Information and Coding Theory

ENEE 5304

Problem Set 4

Linear Block Codes

1. Consider the (7, 4) linear block code with a generator matrix G:

<i>G</i> =	1	0	0	0	0	1	1]
	0	1	0	0	1	0	1
	0	0	1	0	1	1	0
	0	0	0	1	1	1	1

- a. Find the codeword corresponding to the message (1011)
- b. Find the parity check matrix H^T such that $GH^T = 0$
- c. Construct the Syndrome table for error correction
- d. Can you identify and correct the error in the received sequence (0001101)
- 2. Is it possible to design a (15, 11) single error correcting code? Verify using the Hamming bound.
- 3. Consider the (5, 1) repetition code
 - a. Find the minimum distance of the code
 - b. How many errors can this code detect?
 - c. How many errors can this code correct
 - d. If the bit error probability is p, find the error probability when this code is employed.
- 4. Consider the (6, 3) linear block code with the generating matrix

	[100110]
G =	010011
	001101

- a. Find all codewords of the code
- b. Find the minimum distance of the code
- c. Find the error correcting capability of the code
- d. Find the codewords corresponding to the messages (001), (010) and (100).
- 5. Find the error correcting capability of the linear block code (23, 12).