E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah

Trees
Revision:
Sorted Arrays Sorted Linked List
Search Fast O(logn) Slow O(n)
Insert Slow O(n) Slow O(n)
Delete slow O(n) Slow O(n)
Tree
BOGE. ——— T RY oncrsccmmmessnmmrnsmmme s mmmms Level 1
Siblings:

children of node A

Subtree of ,
node B

e Atreeis a collection of N nodes, one of which is the root, and N-1 edges.

e Every node except the root has one parent.

e Nodes with no children are known as leaves.

e Aninternal node (parent) is any node that has at least one non-empty child.

e Nodes with the same parent are siblings.

® The depth of a node in a tree is the length of the path from the root to the node.

® The height of a tree is the number of levels in the tree.

Example: Family Trees (one parent)
Example: F|Ie system tree

myStuff

/ \\“ .

home work play school

égr“““‘ -5

72

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah
Binary Trees

e A binary tree is a tree in which no node can have more than two children:
Root

T

left

Trighl

where 7, and T,

right
Cplel)
/ J’ \ Reference to another node, if any

Data object

are binary ftrees.

e Binary Tree Node:

Full Binary tree: Each node in a full binary tree is either:
(1) An internal node with exactly two non-empty children or
(2) A leaf.
Complete binary tree: A complete binary tree has a restricted shape obtained by starting at the root

and filling the tree by levels from left to right.

(a) Full tree (b) Complete tree (c) Tree that is not full
and not complete

Left children: B, D, F
Right children: C,E, G

S KR

(a) This tree is full (b) This tree is complete
(but not complete). (but not full).

73

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah

® The maximum number of nodes in a full binary tree as a function of the tree’s height = 2h-1

Full Tree Height Number
of Nodes
@ 1 1=21-1

O/O\O > 3=22_1

O/\ . D, JY) ?\O 4 15=24-1
Number of

nodes per level

31=25-1

74

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah
Implementation:

public class TNode<T extends Comparable<T>> {
T data;
TNode left;
TNode right;

public TNode(T data) { this.data = data; }

public void setData(T data) { this.data=data; }
public T getData() { returndata; }

public TNode getLeft() { return left; }

public void setLeft(TNode left) { this.left = left; }
public TNode getRight() { return right; }

public void setRight(TNode right) { this.right = right;}
public boolean isLeaf(){ return (left==null && right==null); }
public boolean hasLeft(){ return left!=null; }

public boolean hasRight(){ return right!=null; }
public String toString() { return "[" + data +"]"; }

Tree Traversal
Definition: visit, or process, each data item exactly once.
* In-Order Traversal: Visit root of a binary tree between visiting nodes in root’s subtrees.

) @
® [we®.
1.Traverse the left sub tree. A @\ /®

2.Visit the root. Q @ @ |

J
3.Traverse the right sub tree.

33 52 65 12 25 27 33 34 39 48 52 60 65 72 78 90

o Recursive implementation:

public void traverselnOrder() { traverselnOrder(root); }
private void traverselnOrder(TNode node) {
if (node !=null) {
if (node.left != null)
traverselnOrder(node.left);
System.out.print(node + " ");
if (node.right != null)
traverselnOrder(node.right);

75

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah
o Using a stack to perform an in-order traversal iteratively: (Optional)

Traversal order: f g C
d

Stack after b b b e f g

each push | , a alla a a a c c c c c

or pop

public void iterativelnorderTraverse()

{
StackInterface<BinaryNodeInterface<T>> nodeStack = new LinkedStack<>();
BinaryNode<T> currentNode = root;

while (!nodeStack.isEmpty() || (currentNode != null))
{

J/ Find leftmost node with no left child
while (currentNode != null)
{
nodeStack.push(currentNode) ;
currentNode = currentNode.getleftChild();
} // end while
Visit lTeftmost node, then traverse its ri ght subtree

if (!nodeStack.isEmpty(})

BinaryNode<T> nextNode = nodeStack.pop();
assert nextNode != null; / Since nodeStack was not empty

hatmra +ho S
oetTore Tne pop

System.out.printin(nextNode.getData());
currentNode = nextNode.getRightChild();
} -.':':'.! 'I f

} end iterativelnorderTraverse

76

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah
= Pre-Order Traversal: Visit root before we visit root’s subtrees.

52
O o
/ \
= O
LN /
1.Visit the root. @ @ ~
2.Traverse the left sub tree.
3.Traverse the right sub tree.
52 33 65 52 33 25 12 27 39 34 48 65 60 78 72 90

= Post-Order Traversal: Visit root of a binary tree after visiting nodes in root’s
subtrees.

) o

@ e @ @
A i
1.Traverse the left sub tree. @ @

2. Traverse the right sub tree.
3.Visit the root.

88 65 52, 12 27 25 34 48 39 33 60 72 90 78 65

= Level-Order Traversal: Begin at root and visit nodes one level at a time.

e The visitation order of a level-order traversal:

e Level-order traversal is implemented via a queue.
e The traversal is a breadth-first search.
HW: implement level-order traversal

77

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah
Expression Trees

by a*b+c (c) a*(b+c) (d) a*(b+c*d) /e

e The leaves of an expression tree are operands, such as constants or variable names, and the other
nodes contain operators.

e |tis also possible for a node to have only one child, as is the case with the unary minus operator.

e We can evaluate an expression tree by applying the operator at the root to the values obtained by
recursively evaluating the left and right subtrees.

Algorithm for evaluation of an expression tree:

Algorithm evaluate(expressionTree)
if (expressionTree is empty)

return 0
else
{
firstOperand = evaluate(/¢ft subtree of expressionTree)
secondOperand = evaluate(right subtree of expressionTree)
operator = the root of expressionTree
return rhe result of the operation operator and its operands firstOperand
and secondOperand
}

Constructing an expression tree:

The construction of the expression tree takes place by reading the postfix expression one symbol at a
time:
e If the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.
e If the symbol is an operator,
o Two pointers trees T1 and T2 are popped from the stack

o A new tree whose root is the operator and whose left and right children point to T2 and
T1 respectively is formed .

o A pointer to this new tree is then pushed to the Stack.

78

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2021 Prepared by: Dr. Mamoun Nawahdah
Example: (ab+cde+**)
e Since the first two symbols are operands, one-
node trees are created and pointers are pushed
to them onto a stack.

® The next symbolis a '+'. It pops two pointers, a
new tree is formed, and a pointer to it is
pushed onto to the stack.

e Next, c,d, and e are read. A one-node tree is
created for each and a pointer to the
corresponding tree is pushed onto the stack.

® (Continuing, a '+'is read, and it merges the last ’ | |
two trees.

® Now, a '"*'isread. The last two tree pointers
are popped and a new tree is formed with a '*'

as the root. R .

® Finally, the last symbol is read. The two trees |
are merged and a pointer to the final tree
remains on the stack. .

79

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

