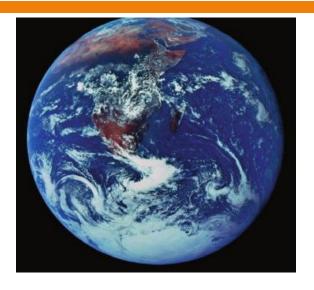
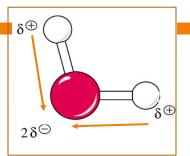
WATER


Course: Biochemistry I (BIOC 230)

Textbook:

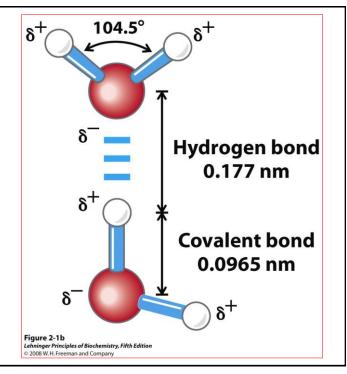
Principles of Biochemistry, 5th Ed., by L. A. Moran and


others. 2014, Pearson. . Chapter 2

Why does the abundance of water allow life to exist on the planet earth?

Properties of water

 \Box The dipolar nature of the H₂O molecule is shown in a ball-and-stick model

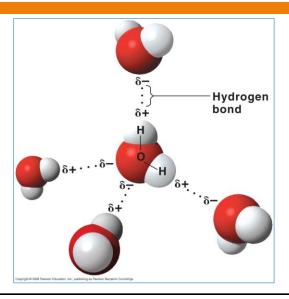

- Very polar, V-shaped
- Oxygen is highly electronegative
- H-bond donor and acceptor
- High boiling point, melting point, heat of vaporization, surface tension

Hydrogen bonding

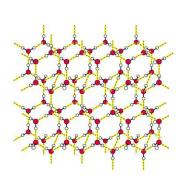
- H-bonds can occur between any electronegative atom and a hydrogen atom attached to another electronegative atom
- Hydrogen bonds are much weaker than typical covalent bond
- Orientation is important in H-bonding. H-bond is most stable when hydrogen atom and the electronegative atoms are aligned or nearly in line

Hydrogen bonding in water

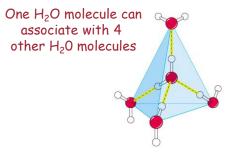
Note: the atoms involved in the H-bond are aligned!!


H-bonding by a water molecule

- □ In ice form, each water molecule can form 4 H-bonds with surrounding water molecules>>> this gives ice an unusually high melting point
- The fluidity of liquid water compared to rigidity of ice is primarily a consequence of the irregular pattern of Hbonds in liquid water
- \square Average H-bond lifetime in water is ~ 10 picosecond (10^{-11} s)


H-bonding by a water molecule

- □ The density of water increases as it cools until it reaches 1.000 gm/mL at 4°C (277K)
- □ Thus "Gram" is defined as the weight of 1 mL of water at 4°C
- □ Water expands below 4°C, thus ice with its open lattice form is less dense than liquid water, ~0.924 gm/mL
- □ What are the consequences of this phenomenon? ice is less


