
Aziz M. QaroushComputer Vision Birzeit University

Feature Extraction and
Description

Uploaded By: anonymousSTUDENTS-HUB.com

Outline
2

 Feature Extraction Overview

 Color Features

 Local Features

 Edges

 Corners

 Interests Point

 Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Element of Image Analysis
3

Preprocess
Image Acquisition, Enhancement, and Restoration

Intermediate process
Feature extraction & Image segmentation

High level process
Image interpretation and recognition

Uploaded By: anonymousSTUDENTS-HUB.com

Prediction

Image Classification Pipeline

Training

LabelsTraining

Images

Training
Image

Features

Image

Features

Test Image

Learned

Classifier

Learned

Classifier

4

Uploaded By: anonymousSTUDENTS-HUB.com

The big picture…
5

Feature

Extraction

Uploaded By: anonymousSTUDENTS-HUB.com

How to represent images?
6

Projection Histograms

Crossings and Distances

Uploaded By: anonymousSTUDENTS-HUB.com

Features Extraction
7

 Feature = “point of interest” for image description

 Features should contain information required to distinguish
between classes and should be insensitive to irrelevant
variability in the input

 Main goal of feature extraction

 Obtain the most relevant information from the original
data

 Represent that information in a lower dimensionality
space.

Uploaded By: anonymousSTUDENTS-HUB.com

Features Extraction Classification
8

 General features: Application independent features such as color,
and texture.

 Application dependent features: such as human faces,
fingerprints, Characters, and conceptual features.

 On the other hand, features can be coarsely classified into:

 Low-level features: features can be extracted directed from the
original images such as Edges, Corners, and Interest points

 High-level features: high-level feature extraction must be based
on low level features such as Shape, Template Matching

Uploaded By: anonymousSTUDENTS-HUB.com

Features Extraction methodes
9

 Hand-Crafted Features:

 Hand-crafted features involve the manual design of specific image
descriptors by experts in the field.

 These features are crafted based on domain knowledge and
understanding of the problem at hand.

 Examples include gradient-based features (e.g., Histogram of Oriented
Gradients - HOG), texture descriptors, and color histograms.

 Learning-Based Features:

 Learning-based features involve the automatic extraction of features
from data using machine learning algorithms, such as neural
networks.

 Features are learned directly from the data, allowing the model to
adapt to the task without the need for manual feature engineering

Uploaded By: anonymousSTUDENTS-HUB.com

Features Extraction Challenges
10

 Variability in Scale and Orientation

 Occlusion

 Deformation

 Illumination and Lighting Conditions

 Noise and Distortions

 Complex Backgrounds

 Domain-Specific Challenges

 Interclass and Intraclass Variability

 Real-Time Constraints

 …

Uploaded By: anonymousSTUDENTS-HUB.com

Challenges: illumination
11

Uploaded By: anonymousSTUDENTS-HUB.com

Challenges: viewpoint variation

Uploaded By: anonymousSTUDENTS-HUB.com

Challenges: scale
13

Uploaded By: anonymousSTUDENTS-HUB.com

Challenges: deformation
14

Uploaded By: anonymousSTUDENTS-HUB.com

Challenges: occlusion
15

Uploaded By: anonymousSTUDENTS-HUB.com

Challenges: background clutter
16

Uploaded By: anonymousSTUDENTS-HUB.com

Challenges: intra-class variation

17

Uploaded By: anonymousSTUDENTS-HUB.com

Characteristics of good features
18

 Identifiability: shapes which are found perceptually similar by
human have the same feature different from the others.

 Repeatability: The same feature can be found in several images
despite geometric (Translation, rotation and scale invariance) and
photometric (Intensity) transformations

 Noise resistance: features must be as robust as possible against
noise, i.e., they must be the same whichever be the strength of the
noise in a give range that affects the pattern.

 Occultation invariance: when some parts of a shape are occulted
by other objects, the feature of the remaining part must not
change compared to the original shape.

 Statistically independent: two features must be statistically
independent. This represents compactness of the representation.

 Reliable: as long as one deals with the same pattern, the extracted
features must remain the same.

Uploaded By: anonymousSTUDENTS-HUB.com

What is the best method for feature extraction?
19

 It all depends on your application at hand.

 Few things you should keep in mind are:

 Feature extraction is highly subjective in nature

 There is no generic feature extraction scheme which works in all
cases.

 What kind of problem are you trying to solve? e.g.
classification, detection, etc.

 Do you have a lot of data?

 Do your data have very high dimensionality?

 Is your data labelled?

 Do you want to use a very computationally intensive method or
something rather inexpensive?

Uploaded By: anonymousSTUDENTS-HUB.com

Outline
20

 Feature Extraction Overview

 Color Features

 Local Features

 Edges

 Corners

 Interests Point

 Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Color Features
21

 The color feature is one of the most widely used visual
features in image retrieval.

 Images characterized by color features have many
advantages:

 Robustness. The color histogram is invariant to rotation of the
image on the view axis, and changes in small steps when rotated
otherwise or scaled

 Effectiveness. There is high percentage of relevance between
the query image and the extracted matching images.

 Implementation simplicity. The construction of the color
histogram is a straightforward process

 Computational simplicity. The histogram computation has O(X,
Y) complexity for images of size X × Y .

Uploaded By: anonymousSTUDENTS-HUB.com

Color Features
22

 Color features are defined subject to a particular color
space or model.

 A number of color spaces have been used in literature,
such as RGB, HSI, etc.

 Once the color space is specified, color feature can be
extracted from images or regions.

 A number of important color features have been
proposed in the literatures, including:
 Color histogram

 Color moments(CM)

 Color coherence vector (CCV)

 Color correlogram, etc.

Uploaded By: anonymousSTUDENTS-HUB.com

Color histogram
23

 A color histogram H for a given image is defined as a

vector H = {h[1], h[2], . . . h[i], . . . , h[N]}

 Where i represents a color in the color histogram,

 h[i] is the number of pixels in color i in that image,

 and N is the number of bins in the color histogram, i.e., the number of colors

in the adopted color model.

 In order to compare images of different sizes, color

histograms should be normalized.

