E“'“ *tfﬂfw

M
ElRZElT UNlVERSlT"‘I’

Exception Handling
and I/0 ..

Liang, Introduction to Java Programming and Data Structures,
Twelfth Edition, (c) 2020 Pearson Education, Inc. All rights reserved.

By: Mamoun Nawahdah (Ph.D.)
2022/2023

https://students-hub.com

Exception Handling

*» Exception handling technique enables a
method to throw an exception to its caller.

¢ Without this capability, a method must
nandle the exception or terminate the

Orogram.

eX‘Cep'tiOll W) noun \ik-'sep-shan

: someone or something that is different from others :
someone or something that is not included

% : a case where a rule does not apply
2

https://students-hub.com

System Errors

Object 4—

Throwable

—|ClassNotFoundException

[OException

Exception

<]_

RuntimeException

ArithmeticException

ullPointerException|

<]i

| Many more classes

IndexOutOfBoundsException

IllegalArgumentException

Error

LinkageError

VirtualMachineError

—— Many more classes

I Many more classes

System errors are thrown by JVM and represented in the
o Error class. The Error class describes internal system errors.

Wﬁﬂ&com

3

https://students-hub.com

Exceptions

Exception q_

Object <]_Thmwab1¢

—|ClassNotFoundException

IOException

ArithmeticException

RuntimeException q—

NullPointerException|

| Many more classes

IndexOutOfBoundsException

IllegalArgumentException

I Many more classes

Error

LinkageError

VirtualMachineError

(

- Many more classes

** Exception describes errors caused by your program and

external circumstances.

&g ** These errors can be caught and handled by your program. .

STUDENTS-HUB.com
y -

https://students-hub.com

Runtime Exceptions

Object q—Thmwableq—

Exception q_

Error

ClassNotFoundException

IOException

RuntimeException

ArithmeticException

NullPointerException|

<}_

Many more classes

IndexOutOfBoundsException

IllegalArgumentException

I Many more classes

LinkageError

(

VirtualMachineError

- Many more classes

¢ RuntimeException is caused by programming errors,
_such as bad casting, accessing an out-of-bounds array, and

4 numeric errors.

STUDENTS-HUB.com

https://students-hub.com

Checked Exceptions vs.
Unchecked Exceptions

¢ RuntimeException, Error and their
subclasses are known as unchecked

exceptions.

¢ All other exceptions are known as checked

exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

STUiEE!EBcom

https://students-hub.com

Declaring, Thro

Catching Exceptions

Wing; -,

.. ?45}__

method?2 () &hraws Exception !

...

|_declare exception

_throw exception _

STUi!E!UBcom

b eeirenrrrnssenenessenssnens s ssssnsrsrnseenensens
}
methodl () {
try {
y invoke method2:
-] :
Eamhexcepnﬂi_:‘)fcatﬂh (Exception ex) {:
: Process exception; '
:}
} rrr

https://students-hub.com

Declaring Exceptions

** Every method must state the types of
checked exceptions it might throw.

< This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

8
STUDE -HUB.com

https://students-hub.com

Throwing Exceptions

*** When the program detects an error, the
program can create an instance of an appropriate

exception type and throw it.
* This is known as throwing an exception.

throw new IOException();

|OException ex = new |OException();
throw ex;

’
STUiEﬁ!EBcom

https://students-hub.com

Throwing Exceptions Example

public void setRadius(double newRadius)
throws lllegalArgumentException {
if (newRadius >=0)
radius = newRadius;
else
throw new lllegalArgumentException(
"Radius cannot be negative");

}

STUiEﬁ!EBcom

https://students-hub.com

Catching Exceptions

try {
statements; // Statements that may throw exceptions
}

catch (Exceptionl exVarl) {
handler for exceptioni;

}
catch (Exception2 exVar2) {

handler for exception2;
}

catch (ExceptionN exVar3) {
handler for exceptionN;

}

% The order in which exceptions are specified in catch blocks is important. 11

https://students-hub.com

JDK 7 multicatch

You can use the new JDK 7 mu
feature to simplify coding for t

ticatch
ne exceptions

with the same handling code. The syntax is:

try {
statements; // Statements that ma

}

y throw exceptions

catch (Exceptionl | Exception2 |ExceptionN ex) {

// handler exception;

}

STUiEE!EBAcom

12

https://students-hub.com

Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

void p2() throws IOException {
if (a file does not exist) {
throw new IOException("File does not exist");

}

https://students-hub.com

Catch or Declare Checked Exceptions

+* Java forces you to deal with checked exceptions.

" You must invoke it in a try-catch block or

= declare to throw the exception in the calling method.

