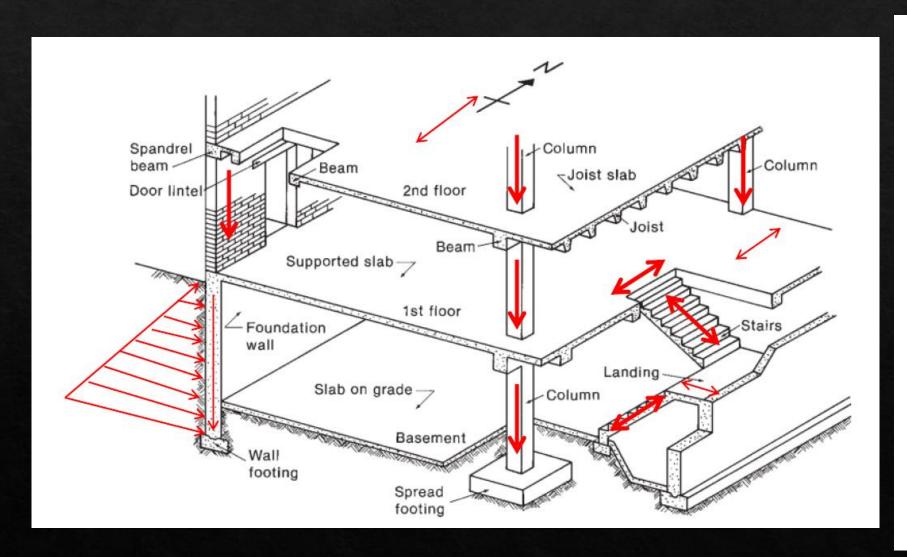
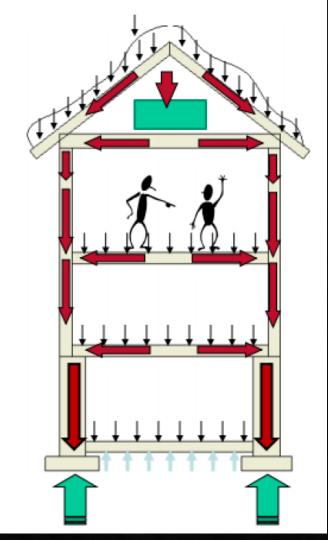
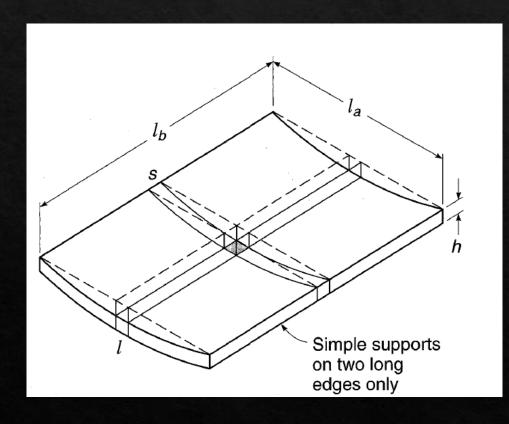