 Can be used to Measures the similarity of images, speech,

music, …

 Issue: how to capture perceptual similarity of an image
Uploaded By: anonymousSTUDENTS-HUB.com

Color histogram
24

 The standard measure of similarity used for color
histograms:
 A color histogram H(i) is generated for each image h in the

database (feature vector),

 The histogram is normalized so that its sum equals unity
(removes the size of the image),

 The histogram is then stored in the database,

 Now suppose we select a model image (the new image to
match against all possible targets in the database).

Uploaded By: anonymousSTUDENTS-HUB.com

Color histogram: an Example
25

Uploaded By: anonymousSTUDENTS-HUB.com

Color histogram: an Example
26

Uploaded By: anonymousSTUDENTS-HUB.com

Color Histogram: Pros
27

❑ Simplicity: Color histograms are simple and easy to compute,
making them computationally efficient.

❑ Interpretability: Color histograms provide a straightforward
representation of the color distribution in an image, making them
interpretable and easy to understand.

❑ Invariance to Rotation and Translation: Color histograms are
generally invariant to simple transformations like image rotation
and translation.

❑ Applicability to Image Retrieval: Color histograms are commonly
used in content-based image retrieval systems due to their
simplicity and effectiveness in representing color information.

Uploaded By: anonymousSTUDENTS-HUB.com

Building Image Retrieval with Color Histogram
28

1. Image Preprocessing: Convert images to a suitable color space,
Normalize pixel values,

2. Color Histogram Calculation: Divide color space into bins, Count pixels in
each bin for each channel, Normalize histogram values.

3. Feature Representation: Concatenate or flatten individual histograms
into a feature vector.

4. Database Construction: Store feature vectors and image identifiers in a
database.

5. Query Image Processing: Preprocess the query image.

6. Color Histogram Calculation for Query Image: Calculate the color
histogram for the query image.

7. Similarity Measurement: Measure similarity between query histogram
and database histograms.

8. Ranking and Retrieval: Rank images based on similarity scores. Retrieve
top-ranked images as results.

9. Presentation of Results: Display retrieved images to the user, ranked by
similarity.

Uploaded By: anonymousSTUDENTS-HUB.com

Histogram distance measures
29

Uploaded By: anonymousSTUDENTS-HUB.com

Color Histogram: Cons
30

❑ Lack of Spatial Information: Color histograms do not consider
spatial relationships between pixels, potentially limiting their
performance in tasks requiring spatial information.

❑ Insensitive to Local Changes: They may not capture subtle local
color changes or patterns, particularly in regions with small
variations.

❑ Vulnerability to Illumination Changes: Color histograms are
sensitive to changes in illumination, and variations in lighting
conditions can significantly impact the feature.

❑ Limited Discriminative Power: In scenarios where color alone is
not highly discriminative, such as when objects have similar color
distributions, color histograms may struggle to distinguish
between them.

Uploaded By: anonymousSTUDENTS-HUB.com

Example for potential problem with histogram distance
31

Uploaded By: anonymousSTUDENTS-HUB.com

Another Issue: loss of regional information
32

Uploaded By: anonymousSTUDENTS-HUB.com

Color Moments
33

 Provide measurement for color similarity between images.

 These value of similarity can then be compared to the values of the
images indexed in a database for tasks like image retrieval.

 The basis of color moments lays in the assumption that the distribution
of color in an image can be interpreted as a probability distribution.

 Probability distributions are characterized by a number of unique
moments (e.g. Normal distributions are differentiated by their mean
and variance).

 It therefore follows that if the color in an image follows a certain
probability distribution, the moments of that distribution can then
be used as features to identify that image based on color.

 The first order (mean), the second (variance) and the third order
(skewness) color moments have been proved to be efficient and
effective in representing color distributions of images.

Uploaded By: anonymousSTUDENTS-HUB.com

Color Moments
34

Uploaded By: anonymousSTUDENTS-HUB.com

Similarity Between Images using Color Moments
35

Uploaded By: anonymousSTUDENTS-HUB.com

Color Moments example
36

Uploaded By: anonymousSTUDENTS-HUB.com

Color Features Technique Summery
37

CCV: color coherence vector
DCD: dominant color descriptor
CSD: color structure descriptor
SCD: scalable color descriptor respectively

Uploaded By: anonymousSTUDENTS-HUB.com

Outline
38

 Feature Extraction Overview

 Color Features

 Local Features

 Edges

 Corners

 Interests Point

 Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Local Features
39

 Features that can be extracted automatically from an
image without any shape information (information
about spatial relationships)

 Can be used in high-level feature extraction, where we
find shapes in Images.

 Types

 Edges

 Texture: Corners, Interest points

Uploaded By: anonymousSTUDENTS-HUB.com

Local Features – Motivation
40

 Panorama stitching

 We have two images – how do we combine them?

Uploaded By: anonymousSTUDENTS-HUB.com

Local Features – Motivation
41

 Panorama stitching

 We have two images – how do we combine them?

Extract and match features

Uploaded By: anonymousSTUDENTS-HUB.com

Why extract features?
42

 Panorama stitching

 We have two images – how do we combine them?

Align images

Uploaded By: anonymousSTUDENTS-HUB.com

Advantages of local features
43

 Locality

 features are local, so robust to occlusion and clutter

 Distinctiveness:

 can differentiate a large database of objects

 Quantity

 hundreds or thousands in a single image

 Efficiency

 real-time performance achievable

 Generality

 exploit different types of features in different situations

Uploaded By: anonymousSTUDENTS-HUB.com

Outline
44

 Feature Extraction Overview

 Color Features

 Local Features

 Edges

 Corners

 Interests Point

 Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Edges
45

 Edge refers to a significant change or discontinuity in intensity or color in
an image.

 Edges often correspond to boundaries between different objects or
regions within the image.

 Various algorithms are used for edge detection, ranging from simple
methods like Sobel and Prewitt operators to more advanced techniques
such as the Canny edge detector.

 The gradient of an image at a particular point indicates the direction and
magnitude of the steepest increase in intensity.

 The orientation of an edge refers to the direction in which the intensity
changes most rapidly. Edge orientation information is valuable for tasks
like object recognition and shape analysis.

 The strength or magnitude of an edge is a measure of how rapidly the
intensity changes at a particular point. It is often computed based on the
gradient magnitude.

