the add in the EPC register (4C + 4 = 50hex). 

 Overflow causes all the Flush signals to be set near the end of this clock cycle, 

 Deasserting control values (setting them to 0) for the add. 

❖Clock cycle 7 shows the instructions converted to bubbles in 
the pipeline plus the fetching of the first instruction of the 
exception routine—sw $25,1000($0)—from instruction 
location 8000 0180hex. 

❖Note that the AND and OR instructions, which are prior to 
the add, still complete. Although not shown, the ALU 
overflow signal is an input to the control unit.
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Final data path

❖ Basic pipelined architecture

❖ Forwarding

❖ Hazard detection unit

❖ Branch handling

❖ Exception handling

Uploaded By: Jibreel BornatSTUDENTS-HUB.com



In Summary

❖ Three types of pipeline hazards

 Structural hazards: conflicts using a resource during same cycle

 Data hazards: caused by data dependencies between instructions

 Control hazards: caused by branch and jump instructions

❖ Hazards limit the performance and complicate the design

 Structural hazards: eliminated by careful design or more hardware

 Data hazards are eliminated by forwarding

 However, load delay cannot be eliminated and stalls the pipeline

 Delayed branching reduces branch delay but needs compiler support

 BTB with branch prediction can reduce branch delay to zero

 Branch misprediction should kill the wrongly fetched instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com