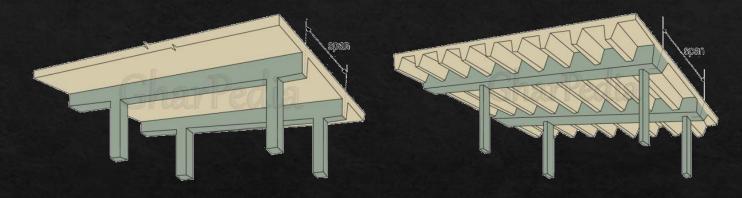
Reinforced Concrete Design I ENCE 335

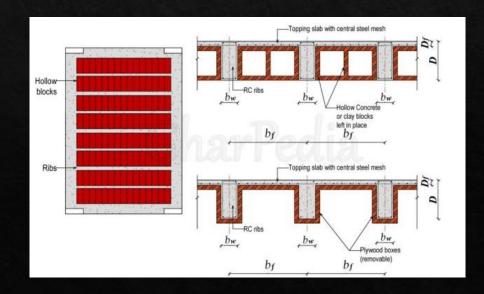

Slab Design


Dr. Khalil M. Qatu

Building components

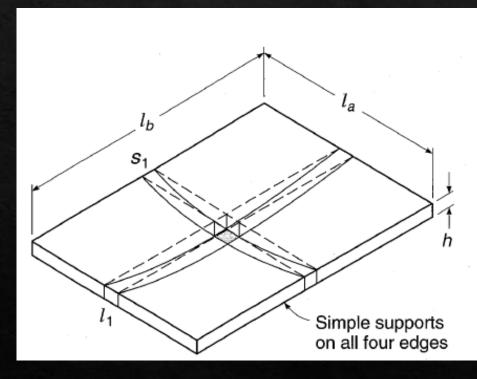

Structural components and load path

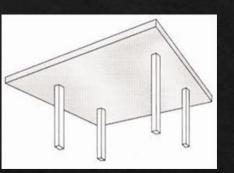


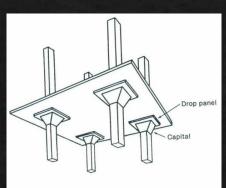


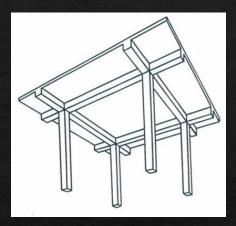
Types of slabs

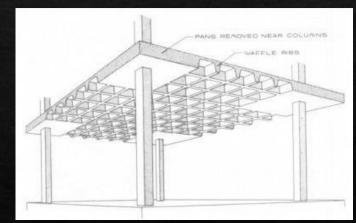
One-way slab

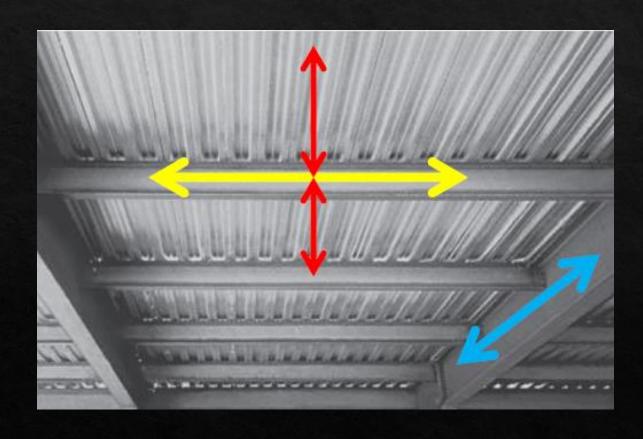


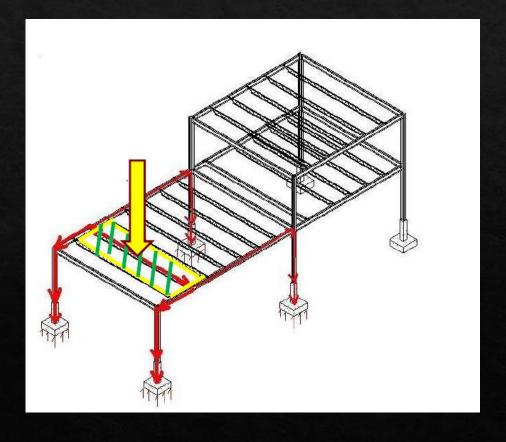


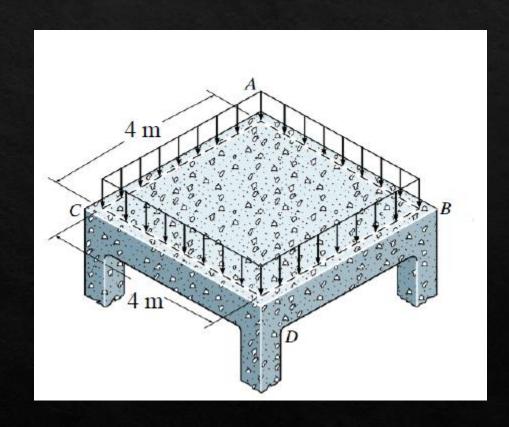


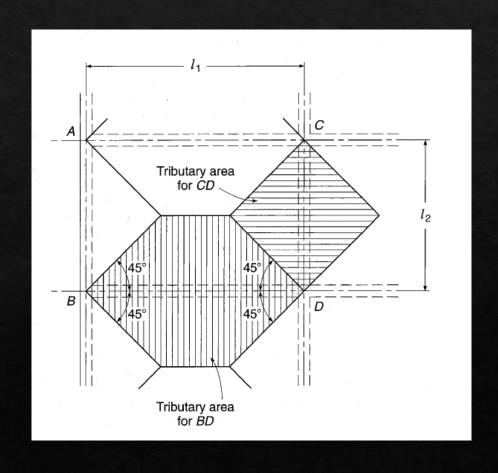

Types of slabs

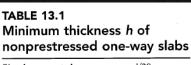

♦ Two-way slab








Tributary area and load transfer



Tributary area and load transfer

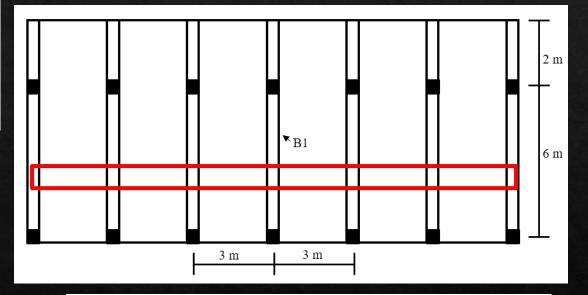
- Design of Solid slab
 - ♦ One unit strip is taken in the direction of load transfer
 - ♦ The strip is designed as a beam with one unit width
 - ♦ Same ACI code requirements applies with some exceptions
 - ♦ Min thickness
 - ♦ Min reinforcement