*** For example, suppose that method p1 invokes method
p2, you have to write the code as follow:

void pl() {
try {
p2() ;
}
catch (IOException ex) {

}

}

void pl() throws IOException ({

p2();

(a)
STUDE -HUB.com

https://students-hub.com

1 public class CircleWithException {

2 /** The radius of the circle */

3 private double radius;

4

5 /** The number of the objects created */
o private static int numberOfObjects = 0;
7

8 /** Construct a circle with radius 1 */
9 public CircleWithException() {

10 this (1.0);

11 }

12

13 /*¥* Construct a circle with a specified radius */
14 public CircleWithException (double newRadius) {
15 setRadius (newEadius) ;

16 numberOfObjects++;

17 }

18

19 /** Return radius */
20 public double getRadius () {
21 return radius;

QUENTS-HUBAcom }

https://students-hub.com

24 E /** Set a new radius */

25 E public vold setRadius (double newRadius)
26 é throws IllegalArgumentException {

27 | if (newRadius >= 0)

28 é radius = newRadius;

29 | else

30 é throw new IllegalArgumentException (
31 "Radius cannot be negative');

32 |}

33
34 /** Return numberOfObjects */

35 public static int getNumberOrfObjects () {
36 return numberOfObjects;

37 }

38

39 /** Return the area of this circle */

40 public double findArea() {

41 return radius * radius * 3.14159;

47 }

%L&NTS-HUBAc}n

https://students-hub.com

(mo L B o AT & A T = VR S B

o e
G W N = O W

STU

public class TestCircleWithException {
public static void main (String[] args) {

CircleWithException cl = new CircleWithException (3) ;|
CircleWithException c¢2 = new CircleWithException (- 5}}
CircleWithException ¢3 = new CircleWithException(0) ;!

}
catch (IllegalArgumentException ex) {

System.out.println(ex);

...

System.out.println ("Number of objects created: " +
CircleWithException.getNumberOfObjects());

https://students-hub.com

Rethrowing Exceptions

try {
statements;

= AN
= £/ \
} ﬁ-’ -\b‘ A N/

catch(TheException ex) { — /" “
perform operations before exits;

throw ex;

STUiEﬁ!EBcom

https://students-hub.com

The finally Clause

try {
statements;

}
catch(TheException ex) {

handling ex;
}

finally {
finalStatements;

J

% Note: The catch block may be omitted when the finally clause is used
19

https://students-hub.com

Trace a Program Execution

try {
statements; 7
} Suppose no
catch(TheException ex) { exceptions in
handling ex; the statements
}
finally {
finalStatements;
}

Next statement;

STU -HUB.com

https://students-hub.com

Trace a Program Execution

try {

statements;
}
catch(TheException ex) {

handling ex; The final block
} is always
finally { executed

finalStatements; -

}

Next statement;

‘% .
STU -HUB.com

https://students-hub.com

Trace a Program Execution

try {
statements;

}
catch(TheException ex) {
handling ex;
}
finally {
finalStatements;
) Next statement

in the method
Next statement; is executed

‘% .
STU -HUB.com

https://students-hub.com

Trace a Program Execution

try {
statement1; Suppose an
statement2; exception of
statement3; type Exceptionl
} is thrown in
catch(Exceptionl ex) { statement?
handling ex;
}
finally {
finalStatements;
}

Next statement;

% .
STU B.com

https://students-hub.com

Trace a Program Execution

try {
statementl;

statement?2;
statement3;
} The exception is

catch(Exception1 ex) { handled.
handling ex; =

}
finally {

finalStatements;

}

Next statement;

: % 24
STU -HUB.com

https://students-hub.com

Trace a Program Execution

try {
statementl;

statement?2;
statement3;

)

catch(Exceptionl ex) {

}handling ex; The final block

finally { Is always
finalStatements; executed.

}

Next statement;

‘% .
STU -HUB.com

https://students-hub.com

Trace a Program Execution

try {
statementl;

statement?2;
statement3;

}

catch(Exceptionl ex) {
handling ex;

} The next

finally { statement in the
finalStatements;

}

method is now
executed.

Next statement;

% .
STU B.com

https://students-hub.com

Trace a Program Execution

try {
statementl;

statement?2;

statement3;

}

catch(Exceptionl ex) {
handling ex;

}

catch(Exception2 ex) {
handling ex;
throw ex;

}

finally {
finalStatements;

}

Next statement;

statement?2
throws an

exception of
type Exception?2.

27

https://students-hub.com

Trace a Program Execution

try {
statementl;

statement2;
statement3;

}

catch(Exceptionl ex) {
handling ex;

}

catch(Exception2 ex) {

handling ex;

throw ex;

}
finally {

finalStatements;

}

Next statement;

Handling

exception

28

https://students-hub.com

Trace a Program Execution

try {
statementl;

statement?;
statement3;

}

catch(Exceptionl ex) {
handling ex;

}

catch(Exception2 ex) {
handling ex;
throw ex;

) Execute the

finally { final block

finalStatements;

}

Next statement;

29

https://students-hub.com

Trace a Program Execution

try {
statementl;
statement2;
statement3;
}
catch(Exceptionl ex) {
nandiing ex: Rethrqw the
} exception and
catch(Exception2 ex) { control is
eI E, transferred to the
throw ex; ”er
} Ca
finally {
finalStatements;
}

Next statement;

30

https://students-hub.com

Cautions When Using Exceptions

*** The key benefit of exception handling is separating the
detection of an error (done in a called method) from the
handling of an error (done in the calling method).

s* Exception handling separates error-handling code from

normal programming tasks, thus making programs easier
to read and to modify.