 Edges can be represented using Histogram of Oriented Gradients (HOG)
Uploaded By: anonymousSTUDENTS-HUB.com

Histogram of Oriented Gradients (HOG)
46

 The Histogram of Oriented Gradients (HOG) is a feature descriptor
widely used in computer vision and image processing for object
detection and recognition.

 The technique counts occurrences of gradient orientation in
localized portions of an image.

 HOGs are calculated by dividing an image into a grid of cells and
then computing a histogram of the gradient orientations for each
cell.

 HOG features are then extracted from the histograms by
concatenating the histograms of all of the cells in the image.

 The HOG descriptor focuses on the structure or the shape of an
object. It is better than any edge descriptor as it uses magnitude as
well as angle of the gradient to compute the features.

Uploaded By: anonymousSTUDENTS-HUB.com

How HOG works?
47

1) Preprocess the image, including contrast enhancement, noise
reduction, resizing and color normalization.

2) Compute the gradient vector of every pixel, as well as its magnitude
and direction.

3) Divide the image into many 8x8 pixel cells. In each cell, the magnitude
values of these 64 cells are binned and cumulatively added into 9
buckets of unsigned direction (no sign, so 0-180 degree rather than 0-
360 degree; this is a practical choice based on empirical experiments).

4) Then we slide a 2x2 cells (thus 16x16 pixels) block across the image. In
each block region, 4 histograms of 4 cells are concatenated into one-
dimensional vector of 36 values and then normalized to have an unit
weight. The final HOG feature vector is the concatenation of all the
block vectors. It can be fed into a classifier like SVM for learning object
recognition tasks.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 1: Preprocessing
48

 HoG feature descriptor used for pedestrian detection is calculated

on patches having a fixed aspect ratio of an image.

◼ In HoG, the patches need to have an aspect ratio of 1:2

◼ The image size should preferably be 64 x 128. This is because we will be dividing

the image into 8*8 and 16*16 patches to extract the features. Having the specified

size (64 x 128) will make all our calculations pretty simple.

64 x 128 Uploaded By: anonymousSTUDENTS-HUB.com

Step 2: Compute the gradient
49

Left : Absolute value of x-gradient. Center : Absolute value of y-gradient. Right :
Magnitude of gradient.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 3: Calculate Histogram of Gradients in 8×8 cells
50

Uploaded By: anonymousSTUDENTS-HUB.com

Step 3: Calculate Histogram of Gradients in 8×8 cells
51

 Method 1: add the pixel’s gradient to the bin which is closer to the
orientation.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 3: Calculate Histogram of Gradients in 8×8 cells
52

 Method 2: add the contribution of a pixel’s gradient to the bins on
either side of the pixel gradient. The higher contribution should be
to the bin value which is closer to the orientation.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 3: Calculate Histogram of Gradients in 8×8 cells
53

Uploaded By: anonymousSTUDENTS-HUB.com

Step 4 : Block Normalization
54

 Gradients of an image are sensitive to

overall lighting. If you make the image

darker by dividing all pixel values by 2,

the gradient magnitude will change by

half, and therefore the histogram

values will change by half.

 Ideally, we want our descriptor to be

independent of lighting variations. In

other words, we would like to

“normalize” the histogram so they are

not affected by lighting variations.

Uploaded By: anonymousSTUDENTS-HUB.com

Aside: Vector Normalization
55

 Vector normalization is a process of scaling a vector to have a length
of 1 while preserving its direction.

 There are various normalization techniques, and one common
method is L2 normalization (Euclidean normalization).

 L2 Normalization (Euclidean Normalization):

1. Calculate L2 Norm: Compute the L2 norm of the vector v, denoted as
∥v∥2​. The L2 norm is the square root of the sum of the squared elements
of the vector.

1. Normalize Vector: Divide each element of the vector by its L2 norm to
obtain the normalized vector.

Normalized vector=

Uploaded By: anonymousSTUDENTS-HUB.com

Aside: Vector Normalization
56

 Let’s say we have a color vector [128, 64, 32].

 The length of this vector is sqr(128^2 + 64^2 + 32^2) .

 This is also called the L2 norm of the vector.

 Dividing each element of this vector by 146.64 gives us a
normalized vector [0.87, 0.43, 0.22].

 Now consider another vector in which the elements are twice the
value of the first vector 2 x [128, 64, 32] = [256, 128, 64].

 Normalizing [256, 128, 64] will result in [0.87, 0.43, 0.22], which
is the same as the normalized version of the original vector.

 You can see that normalizing a vector removes the intensity
transformation.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 4 : 16×16 Block Normalization
57

 A better idea is to normalize over a bigger sized block of 16×16.

 Normalizing over a larger block helps in making the feature descriptor more
robust to local variations in illumination and contrast within the image.

 A larger block size enables the descriptor to capture more significant spatial
relationships between different parts of the object.

 Normalizing over larger blocks provides some level of invariance to
deformations or distortions within the object.

 A 16×16 block has 4 histograms which can be concatenated to form a
36 x 1 element vector and it can be normalized just the way a 3×1
vector is normalized.

 The window is then moved by 8 pixels and a normalized 36×1 vector
is calculated over this window and the process is repeated.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 5: Calculate the HOG feature vector
58

 To calculate the final feature vector for the entire image patch, the
36×1 vectors are concatenated into one giant vector.

 What is the size of this vector ? Let us calculate
 How many positions of the 16×16 blocks do we have ? There are 7 horizontal

and 15 vertical positions making a total of 7 x 15 = 105 positions.

 Each 16×16 block is represented by a 36×1 vector. So when we concatenate
them all into one giant vector we obtain a 36×105 = 3780 dimensional vector.

Uploaded By: anonymousSTUDENTS-HUB.com

How to Select Different Parameters?
59

Uploaded By: anonymousSTUDENTS-HUB.com

HOG Summary
60

 HoGs are invariant to illumination: HoGs are calculated based on the
orientations of the edges in an image, which are not affected by
changes in illumination.

 HOGs are computationally efficient: HOGs can be calculated
efficiently using a variety of algorithms.

 HOG has been successfully applied in various domains such as
object detection

 However:
 HOGs may not be discriminative enough for some tasks, such as classifying

fine-grained objects.

 HOGs are not scale invariant.