 - ♦ Maximum spacing between bars
 - ♦ Clear cover
 - \diamond Shear is only carried by concrete $(V_u \leq \phi V_c)$

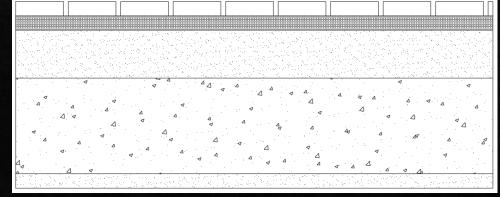
nonprestressed	Olie-way s
Simply supported	l/20
One end continuous	1/24
Both ends continuous	1/28
Cantilever	<i>l</i> /10

	$clear\ cover = 20\ mm$
Main	S_{max} $\begin{cases} 3h \\ 450 \ mm \end{cases}$
reinforcement	S_{max} (450 mm)

TABLE 13.2

Minimum ratios of temperature and shrinkage reinforcement in slabs based on gross concrete area


Slabs where Grade 40 or 50 deformed bars are used	0.0020	
Slabs where Grade 60 deformed bars or welded wire fabric (smooth or deformed) is used	0.0018	
Slabs where reinforcement with yield strength exceeding 420 MPa measured at yield strain of 0.35 percent is used	$\frac{0.0018 \times 420}{f_{y}}$	


- ♦ Solid slab load calculation
 - ♦ Dead load
 Hmin = 130 mm
 Self weight
 SW = 0.13*1*1*24 = 3.12 kN/m2

Super imposed dead loads Plastering = 0.02*1*1*22= 0.44 Fill = 0.1*1*1*18= 1.8 Mortar = 0.03*1*1*22 = 0.66 Tiles = 20 kg/m2 = 0.2 kN/m2

