

Faculty of Engineering and Technology Department of Electrical and Computer Engineering

Fall Semester 2024/2025

ENCS5331 Advanced Computer Architecture

Course Syllabus

Dr. Ayman Hroub

References					
Textbook	• Computer Architecture: A Quantitative Approach , John L. Hennessy and David A. Patterson, Morgan Kaufmann, 6th Edition, 2019				
Other References	 Computer Organization and Design: The Hardware/Software Interface, John L. Hennessy and David A. Patterson, Morgan Kaufmann,6th Edition, 2021 Research papers from the top conferences and journals Handouts/presentations provided by the instructor 				

Learning Outcomes

At the end of this course the student should be able to:

- 1. Understand superscalar processors
- 2. Understand the processor's memory hierarchy design options and performance optimization.
- 3. Understand parallel computing architectures, cache coherency and bus architectures
- 4. Understand data level parallelism (DLP) and thread-level parallelism (TLP)
- 5. Design Domain Specific Architectures (DSA's)
- 6. Understand the modern trends in computer architecture and technology
- 7. Understand the principles and technologies of in/near memory computing
- 8. Aware of computer architecture research community, top journals, top conferences, and research trends
- 9. Conduct research in computer architecture and write a research paper

	Main Topics			
•	Introduction and Motivation			
•	Review			
	• Out of Order Execution Processors			
	 Compiler Techniques for Exploiting Instruction Level Parallelism 			
	 Dynamic Branch Prediction 			
•	Superscalar Processors			
•	Memory Subsystem			
	• Main Memory			
	 Cache Hierarchy Organization 			
	 Cache Performance Evaluation and Optimization 			
	• Prefetching			
	Memory Controllers			
•	Bus Architectures			
•	Parallel Processors and Thread Level Parallelism			
	 Motivation for Moving to Parallel Processors 			
	 Parallel Processers' Evolution and Taxonomy 			
	 Overview of Parallel Programming 			
	• On-chip Networks			
	 Multicore Processor's Cache Hierarchy 			
	• Cache Coherence			
	• Synchronization			
•	Data Level Parallelism			
	• Vector Processors			
	 Graphics Processing Units (GPUs) Architectures 			
•	Domain Specific Architectures (DSAs)			
	• Introduction to DSAs			
	 DSAs Design Guidelines 			
	• Case Study: Deep Neural Networks Acceleration via DSA's			
•	Virtual Memory			
•	Introduction to Near/In Memory Computing and Emerging Memory			
	Technologies			
	 Motivation of Having in/Near Memory Computing 			
	 Technology Basics and Taxonomy 			
•	Introduction to Hardware Security			
-				

Grading Scheme		
Assessment Type	Weight	
Paper Review Assignments	10%	
Midterm Exam	20%	
Term Paper	30%	
Comprehensive Final Exam	40%	
Total	100%	

Teaching and Learning Methods

- Lectures, assignments, in-class activities, exams, and term paper.
- Mixture of modern learning methods, such as, inductive learning, flipped classroom, learning by project, etc.

Additional Notes				
Assignments	No late assignments			
Makeup Exams	No makeup exam			
Office Hours	Students are highly encouraged to utilize the instructor's office hours			
Honor Code	Students are expected to abide by Birzeit University honor code on all aspects of their academic work. Please review that on Ritaj. Additionally, students are expected to follow the code of conduct for the course appended to this course outline.			
Code of Conduct	 By enrolling in this course, students agree to abide by a code of conduct that helps all participants gain the best results in a healthy and pleasant environment, this includes the following rules: Mutual respect is a must Students are expected to be in class on time Cell phones should be switched off Classroom should be very quiet Students are expected to stay in the classroom focusing and quiet, and not leaving the class room without asking the instructor's permission 			