Hydrogen Bonds between water molecules

Hydrogen Bonding of Water

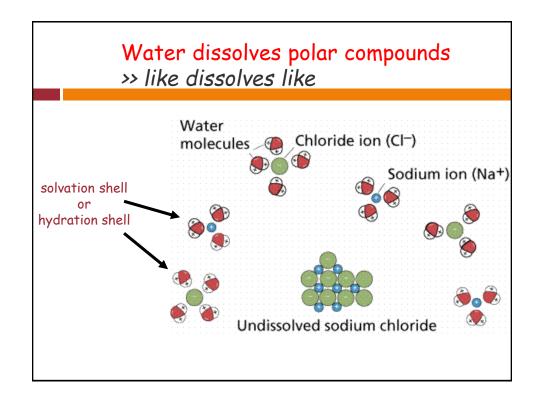
Crystal lattice of ice

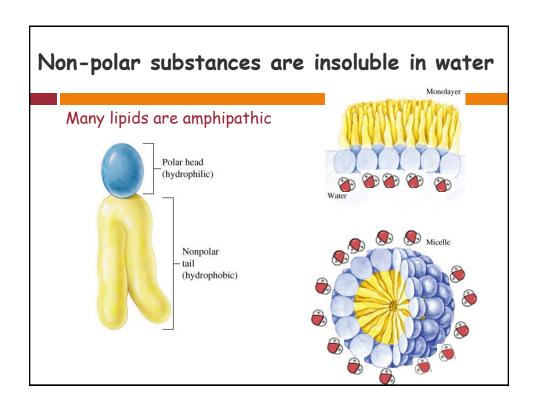
·Ice: 4 H-bonds per water molecule

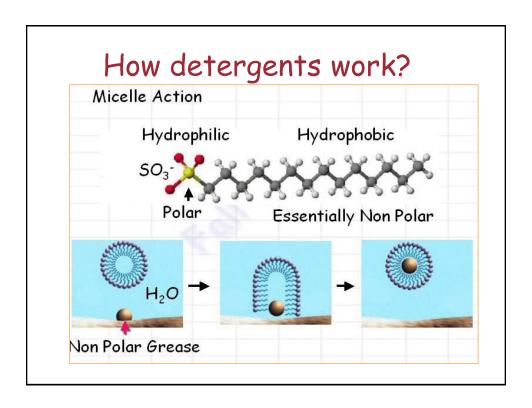
·Water: 2.3 H-bonds per water molecule

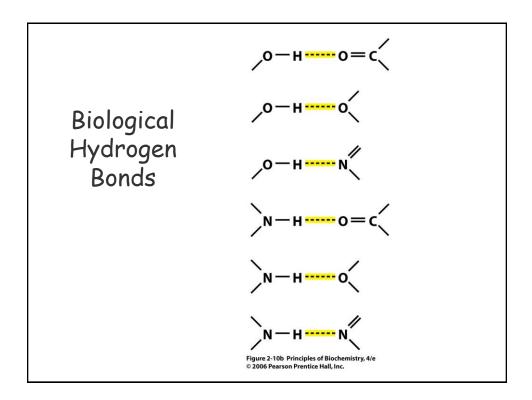
Specific heat & heat of vaporization of water

- □ Water has high S.H. and high H.V.
- □ Specific heat (or heat capacity): amount of heat needed to raise the temperature of 1 gm of the substance by 1°C
- □ Consequence of high S.H: temperature fluctuations
- Consequence of high H.V: perspiration is an effective mechanism for decreasing body temperature


Water is an excellent solvent > the solvent of life


- □ Aqueous solution: water is the solvent
- □ Water is polar and thus dissolves ionic and non-ionic substances .> hydration shell
- Water do not dissolve non-polar compounds
- □ Water has intrinsic viscosity that doesn't greatly impede the movement of dissolved molecules
- □ Water molecules are small compared to other solvents and can associate with soluble particles to make them more soluble
- Contribute to osmotic pressure in cells


Discussion!!


 Water is not a universal solvent. Is this an advantage or disadvantage?

Ionization of Water

One of the most important properties of water is its slightly tendency to ionize.

$$H_2O + H_2O \longleftrightarrow H_3O^{\oplus} + OH^{\ominus}$$

Unnumbered figure pg 38 Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.

Hydronium Hydroxide ion ion

Brønsted-Lowry concept of acids and bases

- □ Acid: proton donor
- □ Base: proton acceptor or hyroxide ion donor

Ionization of Water

$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

$$H_20 \rightarrow H^+ + OH^-$$

$$K_{eq} = [H^+] [OH^-]$$

 $[H_2O]$

 $K_{eq} = 1.8 \times 10^{-16} M$

 $[H_2O] = 55.5 M$

NOW! What is the conc of H+ and OH-???

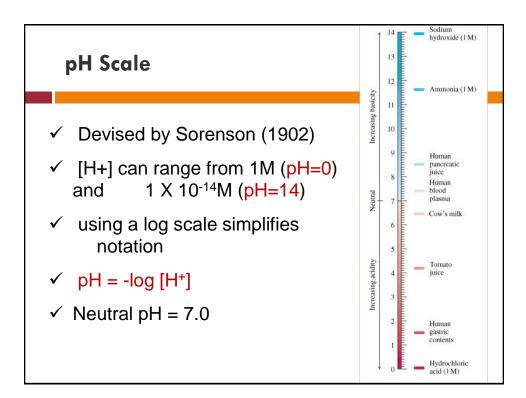
How to calculate the conc of water= (1000 gm is the weight of 1 liter)/ 18gm is the mass of 1 mole

Ionization of Water (cont'd)

$$K_{eq} = [H^+] [OH^-]$$

 $[H_2O]$

$$[H_2O] K_{eq} = [H^+] [OH^-]$$

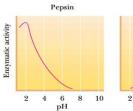

$$(1.8 \times 10^{-16} \text{M})(55.5 \text{ M}) = [\text{H}^+] [\text{OH}^-]$$

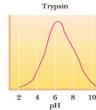
1.0 X
$$10^{-14}$$
 M² = [H+] [OH-] = K_w

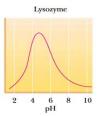
If
$$[H^+]=[OH^-]$$
 then $[H^+]=1.0 \times 10^{-7} M$

 $\mathbf{K}_{\mathbf{w}}$ (=[H+] [OH-]): the ion-product **constant** of water.

