Complete class Description

Consultation [
" Other Actors (or
DOCtOI'S i objects) that may
Date use thiS ACtor or
Time ... specialise from it |
T
Reason _ T
.,I\.ceeg;rc“laémn Ir)éngllgzgd " Data an actor needs
\oice note'f I ' to perform it
At S : services

Transcript

New (.

Prescribe () " Use case or services

RecordNotes () .| " an actor can

Transcribe () perform or provide

. to others

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Example: Detailed Class Diagram

cias,s’_’—* Company aggregation

1?.___._.-/

. 1.°e — muliolidty 1.
' Department Location Office
name : Name [~ .1 address : Sting

0.1 voice : Number

role .
k = lsubset}| association ; gene/ral:zalion
member [1_" 1 rm’:mr Headquarters

name : Name attributes
employeelD - Integer o

title - String operations
getPhoto(p: Photo) /

getSoundBas() ‘ IContactlnfamaﬂon
getContactinformation(} | - - > address : String

[<\ Pe interface

dependency taxD :) |

© Prof. Adel Taweel 2021

Another Example

Corporate Customer and =
Personal Customer classes [&dterecived : Date S
may have some common [gshera_ Bockear Bname - Sting
tt 'b t t' h s § = @paddress - String
attributes/operations such |&@pnce: money | :
as name and address, but | eg.paen $creditRating(
each class has its own close) [F

attributes and operations.
The class Customer is a

general form of both the

Corporate Customer and ey R

Personal Customer classes. @pcontactName - String | |@pcreditCarc# : Long Integer
& creditRating - String

& creditLimit - Dcuble

®remind()
“*hillForMonth()

© Prof. Adel Taweel 2021 COMP433: Software Engineering

UML Diagrams

You are Here!

Use "ase
Diagra. s Object
Diagrams

Component
Diagrams

Deployment
Diagrams

Taken from [Booch 19997 FATICN AL
Covered

© Prof. Adel Taweel 2021

COMPA433: Software Engineering

Object Diagram

Objects are instances of Classes

Object Diagram captures objects and relationships
between them, in other words, it captures
instances of Classes and links/associations
between them.

Built during analysis & design
Illustrate data/object structures
Specify snapshots
Validates Class Model, is it sufficient for persistence of
data elements and methods.

Developed by analysts, designers and implementers

© Prof. Adel Taweel 2021 COMP433: Software Engineering

UML Object Icons

Object name Class name

Name) T —T

compartment DSRsUMLBook : Book
Optional

attribute } | title = “Using UML”
compartment

Attribute name
Attribute value

Operations and attribute types
are not shown on object diagrams!

Reference: D. Rosenblum, UCL

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Object Diagram

Capture class instances and links between objects

c: Company

t

link

[2

l d3 : Department

object g altribute value
] name = “US Sales"” /
..—-_4-’
manager / anonymous object
p : Person /
- Contactinformation

name = “Enn” J
employeelD = 4362 address = “1472 Miller St.”
title = “VP of Sales”

Taken from [Booch 1999] RATIONAL

. orrTwamn

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Example: Object Diagram

bhankname = AgencyBank
IPadress = 1010127128
username = John Doe
password = johnny

o balance = 10,000.00
. accounts

minimumBalance =

id= 1234567890
interestRate = 1,2

accounts =

. . . |
) a_ccqun'_ts

balance = 1,254.76
id= 987654321

© Prof. Adel Taweel 2021

_ accounts

|

halance = 739.14

id= 4445556667

creditLimit = 5,000.00
interestRateOnBalance =
interestRateOnCashA&dvance =

COMPA433: Software Engineering

Example: Object Model/Diagram

I

For the Lecturer \
fOHOWing s = Course
model draw: 6 J
- adetailed . /

Class Model /
(or Diagram) | Prectorosidies ,d\“ s T
- dan Object o+ | Student | Honours
Model (or A | !
Diagram) | e =
NonGraduatingStudent GraduatingStudent

© Prof. Adel Taweel 2021 COMP433: Software Engineering

UML Diagrams

You are

Pty Covered

Class
Diczrams

Covered

Component
Diagrams

Deployment
Diagrams

Taken from [Bouch 1999 RATIONAL

Covered

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Sequence diagrams

Sequence diagrams are used to model the interactions
between the actors and the objects within a system, with
a time-oriented view.

A sequence diagram shows the sequence of interactions
that take place during a particular use case or use case
instance.

The objects and actors involved are listed along the top of
the diagram, with a dotted line drawn vertically from
these.

Interactions between objects are indicated by annotated
arrows.

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Sequence diagrams

Sequence diagrams demonstrate the behaviour of
gbjects in a use case by describing the objects
and the messages they pass. the diagrams are
read left to right and descending.

Object interactions are arranged in a time
sequence (i.e. time-oriented)

objects | |
Q
f-‘,, Activation: < L
5 i i.e., object in active] | |

© Prof. Adel Taweel 2021

Sequence diagrams

Object : Classl Object : Class2 Ooject : Clags3
objects l =N |
Activation: ﬂessage ~\(®‘\)
i.e., object in active /
S

P IV AY
destroy > _/ .‘-T:

© Prof. Adel Taweel 2021

Sequence diagrams

Object : Classl Object : Clags? Object : Class3
I =1 |
o |
e
<
T .