Total SI= 3.1 kN/m2
Partitions = 1.5 kN/m2
Total dead load = 7.72 kN/m2

TABLE 13.1 Minimum thickness h of nonprestressed one-way slabs Simply supported l/20One end continuous l/24Both ends continuous l/28Cantilever l/10

- Design of Ribbed slab
 - ♦ Hollow blocks other types of filler are used to reduce self-weight of the slab
 - ♦ Typically used when the required thickness of a solid slab is more than 20 cm
 - ♦ The direction of load transfer is controlled by the direction of ribs
 - ♦ Same ACI code requirements applies with some exceptions
 - Monolithic combination of regularly spaced ribs and a top slab
 - ♦ For structural integrity, at least one bottom bar in each joist shall be continuous and shall be anchored to develop fy at the face of supports.
 - ♦ Reinforcement area shall be at least the shrinkage and temperature reinforcement area
 - \diamond Shear is only carried by concrete $(V_u \leq \phi V_c)$
 - ♦ Vc shall be permitted to be taken as 1.1 times the values calculated in 22.5.

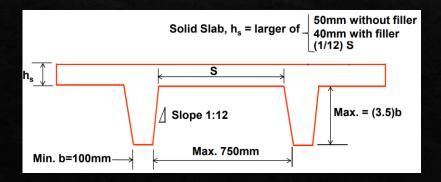
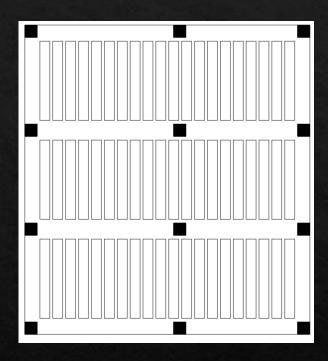
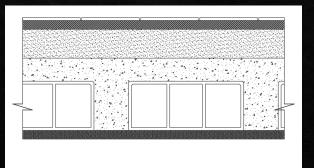




Table 9.3.1.1—Minimum depth of nonprestressed beams

Deallis	
Support condition	Minimum $h^{[1]}$
Simply supported	ℓ/16
One end continuous	ℓ/18.5
Both ends continuous	ℓ/21
Cantilever	ℓ/8

^[1]Expressions applicable for normalweight concrete and $f_y = 420$ MPa. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.

ribs

Beams

- Ribbed slab load calculation
 - ♦ Dead load

Total
$$SI = 3.1 \text{ kN/m}^2$$

Min thickness \rightarrow

$$H_{min} \rightarrow one \ end \ cont. = \frac{4}{18.5} = 22 \ cm$$

$$H_{min} \rightarrow one \ end \ cont. = \frac{6}{18.5} = 32 \ cm$$

Self weight \rightarrow study area =1*0.52 = 0.52 m²

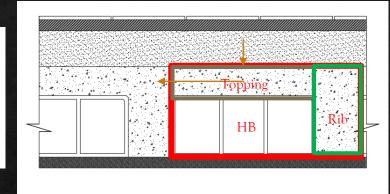
$$HB = (14\text{cm}, 17\text{cm}, 20\text{ cm}, \frac{24\text{cm}}{}) = (15\text{ kg}, 17\text{ kg}, \frac{20\text{kg}}{}) = 5*20/100 = 1\text{ kN}$$

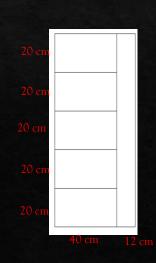
Topping mat
$$-(7 \sim 8 \text{ cm}) = 0.08 * 0.4 * 1 * 24 = 0.768 \text{ kN}$$