 HOG is not rotation invariant feature.

 HOG is sometimes used in conjunction with other descriptors or
feature extraction methods to create a more comprehensive
representation of images.

Uploaded By: anonymousSTUDENTS-HUB.com

Outline
61

 Feature Extraction Overview

 Color Features

 Shape Features

 Local Features

 Edges

 Corners

 Interests Point

 Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Texture Features: What´s in the image?
62

 Texture is a tactile or visual characteristic of a surface.

 In general, color is usually a pixel property while texture can only be measured
from a group of pixels.

 Texture gives us information about the spatial arrangement of the colors or
intensities in an image.

 Types of texture:

Uploaded By: anonymousSTUDENTS-HUB.com

Extraction of Texture Features
63

 Aim: to find a unique way of representing the underlying
characteristics of textures and represent them in some simpler but
unique form, so then they can be used to accurately and robustly
classify and segment objects.

 Basically, texture representation methods can be classified into
two categories:
 Structural approach: Texture is a set of primitive Texel's in some regular or repeated

relationship.
◼ Texel: A small geometric pattern that is repeated frequently on some surface resulting in a

texture.
◼ Work well for man-made and regular patterns

 Statistical approach: Texture is a quantitative measure of the arrangement of
intensities in a region.
◼ Statistical methods analyze the spatial distribution of gray values, by computing local features

at each point in the image, and deriving a set of statistics from the distributions of the local
features.

◼ More general and easier to compute and is used more often in practice.

Uploaded By: anonymousSTUDENTS-HUB.com

Some Statistical Methods
64

 Some statistical approaches for texture:

 Corner Detection

 Co-occurrence matrices

 Local binary patterns

 Statistical moments

 Autocorrelation

 Markov random fields

 Autoregressive models

 Mathematical morphology

 Interest points – SIFT, SURF…

 Fourier power spectrum

 Gabor filters

Uploaded By: anonymousSTUDENTS-HUB.com

Texture Features - Corner
65

 A corner can be defined as the intersection of two edges.

 Can also be defined as a point for which there are two dominant

and different edge directions in a local neighborhood of the point.

 Corner detection is frequently used in motion detection, image

registration, video tracking, image matching, and object

recognition.

 Edge detection that can be used with post-processing to detect

corners.

 Kirsch operator.

 Frei-Chen masking set.

Uploaded By: anonymousSTUDENTS-HUB.com

Corner Detection Approaches
66

 Several proposed approaches for corner detection:

 Moravec corner detection algorithm

 The Harris & Stephens corner detection algorithms

 The level curve curvature approach

 Laplacian of Gaussian, differences of Gaussians and determinant of the
Hessian scale-space interest points.

 The Wang and Brady corner detection algorithm

 The SUSAN corner detector

 ……

 One determination of the quality of a corner detector is its ability
to detect the same corner in multiple similar images, under
conditions of different lighting, translation, rotation, Scaling, and
other transforms.

Uploaded By: anonymousSTUDENTS-HUB.com

Harris Detector - The Basic Idea
67

 We should easily recognize the point by looking through a small window

 Shifting a window in any direction should give a large change in
intensity

“flat” region:

no change in

all directions

“edge”:

no change along

the edge direction

“corner”:

significant change

in all directions

Find locations such that the minimum change caused by
shifting the window in any direction is large

Uploaded By: anonymousSTUDENTS-HUB.com

Harris Detector: Some Properties

 Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation

68

Uploaded By: anonymousSTUDENTS-HUB.com

Harris Detector: Some Properties

 Rotation Invariant Detection

Repeatability rate:

correspondences

possible correspondences

69

Uploaded By: anonymousSTUDENTS-HUB.com

Harris Detector: Some Properties

 Partial invariance to affine intensity change

✓ Only derivatives are used => invariance to intensity shift I→ I + b

✓ Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

70

Uploaded By: anonymousSTUDENTS-HUB.com

Harris Detector: Some Properties

 But: non-invariant to image scale!

All points will be classified as edges Corner !

Not invariant to scaling

71

Uploaded By: anonymousSTUDENTS-HUB.com

Harris Detector: Some Properties

 Quality of Harris detector for different scale changes

Repeatability rate:

correspondences

possible correspondences

72

Uploaded By: anonymousSTUDENTS-HUB.com

Outline
73

 Feature Extraction Overview

 Color Features

 Local Features

 Edges

 Corners

 Interests Point

 Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Texture extraction by Interest Points
74

 What is an interest point
 Expressive texture
◼ The point at which the direction of the boundary of object

changes abruptly

◼ Intersection point between two or more edge segments

 Goal: Detect points that are repeatable and distinctive

Uploaded By: anonymousSTUDENTS-HUB.com

Interest Point Detection: Main Idea
75

 Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters

Uploaded By: anonymousSTUDENTS-HUB.com

Properties of Interest Point Detectors
76

 Detect all (or most) true interest points

 No false interest points

 Well localized.

 Robust with respect to noise.

 Efficient detection

 Invariant to transformation

Uploaded By: anonymousSTUDENTS-HUB.com

Key trade‐offs
77

Uploaded By: anonymousSTUDENTS-HUB.com

Corner as an Interest Point
78

Uploaded By: anonymousSTUDENTS-HUB.com

Uses for Interest Point
79

 Feature points are used also for:

 Image alignment

 3D reconstruction

 Motion tracking

 Object recognition

 Indexing and database retrieval

 Robot navigation

 … many others

Uploaded By: anonymousSTUDENTS-HUB.com

SIFT - Scale Invariant Feature Transforms
80

 SIFT image features provide a set of features of an object that are

not affected by many of the complications experienced in other

methods, such as object scaling and rotation.

 While allowing for an object to be recognized in a larger image SIFT

image features also allow for objects in multiple images of the

same location, taken from different positions within the

environment, to be recognized.

 SIFT features are also very resilient to the effects of "noise" in the

image.

 The SIFT approach, for image feature generation, takes an image

and transforms it into a "large collection of local feature vectors"

Uploaded By: anonymousSTUDENTS-HUB.com

Overall Procedure at a High Level
81

 Step 1: Constructing a scale space

 Step 2: Laplacian of Gaussian approximation

 Step 3: Finding Keypoints

 Step 4: Eliminate edges and low contrast regions

 Step 5: Assign an orientation to the keypoints

 Step 6: Generate SIFT features

Uploaded By: anonymousSTUDENTS-HUB.com

Step 1: Constructing scale space
82

 The first stage of the SIFT algorithm is to find image locations that are
invariant to scale change.