Measurement of pH □ pH is measured using a pH meter □ Normal pH of blood is 7.4, which is frequently referred to as "physiological pH" □ In diabetes, blood pH is low>> acidosis \square pH>7.4>> alkalosis, results from prolonged vomiting or hyperventilation


[H+]		[OH-]
(M)	pH	(M)
100(1)	0	10^{-14}
10^{-1}	0	10^{-13}
10^{-2}	2	10^{-12}
10^{-3}	2 3	10-11
10-4	4	10^{-10}
10-5	5	10-9
10-6	5 6 7	10^{-8}
10-7	7	10^{-7}
10-8	8	10^{-6}
10-9	9	10-5
10-10	10	10-4
10-11	11	10^{-3}
10^{-12}	12	10^{-2}
10-13	13	10^{-1}
10-14	14	10-0(1)


Calculation of pH of a solution?


- □ What is the pH of a solution of 0.01 M NaOH?
- \square 1.0 X 10⁻¹⁴ M² = [H⁺] [OH⁻]
- \square [OH-]= 10⁻²M >> [H+]=10⁻¹²M
- \neg pH= -log10⁻¹² = 12
- □ What is the pH of a solution of 1M HCl?
- \Box [OH-]= 10⁻¹⁴M >> [H+]=1M
- □ pH= -log1 = 0

Weak Acids and Bases Equilibria

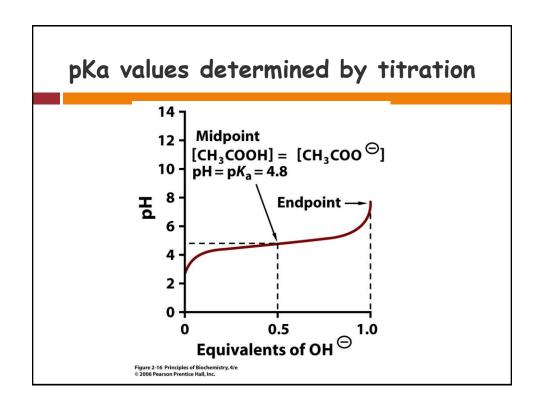
- Strong acids / bases disassociate completely
- □ Weak acids / bases disassociate only partially
- □ Enzyme activity is sensitive to pH
- □ Weak acids/bases play important role in protein structure/function

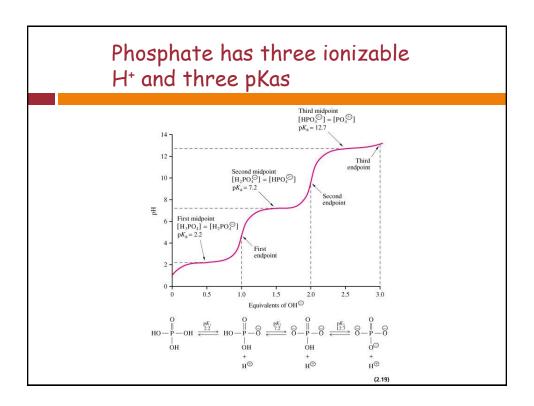
Acid/conjugate base pairs

$$HA + H_2O \longrightarrow A^- + H_3O^+$$

$$HA \longrightarrow A^- + H^+$$

HA = acid (donates H+)(Bronsted Acid)


 A^- = Conjugate base (accepts H⁺)(Bronsted Base)


$$\mathsf{K}_{\mathsf{a}} = \underbrace{[\mathsf{H}^+][\mathsf{A}^-]}_{[\mathsf{H}\mathsf{A}]}$$

 $K_a \& pK_a$ value describe tendency to loose H+

$$pK_a = - \log K_a$$

 $pK_a = - log K_a$ large $K_a = stronger acid$ small $K_a = weaker acid$

Buffers

- □ Buffers are aqueous systems that resist changes in pH when small amounts of a strong acid or base are added.
- A buffered system consist of a weak acid and its conjugate base.
- The most effective buffering occurs at the region of minimum slope on a titration curve

(i.e. around the pKa).