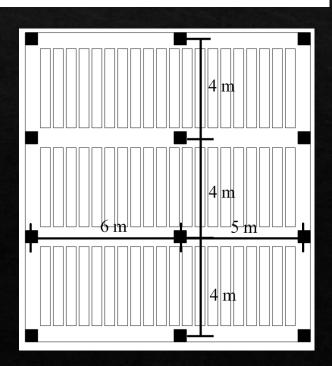
$$Rib = 0.32*0.12*1*24= 0.9 kN$$

Total / study area = 2.67 kN/study area

Total
$$/m2 = 2.67/0.52 = 5.1 \text{ kN/m2}$$


+ 1.5 kN/m² Partitions


Total dead load = $3.1 + 5.1 + 1.5 = 9.7 \text{ kN/m}^2$


Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum $h^{[1]}$
Simply supported	€/16
One end continuous	ℓ/18.5
Both ends continuous	€/21
Cantilever	ℓ/8

^[1]Expressions applicable for normalweight concrete and $f_y = 420$ MPa. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.

♦ Live load

TABLE 1.1
Minimum uniformly distributed live loads

Occupancy or Use	Live Load, kN/m²	Occupancy or Use	Live Load, kN/m²
Apartments (see residential)		Dining rooms and restaurants	4.8
Access floor systems		Dwellings (see residential)	
Office use	2.4	Fire escapes	4.8
Computer use	4.8	On single-family dwellings only	1.9
Armories and drill rooms	7.2	Garages (passenger cars only)	1.9
Assembly areas and theaters		Trucks and buses ^a	
Fixed seats (fastened to floor)	2.9	Grandstands (see stadium and arena bleachers)	
Lobbies	4.8	Gymnasiums, main floors and balconies ^b	4.8
Movable seats	4.8	Hospitals	
Platforms (assembly)	4.8	Operating rooms, laboratories	2.9
Stage floors	7.2	Patient rooms	1.9
Balconies (exterior)	4.8	Corridors above first floor	3.8
On one and two-family residences	2.9	Hotels (see residential)	
only, and not exceeding 9.3 m ²		Libraries	
Bowling alleys, poolrooms, and similar	3.6	Reading rooms	2.9
recreational areas		Stack rooms ^c	7.2
Catwalks for maintenance access	1.9	Corridors above first floor	3.8
Corridors		Manufacturing	
First floor	4.8	Light	6.0
Other floors, same as occupancy		Heavy	12.0
served except as indicated		Marquees and canopies	3.6
Dance halls and ballrooms	4.8	Office buildings	
Decks (patio and roof)		File and computer rooms shall be designed for	
Same as area served, or for the		heavier loads based on anticipated occupancy	y
type of occupancy accommodated		Lobbies and first-floor corridors	4.8

TABLE 1.1 (Continued)

Occupancy or Use	Live Load, kN/m²	Occupancy or Use	Live Load, kN/m²
Offices	2.4	Schools	
Corridors above first floor	3.8	Classrooms	1.9
Penal institutions		Corridors above first floor	3.8
Cell blocks	1.9	First-floor corridors	4.8
Corridors	4.8	Sidewalks, vehicular driveways, and yards	12.0
Residential		subject to trucking ^d	
Dwellings (one and two-family)		Stadiums and arenas	
Uninhabitable attics without storage	0.5	Bleachers ^b	4.8
Uninhabitable attics with storage	1.0	Fixed seats (fastened to floor) ^b	2.9
Habitable attics and sleeping areas	1.4	Stairs and exit ways	4.8
All other areas except stairs and balconies	1.9	One and two-family residences only	1.9
Hotels and multifamily houses		Storage areas above ceilings	1.0
Private rooms and corridors serving them	1.9	Storage warehouses (shall be designed for	
Public rooms and corridors serving them	4.8	heavier loads if required for anticipated storage	e)
Reviewing stands, grandstands, and bleachers ^b		Light	6.0
Roofs		Heavy	12.0
Ordinary flat, pitched, and curved roofs	1.0	Stores	
Roofs used for promenade purposes	2.9	Retail	
Roofs used for roof gardens or assembly purpo	se 4.8	First floor	4.8
Roofs used for other special purposes ^e		Upper floors	3.6
Awnings and canopies		Wholesale, all floors	6.0
Fabric construction supported by a	0.25	Walkways and elevated platforms	2.9
lightweight rigid skeleton structuref		(other than exitways)	
All other construction	1.0	Yards and terraces, pedestrians	4.8