The exa}nple shows an obJelct ot class 1 start tlne
behaviour by sending a message to an object of
class 2. Messages pass between the different
objects until the object of class 1 receives the
final message

© Prof. Adel Taweel 2021 COMP433: Software Engineering

In a self-service, e.g. money (e.g. ATM), machine,
three objects do the work we're concerned with:

the front: the interface the self-service machine
presents to the customer

the money register: part of the machine where
money is collected

the dispenser: which delivers the selected product to
the customer

© Prof. Adel Taweel 2021 COMP433: Software Engineering

The instance sequence diagram may be sketched
by using this sequences:

1.

A

© Prof. Adel Taweel 2021

»®N

The customer inserts money in the money slot in
front money collector.

reN

r

~

T'he money travels to the register

r

~

The reglster checks to see whether the correct

T'he customer makes a selection on the front Ul

money is in the money collector/dispenser

The register updates its cash reserve

The register notifies the dispenser which delivers
the product (e.g. receipt) to the front of the
machine

COMPA433: Software Engineering

‘ :Front \ ‘:Register\

Insert(input) _

Select(Selection] | Send(input)

Customer Notify()
Deliver(;Selection)

-

The "Buy a product” scenario.
Because this is the best-case scenario, it's an instance sequence diagram

© Prof. Adel Taweel 2021 COMP433: Software Engineering

However, note...

We have seen an instance of an interaction
diagram- i.e. one possible sequence of messages

Since a use case can include many scenarios
There is a need to show conditional behaviour
There is a need to show possible iterations

A generic interaction diagram shows all possible
sequences of messages that can occur

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Showing conditional behaviour

A message may be guarded by a condition

Messages are only sent if the guard evaluates to
true at the time when the system reaches that
point in the interaction

Obj:class Obj:class
- If i=0 then foo() E
5 _~" Else bar() 5
[: = 0] foo() [=0 000 -
/ [1=1]bar() 7

[i = 1] barQ) If i=0 then foo()

If i= 1 then bar()

Notation in UML 1.0 and UML 1.4

© Prof. Adel Taweel 2021 COMP433: Software Engineering

Opt(ional) in UML 2.0

sender receiverl (eceiver?

| I |
[I I
operator ~N | |
opt) messagel(parameters) | '
[condition) |

' : If condition is met,

message2(parameters) ! F hoth messages are sent
I

/ | .
| I
I I
Guard S | |
I I

Opt: Optional; the fragment executes only if the supplied condition is
true.

This is equivalent to an "alt" with one trace (next slide)

© Prof. Adel Taweel 2021 COMP433: Software Engineering

alt(ernative): Operators in interactions

frames — UML 2.0

sender Leceiverl (eceiver?
| | |
[I I
operator ~N | |
alt) message1(parameters), |
[condition] : :
' | interaction occurs
message2(parameters) A if condition1 is met
I
I T
e S SR S SRS R RN R R s e B e
[conditiona] message3(parameters) : : : - - -
: otherwise, this interaction
' | occurs if condition2 is met
_______ P RO ORI ORI TORD. | ISR ULD I RS ST IO NPPrIPs (PUresl g
[eize] messaged(parameters) : : -----
/ I otherwise, this interaction occursnl
I T -
I N T L
Guard - : :
I I

v

Alternative multiple fragment: only the one whose condition is true will execute

© Prof. Adel Taweel 2021

Loops in UML 2.0

sender collection
| |
l |
l
loop) messagel(parameters), |
[condition]
message2(parameters) :

Both messages are sent
as long as condiion is met

Loop: the fragment may execute multiple times, and the guard
indicates basis for iterations

© Prof. Adel Taweel 2021

COMPA433: Software Engineering

Sequence diagram for View patient information use

case

Use case: View Patient Information — through authorization

Medical Receptionist

% P: PatientIinfo D: PatientRec AS: Authorization

| |
ViewlInfo (PID) |

I
report (Info, PID, |
uID) il

»
>

|
|
authorize (Info, |
uUID) |

alt |
[authorization OK] Patient info |

- |4+ - — — — N 4 _|__

[authﬂrization fall] Error (no access) I
-

© Prof. Adel Taweel 2021

Sequence diagram for Transfer Data

Medical Receptionist PRS
% P: Patientinfo D: PatientRec AS: Authorization %
g | T | f
I I I login ()
a— ! | .
- - —————— R R e
Use case: Transfer i : i
Data- | [sendInfo] : : :
rimtions || e ons ot :
* | authorize (TF, UID)
between Actors authorization
_______ . update (PID)
f -
Message (OK) < —————— 4--- _ipdateOk
T T T T T I
T;el:i;mjnary]_ I T T __________]
UpdateSummary() |
summarize (UID! |
~ | |authorize (TF, UID) |
wuthoriztion _ |
_: | :summary
: update (PID)
Message (OK) l . P c!_at_e 9K_ 4
- -

© Prof. Adel Taweel 2021

Exercise: Draw a sequence diagram for

the Use-Case “Borrow Copy of a Book”

Library system, four Obj ects Relevant objects: derive from
: class model, below
are involved to do the work to _ -
. 00
achieve the Use case: (Borrow _ opY
BookID: Integer CopylD: Integer
COpy of a Book) BookTitle: String Location: String
Edition: String
BookBorrower: that will borrow ISBN: String
the book setBorrowed() borrow()
Copy: copy of a book setReturned() return()
Book: to which the Copy is of it. BookBorrower Librarian
. . . . BBID: Integer StaffID: Integer
Librarian/LibraryStaff: which BBName: String Address: String
authorizes and register the BBAddress: String

borrowing of the borrowed copy.

borrow(:Copy)
oIftoBorrow ()...

© Prof. Adel Taweel 2021

COMPA433: Software Engineering