 This is achieved by searching for stable features across all possible scales,
using a function of scale known as scale space
 Objects in unconstrained scenes will appear in different ways, depending on

the scale at which images are captured

 A reasonable approach is to work with all relevant scales simultaneously

 The scale space is defined by the function:

L(x, y, σ) = G(x, y, σ) * I(x, y)

Where:
 * is the convolution operator,

 L is a blurred image

 G is the Gaussian Blur operator

 I is the input image.

 x,y are the location coordinates

 σ is the “scale” parameter. Think of it as the amount of blur. Greater the value,
greater the blur.

Uploaded By: anonymousSTUDENTS-HUB.com

Constructing a scale space in SIFT
83

 The input image f (x, y) is successively convolved with Gaussian
kernels having standard deviations σ, kσ, k2 σ, k3σ, . . . to
generate a “stack” of Gaussian-filtered (smoothed) images that
are separated by a constant factor k

 SIFT subdivides scale space into octaves, with each octave
corresponding to a doubling of σ.

 SIFT further subdivides each octave into an integer number, s, of
intervals, so that an interval of 1 consists of two images, an
interval of 2 consists of three images, and so forth

 The first image in the second octave is formed by down
sampling the original image (by skipping every other row and
column), and then smoothing it using a kernel with twice the
standard deviation used in the first octave

Uploaded By: anonymousSTUDENTS-HUB.com

Constructing a scale space in SIFT
84

Uploaded By: anonymousSTUDENTS-HUB.com

Constructing a scale space in SIFT
85

Uploaded By: anonymousSTUDENTS-HUB.com

Step 2: Laplacian of Gaussian approximation
86

 To find key points use Laplacian of Gaussian (LoG)

 Take an image, and blur it a little.

 Then calculate second order derivatives on it (or, the “laplacian”).

 The problem is, calculating all those second order derivatives is
computationally intensive.

 Solution, use the Difference of Gaussians (DoG) approximation.

 We use the scale space (from previous step).

 We calculate the difference between two consecutive scales.

◼ These Difference of Gaussian images are approximately equivalent to the
Laplacian of Gaussian, and we’ve replaced a computationally intensive
process with a simple subtraction (fast and efficient).

 These DoG images are a great for finding out interesting key points in the
image

Uploaded By: anonymousSTUDENTS-HUB.com

Step 2: Laplacian of Gaussian approximation
87

Uploaded By: anonymousSTUDENTS-HUB.com

Step 2: Laplacian of Gaussian approximation
88

Uploaded By: anonymousSTUDENTS-HUB.com

Step 3: Finding Keypoints
89

❑ To detect the local maxima and

minima of D(x, y, σ)

❑ Each point is compared with its 8

neighbors at the same scale, and its 9

neighbors up and down one scale.

 X is marked as a “key point” if it is the

greatest or least of all 26 Neighbours

 Large number of extrema,

 Computationally expensive

 Detect the most stable subset with a

coarse sampling of scales

Uploaded By: anonymousSTUDENTS-HUB.com

Step 4: Eliminate edges and low contrast regions
90

 Key points generated in the previous step produce a lot
of key points. Some of them lie along an edge, or they
don’t have enough contrast. In both cases, they are not
useful as features, so we need to get rid of them.

 Two Approaches:

 Reject points with bad contrast:

◼ DoG smaller than 0.03 (image values in [0,1])

 Reject edges

◼ Use Harris detector and keep only corners

Uploaded By: anonymousSTUDENTS-HUB.com

Step 4: Eliminate edges and low contrast regions
91

Uploaded By: anonymousSTUDENTS-HUB.com

Step 5: Assign an orientation to the keypoints
92

 After step 4 (legitimate key points), we already know the scale at
which the keypoint was detected (it's the same as the scale of the
blurred image). So we have scale invariance.

 The next thing is to assign an orientation to each keypoint. This
orientation provides rotation invariance

 This step aims to assign a consistent orientation to the keypoints
based on local image properties.

 The keypoint descriptor, can then be represented relative to this
orientation, achieving invariance to rotation.

 The idea is to collect gradient magnitude and orientation around
each keypoint (widow 16*16). Then we figure out the most
prominent orientation(s) in that region. And we assign this
orientation(s) to the keypoint.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 5: Assign an orientation to the keypoints
93

 The scale of the keypoint is used to select the Gaussian smoothed image, L, that
is closest to that scale. In this way, all orientation computations are performed
in a scale-invariant manner.

 For each pixel in the widow around Keypoint compute gradient magnitude and
orientation using Sobel filter:

 Some SIFT implementations precompute the gradient magnitude and direction
for all pixels in the image pyramid during scale space construction. This avoids
recalculating them for each keypoint.

Uploaded By: anonymousSTUDENTS-HUB.com

Orientation assignment
94

Uploaded By: anonymousSTUDENTS-HUB.com

Step 5: Assign an orientation to the keypoints
95

 The magnitude and orientation is calculated for all pixels around the
keypoint as following:

 Create a weighted direction histogram in a neighborhood of a key
point.

 In this histogram, the 360 degrees of orientation are broken into 36
bins (each 10 degrees).

◼ Lets say the gradient direction at a certain point (in the "orientation collection
region") is 18.759 degrees, then it will go into the 10-19 degree bin. And the
"amount/weight" that is added to the bin is proportional to the magnitude of
gradient at that point.

 The size of the "orientation collection region" around the keypoint
depends on it's scale. The bigger the scale, the bigger the collection
region

◼ The window size, or the "orientation collection region", is equal to the size of
the kernel for Gaussian Blur of amount 1.5*sigma.

Uploaded By: anonymousSTUDENTS-HUB.com

Orientation assignment
96

Uploaded By: anonymousSTUDENTS-HUB.com

Orientation assignment
97

Uploaded By: anonymousSTUDENTS-HUB.com

Step 5: Assign an orientation to the keypoints
98

 In the histogram below, the peaks at 20-29 degrees. So, the keypoint is
assigned orientation 3 (the third bin). And the “amount” that is added to the
bin is proportional to the magnitude of gradient at that point.