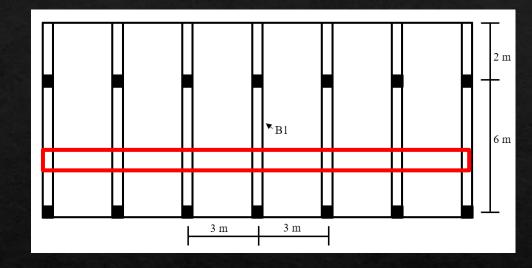
^a Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for truck and bus loadings.

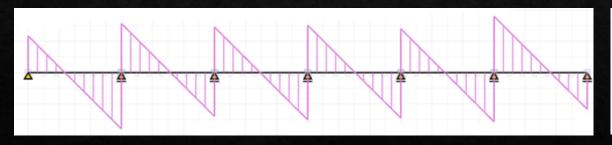
(continued)

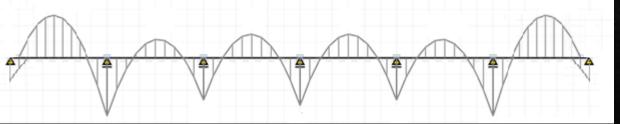
Source: From Ref. 1.1. Used by permission of the American Society of Civil Engineers.

b In addition to the vertical live loads, the design shall include horizontal swaying forces applied to each row of seats as follows: 350 N per linear m of seat applied in the direction parallel to each row of seats and 146 N per linear m of seat applied in the direction perpendicular to each row of seats. The parallel and perpendicular horizontal swaying forces need not be applied simultaneously.

^c The loading applies to stack room floors that support nonmobile, double-faced library bookstacks subject to the following limitations: (a) The nominal bookstack unit height shall not exceed 2.3 m; (b) the nominal shelf depth shall not exceed 0.3 m for each face; and (c) parallel rows of double-faced bookstacks shall be separated by aisles not less than 0.9 m wide.


d Other uniform loads in accordance with an approved method that contains provisions for truck loadings shall also be considered where appropriate.


^{*} Roofs used for other special purposes shall be designed for appropriate loads as approved by the authority having jurisdiction.


f Nonreducible

- ♦ Solid slab
 - \Leftrightarrow Example: Design a solid slab for the given Floor layout $f_c' = 28 \, MPa$, $f_y = 420 \, MPa$
 - ♦ Analysis

$$w_u = 1.2 * w_D + 1.6 w_L = 1.2 * 7.94 + 1.6 * 4.8 = 17.21 kN/m$$

♦ Solid slab – Design Shear

$$\begin{split} \phi V_c &= \phi 0.17 \, \sqrt{f_c'} b \, d \\ d &= h - clear \, cover \, -0.5 d_b = 130 - 20 - 7 = 103 \sim 100 \, mm \\ \phi V_c &= \phi 0.17 \, \sqrt{f_c'} b \, d = 0.75 \, *.17 \, *. \sqrt{28} \, *. 1000 \, *. 100 = 67.5 \, kN \\ V_u &= 31.27 \, kN \, \rightarrow \frac{\phi V_c}{2} = 33.75 \, kN \, \rightarrow V_u < \frac{\phi V_c}{2} \rightarrow No \, shear \, reinforcement \, needed \end{split}$$

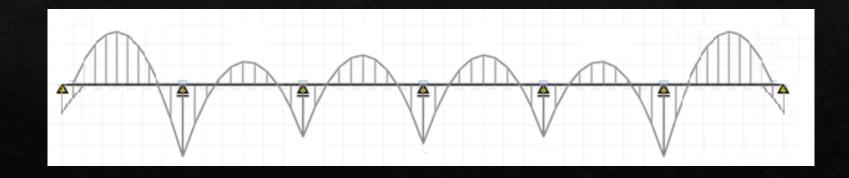
♦ Solid slab – Design Flexure

 $design\ section\
ightarrow\ rectangular\ B=1000\ mm\ d=100\ mm$

Mu=16.4 kN.m

$$R = \frac{M_u}{\phi b d^2} = \frac{16.4 * 10^6}{0.9 * 1000 * 100} = 2.18 \ MPa \rightarrow Table \ A5 \rightarrow \frac{0.005 - 0.0055}{2.01 - 2.2} = \frac{0.005 - \rho}{2.01 - 2.18} \rightarrow \rho = 0.0054$$

