Chapter 2: Algorithm Analysis

2.1 2/N, 37, VN, N, NloglogN, Nlog N, Nlog (N3, Nlog?N, N*3 N2 N2ogN, N3, 2V/2,
2V, Nlog N and Nlog (N?) grow at the same rate.

2.2 (a) True.
(b) False. A counterexampleis T{(N) =2N, T5(N) =N, and f (N) =N.
(c) False. A counterexampleis T{(N) =N? T,(N)=N, and f (N) = N2
(d) False. The same counterexample asin part (c) applies.

2.3 We clam that Nlog N is the slower growing function. To see this, suppose otherwise.
Then, N¥ V199N \would grow slower than log N. Taking logs of both sides, we find that,
under this assumption, &/ Yiog N log N grows slower than log log N. But the first expres-
sion simplifiesto eVlogN . If L =log N, then we are claiming that eVL grows slower than
logL, or equivalently, that €L grows slower than log?L. But we know that
log? L = o (L), so the original assumption is false, proving the claim.

2.4 Clearly, IogklN = o(IogkzN) if kq <k,, so we need to worry only about positive integers.
The claim is clearly true for k =0 and k =1. Suppose it is true for k <i. Then, by
L’ Hospital’srule,

i i-1
lim 129N _ i 109 N

N - N -
The second limit is zero by the inductive hypothesis, proving the claim.

25 Let f(N)=1when N iseven, and N when N isodd. Likewise, let g(N)=1 when N is
odd, and N when N iseven. Thentheratio f (N) /g (N) oscillates between 0 and co.

2.6 For al these programs, the following analysis will agree with asimulation:
() Therunning timeisO(N).
(11) The running time is O (N?).
(111) The running timeis O (N9).
(IV) Therunning timeis O (N?).
(V) j can be aslarge asi?, which could be aslarge as N2 k can beaslargeas j, which is
NZ2. The running time is thus proportional to N'N>N2, which is O (N°).

(VI) The if statement is executed at most N° times, by previous arguments, but it is true
only O (N?) times (becauseit is true exactly i timesfor eachi). Thus the innermost loop is
only executed O (N?) times. Each time through, it takes O (j %) = O (N?) time, for atotal of
O(N%. Thisisan example where multiplying loop sizes can occasionally give an overesti-
mate.

2.7 (&) It should be clear that all agorithms generate only legal permutations. The first two
algorithms have tests to guarantee no duplicates; the third agorithm works by shuffling an
array that initially has no duplicates, so none can occur. It is also clear that the first two
algorithms are completely random, and that each permutation is equally likely. The third
algorithm, due to R. Floyd, is not as obvious; the correctness can be proved by induction.

STUDENTS-HUB.com Uploaded By: anonymous

See
J. Bentley, "Programming Pearls,” Communications of the ACM 30 (1987), 754-757.

Note that if the second line of algorithm 3 is replaced with the statement

Swap(A[i], A[Randint(0, N-1)1);
then not all permutations are equally likely. To see this, notice that for N = 3, there are 27
equally likely ways of performing the three swaps, depending on the three random integers.
Since there are only 6 permutations, and 6 does not evenly divide
27, each permutation cannot possibly be equally represented.

(b) For the first agorithm, the time to decide if a random number to be placed in A[i] has
not been used earlier is O(i). The expected number of random numbers that need to be
tried isN/ (N —i). Thisis obtained as follows: i of the N numbers would be duplicates.
Thus the probability of successis (N —i)/N. Thus the expected number of independent
triadlsisN/ (N —i). Thetime bound isthus

N-1 Ni N-1 N2 2N—l 1 2 N 1 2|
— < —<N ——<N —=0(N“og N
Eo N Eo N Eo N—i j§11 (Nlog)

The second algorithm saves afactor of i for each random number, and thus reduces the time
bound to O (Nlog N) on average. Thethird algorithmisclearly linear.

(c, d) The running times should agree with the preceding analysis if the machine has enough
memory. If not, the third algorithm will not seem linear because of a drastic increase for
largeN.

(e) The worst-case running time of algorithms | and 11 cannot be bounded because there is
always a finite probability that the program will not terminate by some giventime T. The
algorithm does, however, terminate with probability 1. The worst-case running time of the
third algorithm is linear - its running time does not depend on the sequence of random
numbers.

2.8 Algorithm 1 would take about 5 days for N = 10,000, 14.2 years for N = 100,000 and 140
centuries for N =1,000,000. Algorithm 2 would take about 3 hours for N = 100,000 and
about 2 weeks for N =1,000,000. Algorithm 3 would use 1> minutes for N = 1,000,000.
These calculations assume a machine with enough memory to hold the array. Algorithm 4
solves a problem of size 1,000,000 in 3 seconds.

2.9 (a) O(N?).
(b) O(Nlog N).
2.10 (c) Thealgorithm islinear.
2.11 Useavariation of binary search to get an O (log N) solution (assuming the array is preread).
2.13 (a) Testto seeif N isan odd number (or 2) and is not divisibleby 3,5, 7, ..., N .
(b) O (\/ﬁ), assuming that all divisions count for one unit of time.
(c)B =0O(ogN).
(d) O(28/?).

(e) If a20-bit number can be tested in time T, then a 40-bit number would require about T2
time.

(f) B isthe better measure because it more accurately represents the size of the input.

STUDENTS-HUB.com Uploaded By: anonymous

2.14 The running time is proportional to N times the sum of the reciprocals of the primes less
thanN. ThisisO(Nloglog N). See Knuth, Volume 2, page 394.

2.15 Compute X2, X4 X8 X10 X2 x40 X and X©2.

2.16 Maintain an array PowersOfX that can befilled in afor loop. The array will contain X, X2,
X4 upto x2"" Thebi nary representation of N (which can be obtained by testing even or
odd and then dividing by 2, until al bits are examined) can be used to multiply the
appropriate entries of the array.

217 For N =0 or N =1, the number of multiplies is zero. If b(N) is the number of onesin the
binary representation of N, then if N > 1, the number of multiplies used is
[logN| +b(N) -1

218 () A.
(b) B.
(c) The information given is not sufficient to determine an answer. We have only worst-
case bounds.
(d) Yes.

2.19 (a) Recursion is unnecessary if there are two or fewer elements.
(b) One way to do thisisto note that if the first N-1 elements have a mgjority, then the last
element cannot change this. Otherwise, the last element could be a majority. Thusif N is
odd, ignore the last element. Run the algorithm as before. 1f no majority element emerges,
then return the N element as a candidate.
(c) Therunning timeisO(N), and satisfiesT(N) = T(N/ 2) + O(N).

(d) One copy of the original needsto be saved. After this, the B array, and indeed the recur-
sion can be avoided by placing each B; in the A array. The difference is that the original
recursive strategy implies that O (log N) arrays are used; this guarantees only two copies.

2.20 Otherwise, we could perform operations in parallel by cleverly encoding several integers
into one. For instance, if A =001, B =101, C =111, D = 100, we could add A and B at the
same time as C and D by adding 00A00C + 00B0O0OD. We could extend thisto add N pairs
of numbers at once in unit cost.

2.22 No. If Low =1, High =2, then Mid =1, and the recursive call does not make progress.
2.24 No. Asin Exercise2.22, no progressis made.

STUDENTS-HUB.com Uploaded By: anonymous