 Also, any peaks above 80% of the highest peak are converted into a new
keypoint. This new keypoint has the same location and scale as the original.
But it’s orientation is equal to the other peak. So, orientation can split up
one keypoint into multiple keypoints.

Uploaded By: anonymousSTUDENTS-HUB.com

Making descriptor rotation invariant
99

 Rotate patch (window around
keypoint) according to its
dominant gradient orientation
to the horizontal orientation

 The dominant orientation will be
horizontal orientation

 This puts the patches into a
canonical orientation.

 Make scaling according to the
arrow length

 Eliminate scaling problem

Uploaded By: anonymousSTUDENTS-HUB.com

Orientation assignment
100

Orientation Visualization

Uploaded By: anonymousSTUDENTS-HUB.com

Step 6: Generate SIFT features
101

 Now we create a fingerprint for each keypoint. This is
to identify a keypoint.

 Each point so far has x, y, σ, m, θ

 Location x,y

 Scale: σ

 Gradient magnitude and orientation: m, θ

 Now we need a descriptor for the region

 Could sample intensities around point, but…

◼ Sensitive to lighting changes

◼ Sensitive to slight errors in x, y, θ

Uploaded By: anonymousSTUDENTS-HUB.com

Step 6: Generate SIFT features
102

 The idea:

 We want to generate a very unique fingerprint for the keypoint.

 It should be easy to calculate.

 We also want it to be relatively lenient when it is being compared against other
keypoints.

 To do this, a 16x16 window around the keypoint were identified.

 This 16x16 window is broken into sixteen 4x4 windows.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 6: Generate SIFT features
103

 Within each 4x4 window, gradient magnitudes and orientations are calculated.
 These orientations are put into an 8 bin histogram.

 Any gradient orientation in the range 0-44 degrees add to the first bin. 45-89 add to
the next bin. And so on.

 The amount added to the bin depends on the magnitude of the gradient.
 Unlike the past, the amount added also depends on the distance from the

keypoint.
 So gradients that are far away from the keypoint will add smaller values to the

histogram.
 This is done using a "gaussian weighting function". This function simply generates a

gradient (it's like a 2D bell curve). You multiple it with the magnitude of orientations,
and you get a weighted thingy. The farther away, the lesser the magnitude.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 6: Generate SIFT features
104

 Doing this for all 16 pixels, you would've "compiled" 16
totally random orientations into 8 predetermined bins.
You do this for all sixteen 4x4 regions.

 So you end up with 4x4x8 = 128 numbers.

 Once you have all 128 numbers, you normalize them
(just like you would normalize a vector in school, divide
by root of sum of squares).

 These 128 numbers form the "feature vector".

 This keypoint is uniquely identified by this feature vector.

Uploaded By: anonymousSTUDENTS-HUB.com

Step 6: Generate SIFT features - Summary
105

Uploaded By: anonymousSTUDENTS-HUB.com

SIFT Keypoint Descriptor Summery
106

 Descriptor: 128-D

 4 by 4 patches, each with 8-D gradient angle histogram:
4×4×8 = 128

 Normalized to reduce the effects of illumination change.

 Position: (x, y)

 Where the feature is located at.

 Scale

 Control the region size for descriptor extraction.

 Orientation

 To achieve rotation-invariant descriptor.

Uploaded By: anonymousSTUDENTS-HUB.com

Effect of Noise on SIFT
107

Uploaded By: anonymousSTUDENTS-HUB.com

Effect of Orientation on SIFT
108

Uploaded By: anonymousSTUDENTS-HUB.com

SIFT application: Image Matching
109

 Image matching using involves detecting keypoints and computing

descriptors for these keypoints in two images.

 The keypoints and descriptors can then be matched to find

correspondences between the images.

 Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors

2. Test all the features in I2, find the one with min distance

 How to define the difference between two features f1, f2?

 Simple approach is SSD(f1, f2)

◼ Sum of square differences between entries of the two descriptors

◼ Can give good scores to very ambiguous (bad) matches

Uploaded By: anonymousSTUDENTS-HUB.com

Keypoints Matching
110

 Suppose we use SSD

 Small values are possible matches but how small?

 Decision rule: Accept match if SSD < T, where T is a threshold

 What is the effect of choosing a particular T?

Uploaded By: anonymousSTUDENTS-HUB.com

Keypoints Matching
111

 Distance Decision rule:
 Accept match if SSD < T

 Example: Large T, T = 250 ⇒
◼ a, b, c are all accepted as matches

◼ a and b are true matches (“true positives”) –they are actually matches

◼ c is a false match (“false positive”) –actually not a match

Uploaded By: anonymousSTUDENTS-HUB.com

Keypoints Matching
112

 Decision rule:
 Accept match if SSD < T

 Example: Smaller T, T = 100 ⇒
◼ only a and b are accepted as matches

◼ a and b are true matches (“true positives”)

◼ c is no longer a “false positive”(it is a “true negative”)

Uploaded By: anonymousSTUDENTS-HUB.com

Summary: SIFT Pros
113

 Scale and Rotation Invariance:

 SIFT is designed to be invariant to scale and rotation changes, making it
effective for matching objects under different viewing conditions.

 Distinctiveness:

 SIFT descriptors are designed to be distinctive, allowing for robust matching
of keypoints even in the presence of occlusions or changes in illumination.

 Locality:

 SIFT descriptors are computed based on local image regions around
keypoints, making them well-suited for capturing local structure and details.

 Robustness to Noise:

 SIFT is relatively robust to noise and can handle images with moderate levels
of noise.

 Quantity:

 Many features can be generated for even small objects

Uploaded By: anonymousSTUDENTS-HUB.com

Summary: SIFT Cons
114

 Computationally Intensive:

 SIFT involves the computation of gradient orientations, image convolutions, and the
generation of scale-space representations, making it computationally intensive. This
can be a limitation in real-time applications or on resource-constrained devices.

 Memory Usage:

 The generation of scale-space images and the storage of keypoint descriptors can
consume significant memory, especially when dealing with large images or a large
number of keypoints.