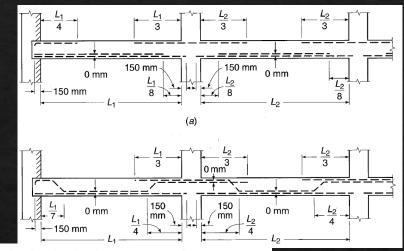
$$A_s = \rho bd = 0.0054 * 1000 * 100 = 540 \ mm^2 \rightarrow table \ A3 \rightarrow \phi 10@130 \ mm \rightarrow A_s = 546 \ mm^2$$

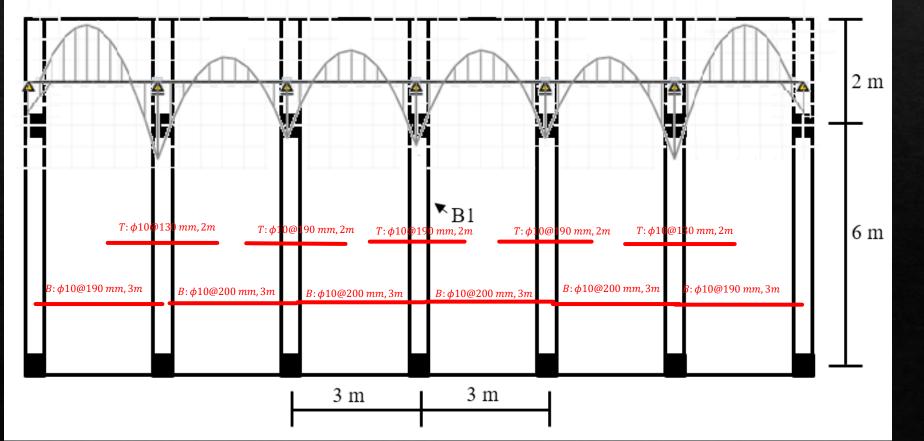

$$S_{max}$$

$$\begin{cases} 3h = 3 * 130 = 390 \ mm \\ 450 \ mm \end{cases}$$

 $\rho > \rho_{min}$, check $S < S_{max}$

$$M_u = 13.4 \, kN.m$$

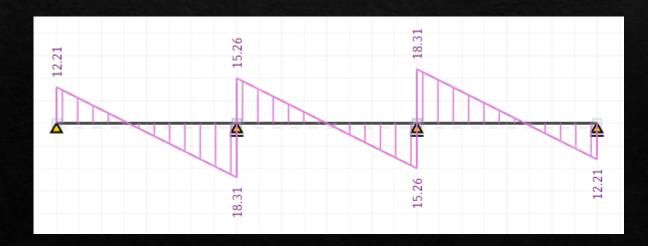

$$R = 1.5 MPa \rightarrow \rho = 0.0037 \rightarrow A_s = 370 mm^2$$

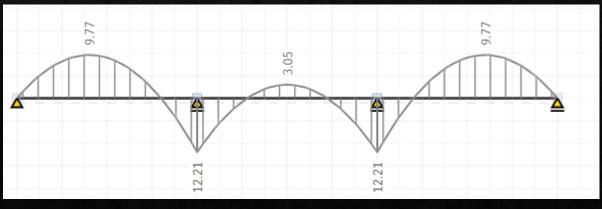

 $\rightarrow \phi 10@190 mm$

$$M_u = 6.7 \ kN.m \rightarrow R = 0.74 \ MPa \rightarrow \rho_{min} = 0.0033 \rightarrow A_s = 330 \ mm^2 \rightarrow \phi 10 \ @200 \ mm^2$$