 \Box Buffers are effective at pHs that are within \pm 1 pH unit of the pKa

Henderson-Hasselbach Equation

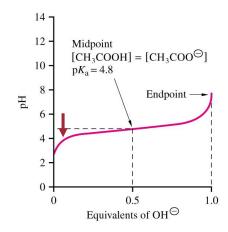
HA = weak acid

A⁻ = Conjugate base

2)
$$[H^+] = K_a [HA]$$
 $[A^-]$

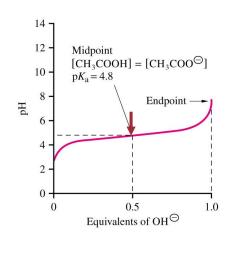
3)
$$-\log[H^+] = -\log K_a - \log [HA]$$

[A-]

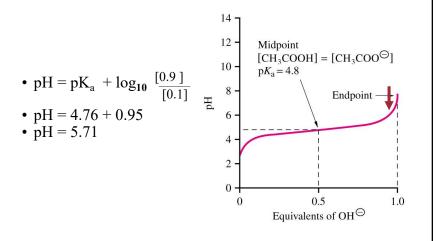

4)
$$-\log[H^+] = -\log K_a + \log [A^-]$$
 [HA]

* H-H equation describes the relationship between pH, pKa and buffer concentration

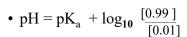
5) pH = pK_a +log
$$\underline{[A^-]}$$
 [HA


Case where 10% acetate ion 90% acetic acid

- $pH = pK_a + log_{10} \frac{[0.1]}{[0.9]}$
- pH = 4.76 + (-0.95)
- pH = 3.81

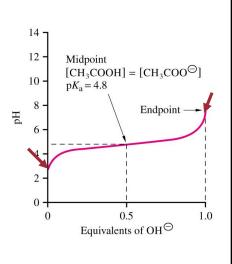


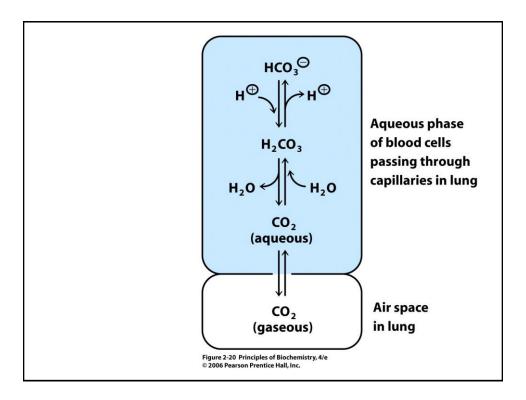
Case where 50% acetate ion 50% acetic acid


- $pH = pK_a + log_{10} \frac{[0.5]}{[0.5]}$
- pH = 4.76 + 0• $pH = 4.76 = pK_a$

Case where 90% acetate ion 10% acetic acid

Cases when buffering fails

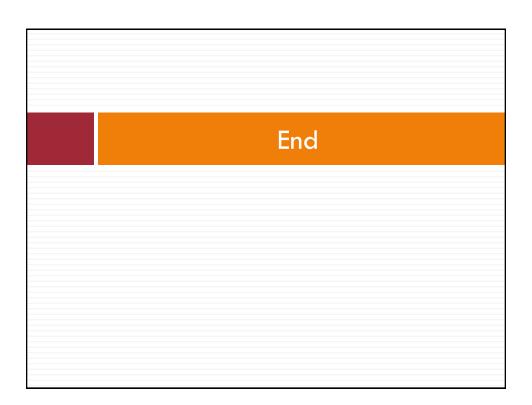

•
$$pH = 4.76 + 2.00$$


•
$$pH = 6.76$$

•
$$pH = pK_a + log_{10} \frac{[0.01]}{[0.99]}$$

•
$$pH = 4.76 - 2.00$$

•
$$pH = 2.76$$



Class activity!

- Which of the following functional groups is NOT a polar group?
 - A. Hydroxyl group (-OH)
 - B. Carboxy group (-COOH)
 - c. Sulfhydryl group (-SH)
 - D. Methyl group (-CH₃)
- 2. Which one of the above groups is ionized (charged) at physiological pH?
- 3. Which of the above groups can be a hydrogen bond donor or acceptor?

Class activity!

- 1. A weak acid has a pKa of 6.5. If it is used as a buffer, the buffer capacity of this buffer is:
 - A. 5-8
 - B. 5.5-7.5
 - c. 4.5-8.5
- 2. The optimum pH of an enzyme is 8. You want prepare a buffer solution for this enzyme, then the best buffer will be
 - A. Buffer A, pKa=4.8
 - B. Buffer B, pKa=9.5
 - c. Buffer C, pKa=7.8