 Sensitivity to Parameters:

 SIFT performance can be sensitive to parameter choices, such as the number of
histogram orientations, and may require tuning for optimal results on different types
of images.

 Not Fully Rotation Invariant:

 While SIFT is designed to be robust to rotations, extreme rotations might still pose
challenges.

Uploaded By: anonymousSTUDENTS-HUB.com

HoG vs SIFT
115

Feature
HoG (Histogram of Oriented
Gradients)

SIFT (Scale-Invariant Feature
Transform)

Descriptor Focus Distribution of gradient orientations
Keypoints and surroundings using
histograms of gradient orientations

Scale Invariance
Not inherently scale-invariant (can be
combined with scale spaces)

Inherently scale-invariant due to
scale-space pyramid

Rotation Invariance
Not inherently rotation-invariant (can
be combined with additional
techniques)

Inherently rotation-invariant

Localization
Uses sliding windows for local region
computation

Uses Difference of Gaussians (DoG)
for scale-space representation and
keypoint localization

Computational
Complexity

Generally less computationally
intensive, suitable for real-time
applications

More computationally intensive,
less suitable for real-time
applications

Common Applications
Object detection, pedestrian
detection

Image stitching, object recognition,
image retrieval

Uploaded By: anonymousSTUDENTS-HUB.com

Other Keypoints Detectors and Descriptors
116

 PCA-SIFT

 SURF: Speeded Up Robust Features

 FREAK: Fast Retina Keypoint

 BRIEF: Binary Robust Independent Elementary Features

 ORB: Oriented FAST and Rotated BRIEF - an efficient
alternative to SIFT or SURF

 BRISK: Binary Robust Invariant Scalable Keypoints

Uploaded By: anonymousSTUDENTS-HUB.com

Other Keypoints Detectors and Descriptors
117

Feature SIFT SURF ORB AKAZE BRIEF

Accuracy Excellent Good Good Good Medium

Robustness to

scale and rotation

changes

Excellent Good Good Good Medium

Robustness to

illumination

changes

Good Good Good Good Medium

Computational

cost
Medium Low Very low Very low Very low

Implementation

complexity
Medium Low Low Low Low

Uploaded By: anonymousSTUDENTS-HUB.com

Outline
118

 Feature Extraction Overview

 Color Features

 Local Features

 Edges

 Corners

 Interests Point

 Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Visual Bag of Words
119

 "Bag of Words" is a way to simplify object representation as a
collection of their subparts

 The model originated in natural language processing, where we
consider texts such as documents, paragraphs, and sentences as
collections of words-effectively "bags" of words.

 In Computer Vision, we can consider an image to be a collection
of image features. By incorporating frequency counts of these
features, we can apply the "Bag of Words" model towards
images and use this for prediction tasks such as image
classification and face detection.

Uploaded By: anonymousSTUDENTS-HUB.com

Object Bag of ‘words’

120

Visual Bag of Words

Uploaded By: anonymousSTUDENTS-HUB.com

Example: Texture recognition

 Texture is characterized by the repetition of basic
elements or textons

121

Uploaded By: anonymousSTUDENTS-HUB.com

Texture recognition

Universal texton dictionary

histogram

Universal texton dictionary

122

If we were to
consider each
texton a feature,
then each image
could be
represented as a
histogram across
these features

Uploaded By: anonymousSTUDENTS-HUB.com

Origin: Bag-of-words models
123

 Orderless document representation: frequencies of words from a

dictionary Salton & McGill (1983)

 Documents consist of words which can be considered their

features. Thus, every document is represented by a histogram

across the words in the dictionary

 Thus, a "bag of words" can be viewed as a histogram representing

frequencies across a vocabulary developed over a set of images or

documents - new data then can be represented with this model

and used for prediction tasks.

Uploaded By: anonymousSTUDENTS-HUB.com

Bags of features for object recognition

 Works pretty well for image-level classification and for recognizing
object instances

face, flowers, building

Uploaded By: anonymousSTUDENTS-HUB.com

Image classification

• Given the bag-of-features representations of images
from different classes, how do we learn a model for
distinguishing them?

125

Uploaded By: anonymousSTUDENTS-HUB.com

Bag of features
126

category
decision

learning

feature detection
& representation

codewords dictionary

image
representation

category models
(and/or) classifiers

recognition

Uploaded By: anonymousSTUDENTS-HUB.com

Bag of features – Main Algorithm

1. First, take a bunch of images, extract features, and build
up a “dictionary” or “visual vocabulary” – a list of
common features
◼ Extract features

◼ Learn “visual vocabulary”

◼ Quantize features using visual vocabulary

◼ Represent images by frequencies of “visual words”

2. Given a new image, extract features and build a
histogram – for each feature, find the closest visual
word in the dictionary

127

Uploaded By: anonymousSTUDENTS-HUB.com

Extracting Interesting Features

 We eventually use these features to find the most common
features across our dataset of images.

 We can choose any type of feature we want to find our features.
For example, we can simply split our images into a grid and grab
the sub-images as features (shown below). Or, we can use
corner detection of SIFT features as our features.

128

Regular grid for sub-
images as features

Uploaded By: anonymousSTUDENTS-HUB.com

Extracting Interesting Features

Normalize
patch

Compute
SIFT

descriptor

129

Interest Point Features

Uploaded By: anonymousSTUDENTS-HUB.com

Learning Visual Vocabulary

 Once we have our features, we must turn this large feature set into
a small set of "themes".

 These "themes" are analogous to the "words" in the Natural
Language Processing version of the algorithm.

 In the Computer Vision application, the "words" are called textons.

 To find textons, we simply cluster our features. We can use any
clustering technique (K-Means is most common) to cluster the
features.

 We then use the centers of each cluster as the textons. Our set of
textons is known as a visual vocabulary.

 Each cluster center produced by k-means becomes a codevector.