♦ Solid slab – Detailing

♦ Ribbed slab

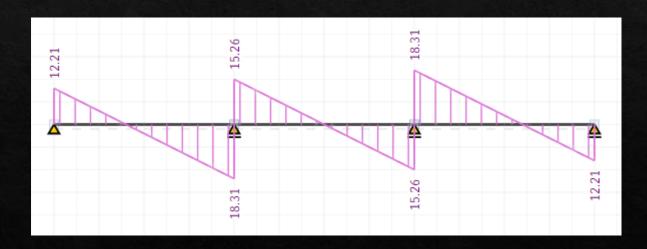

Example: Design a ribbed slab for the given floor layout

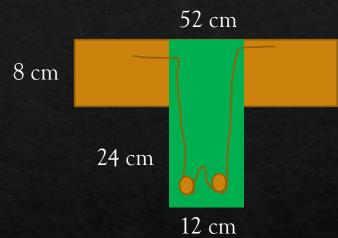

$$f_c' = 28 \, MPa$$
 , $f_y = 420 \, MPa$

Analysis

$$w_u = 1.2 * 9.7 + 1.6 * 1.9 = 14.68 \, kN/m^2$$

Tributary width = $0.52 \text{ m} \rightarrow \text{load per rib} = 14.68 * 0.52 = 7.63 \text{ kN/m}$

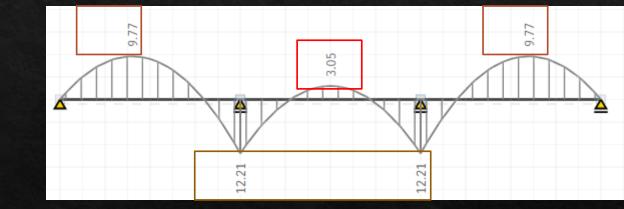

♦ Ribbed slab – Design Shear


$$\phi V_c = \phi 0.17 \sqrt{f_c'} b d$$

$$d = h - clear \ cover \ -0.5 d_b = 320 - 20 - 10 \ -7 = 283 \ mm$$

$$\phi V_c = 1.1 \ *\phi 0.17 \sqrt{f_c'} b \ d = 0.75 \ *.17 \ *\sqrt{28} \ *120 \ *283 = 25.2 \ kN$$

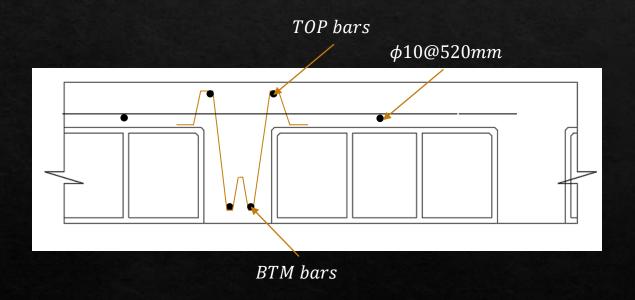
$$V_u = 18.31 \ kN \rightarrow \phi V_c > V_u$$



- ♦ Ribbed slab Design Flexure
 - \diamond -ve moment = 12.21 kN.m
 - ♦ rectangular b= 120 mm d=283 mm

R= 1.41 MPa
$$\rightarrow \rho = 0.0035 \rightarrow A_s = 118.8 \ mm^2$$

$$2\phi 10 \rightarrow A_s = 142 \ mm^2$$



- \Rightarrow +ve moment = 9.77 kN.m
 - \Rightarrow T-section or rect. -b=520 mm d=283 mm

R= 0.26 MPa
$$\rightarrow \rho < \rho_{min} \rightarrow \rho_{min} = 0.0033~A_{s} = 485.6~mm^{2}$$

$$2\phi 19 \rightarrow A_s = 568 \, mm^2$$

♦ Ribbed slab – Detailing