130

Uploaded By: anonymousSTUDENTS-HUB.com

Learning the visual vocabulary

…

131

Uploaded By: anonymousSTUDENTS-HUB.com

Learning the visual vocabulary

Clustering

…

132

Uploaded By: anonymousSTUDENTS-HUB.com

Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic

Visual vocabulary

133

Uploaded By: anonymousSTUDENTS-HUB.com

Visual words

 Example: each group
of patches belongs to
the same visual word

Uploaded By: anonymousSTUDENTS-HUB.com

Image patch examples of visual words

Uploaded By: anonymousSTUDENTS-HUB.com

Example visual vocabulary

Uploaded By: anonymousSTUDENTS-HUB.com

Quantize features using visual vocabulary
137

❑ Clustering is a common method for learning a visual vocabulary
or codebook

 Unsupervised learning process

 Each cluster center produced by k-means becomes a codevector

 Codebook can be learned on separate training set

 Provided the training set is sufficiently representative, the codebook will
be “universal”

❑ The codebook is used for quantizing features

 A vector quantizer takes a feature vector and maps it to the index of the
nearest codevector in a codebook

 Codebook = visual vocabulary = dictionary

 Codevector = visual word = center of each feature cluster

Uploaded By: anonymousSTUDENTS-HUB.com

Visual vocabularies: Issues

❑ How to choose vocabulary size?

 Too small: visual words not
representative of all patches

 Too large: quantization artifacts,
overfitting

❑ Computational efficiency

138

Uploaded By: anonymousSTUDENTS-HUB.com

Image representation
139

 Once we have built our codebook, we can use it to do interesting
things.

 First, we can represent every image in our dataset as a histogram
of codevector frequencies. We use feature quantization to
accomplish this.

 Then, we have two options, depending on our type of problem.

 If we have a supervised learning problem (i.e. our data has labels), we can
train a classifier on the histograms. This classifier will then be trained on the
appearance of the textons and hence will be a robust way to distinguish
between classes.

 If we have an unsupervised learning problem (i.e. our data does not have
labels), we can further cluster the histograms to find visual themes/groups
within our dataset.

Uploaded By: anonymousSTUDENTS-HUB.com

Image representation

…..

fr
e
q
u
e
n
c
y

codewords

Uploaded By: anonymousSTUDENTS-HUB.com

Weighting the words

 Just as with text, some visual words are more
discriminative than others

 The bigger fraction of the documents a word appears in,
the less useful it is for matching

 e.g., a word that appears in all documents is not helping us

the, and, or vs. cow, AT&T, Cher

141

Uploaded By: anonymousSTUDENTS-HUB.com

TF-IDF weighting

 Instead of computing a regular histogram distance, we’ll weight
each word by it’s inverse document frequency

 inverse document frequency (IDF) of word j =

 To compute the value of bin j in image I:

log number of documents

number of documents in which j appears

142

Uploaded By: anonymousSTUDENTS-HUB.com

Large-scale image matching

 Bag-of-words models have been
useful in matching an image to a
large database of object instances

11,400 images of game covers
(Caltech games dataset)

how do I find this image in the database?

143

Uploaded By: anonymousSTUDENTS-HUB.com

Large-scale image search

Build the database:

 Extract features from the
database images

 Learn a vocabulary using k-
means (typical k: 100,000)

 Compute weights for each
word

 Create an inverted file mapping
words → images

144

Uploaded By: anonymousSTUDENTS-HUB.com

Inverted file

 Each image has ~1,000 features
 We have ~100,000 visual words

→ each histogram is extremely sparse (mostly zeros)

 Inverted file
 mapping from words to documents

 Can quickly use the inverted file to compute similarity
between a new image and all the images in the database
 Only consider database images whose bins overlap the query

image

145

Uploaded By: anonymousSTUDENTS-HUB.com

Inverted file index

Database images are loaded into the index mapping words to image numbers

• Can quickly use the
inverted file to
compute similarity
between a new
image and all the
images in the
database

– Only consider
database images
whose bins overlap
the query image

Uploaded By: anonymousSTUDENTS-HUB.com

Inverted file index

New query image is mapped to indices of database images that share a word.

Uploaded By: anonymousSTUDENTS-HUB.com

w91

Inverted file index and bags of words similarity

1. Extract words in query

2. Inverted file index to find relevant frames

3. Compare word counts

Uploaded By: anonymousSTUDENTS-HUB.com

Large-scale image search

 Cons: performance degrades as the database grows

query image top 6 results

149

Uploaded By: anonymousSTUDENTS-HUB.com

Example bag-of-words matches
150

Uploaded By: anonymousSTUDENTS-HUB.com

Example bag-of-words matches
151

Uploaded By: anonymousSTUDENTS-HUB.com

What about spatial info?
152

Uploaded By: anonymousSTUDENTS-HUB.com

Bag of Words + Pyramids
153

 Bag of Words alone doesn’t discriminate if a patch was obtained
from the top, middle or bottom of the image because it doesn’t
save any spatial information.

 We need smart method to incorporate the spatial information in
the BoW model

 Spatial Pyramid Matching

 Very useful for representing images.

 Spatial pyramid matching partitions the image into increasingly fine sub-
regions and allows us to computes histograms (BoW) of local features inside
each sub-region.

 Strong features (ie.larger vocabulary size) is better than weaker features (ie.
smaller vocabulary size).

Uploaded By: anonymousSTUDENTS-HUB.com

Spatial Pyramids

 Very useful for representing
images.

 Pyramid is built by using
multiple copies of image.

 Each level in the pyramid is
1/4 of the size of previous
level.

 The lowest level is of the
highest resolution.

 The highest level is of the
lowest resolution.

154

Uploaded By: anonymousSTUDENTS-HUB.com

Steps for Bag of Words with Spatial
Pyramids:
155

1. Image Division:

➢ Divide the image into a grid or a set of spatial bins. Commonly used
divisions include 1x1 (no spatial pyramid), 2x2, 3x3, or more, forming
different levels.

2. Bag of Words for Each Spatial Bin:

➢ Apply the Bag of Words model independently to each spatial bin. This
involves feature extraction, codebook generation, feature quantization, and
histogram representation.

3. Concatenation:

➢ Concatenate the histogram representations from all levels of the spatial
pyramid. This creates a multi-level histogram representation that encodes
both local and spatial information.

4. Normalization (Optional):

➢ Optionally, normalize the concatenated histogram to ensure that the
representation is invariant to changes in image scale or overall intensity.

Uploaded By: anonymousSTUDENTS-HUB.com

Bag of words + pyramids
156

Uploaded By: anonymousSTUDENTS-HUB.com