** Be aware, however, that exception handling usually

requires more time and resources because it requires
instantiating a new exception object, rolling back the call
stack, and broadcasting the errors to the calling methods.

STUiEﬁ!EBcom

https://students-hub.com

When to Throw Exceptions

¢ An exception occurs in a method.

** If you want the exception to be processed by
its caller, you should create an exception object
and throw it.

¢ If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions

“* You should use it to deal with unexpected
error conditions.

STUiEﬁ!EBcom

https://students-hub.com

Caution!

¢ Do not use exception to deal with simple,
expected situations.
¢ For example, the following code:

try {
System.out.printIn(refVar.toString());

}

catch (NullPointerException ex) {
System.out.printIn("refVar is null");

}

** is better to be replaced by:

if (refVar = null)
System.out.printin(refVar.toString());

else
% System.out.printIn("refVar is null");

https://students-hub.com

Defining Custom Exception

<+ Use the exception classes in the API
whenever possible.

< Define custom exception classes if the
predefined classes are not sufficient.

< Define custom exception classes by
extending Exception or a subclass of
Exception class.

STUiEﬁ!EBcom

https://students-hub.com

Custom Exception Class Example

1 public class InvalidRadiusException extends Exception {
2 private double radius;

3

4 /** Construct an exception */

5 publlc InvalidRadiusException (double radius) {
o super ("Invalid radius " + radius):

7 this.radius = radius:

8 }

9
10 /** Return the radius */
11 public double getRadius () {
12 return radius;
13 }
14 }

/** S5et a new radius */

public void setRadius (double newRadius)
throws InvalidRadiusException {
if (newRadius >= 0)
radius = newRadius:
else

% throw new InvalidRadiusException (newRadius):;
STUDE -HUB.com } 35

https://students-hub.com

The File Class

*** The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

** The filename is a string.

¢ The File class is a wrapper class for
the file name and its directory path.

https://students-hub.com

File class

+File(pathname: String)

+File(parent: String, child: String)
+File(parent: File, child: String)

+exists(): boolean
+canRead(): boolean
+canWrite(): boolean
+isDirectory(): boolean
+isFile(): boolean
+isAbsolute(): boolean
+isHidden(): boolean

Creates a File object for the specified path name. The path name may be a
directory or a file.

Creates a File object for the child under the directory parent. The child may be
a file name or a subdirectory.

Creates a File object for the child under the directory parent. The parent is a
File object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the Fi1e object exists

Returns true if the file represented by the File object exists and can be read,

Returns true if the file represented by the File object exists and can be written,

Returns true if the File object represents a directory.

Returns true if the File object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact
definition of hidden is system-dependent. On Windows, you can mark a file

hidden in the File Properties dialog box. On Unix systems, a file is hidden if
its name begins with a period(.) character.

The directory separator for Windows is a backslash (\). The backslash is
a special character in Java and should be written as \\ in a string literal

STU B.com

37

https://students-hub.com

Explore File Properties

*** Write a program that demonstrates how to
create files and use the methods in the File
class to obtain their properties. The following
figures show a sample run of the program:

=] Command Prompt ﬂﬂ
C:\book>java TestFileClass N
Does it exist? true
Can it be read? true

Can it be written? true

Is it a directory? false

Is it a file? true

Is it absolute? false

Is it hidden? false

What is 1its absolute path? C:\book\.\image\us.gif

What is its canonical path? C:\book\image\us.gif

What is its name? us.gif

What is its path? .\image\us.gif

When was it last modified? Sat May 08 14:00:34 EDT 1999
What is the path separator? ;

What is the name separator? \

https://students-hub.com

Text File Input and Output

** In order to perform |/O, you need to create
objects using appropriate Java I/O classes.

¢ There are two types of files: text and binary.
» Text files are essentially characters on disk.

** The objects contain the methods for
reading/writing text data from/to a file.

*** This section introduces how to read/write
strings and numeric values from/to a text file
using the Scanner and PrintWriter classes.

https://students-hub.com

PrintWriter class

java.io. PrintWriter

+PrintWriter(fil ename: Stning)

+print(s: String): void
+print(c: char): void
“+print(cArray: char[]): vad
+print(1: int) void

+print(l: long): vaid
“+print(f: float): vaid
+print(d: double): void
+print(b: boolean): void

Also contains the overloaded
println methods.

Also contains the overloaded
printf methods.

STUDE -HUB.com

Creates a PnntWriter for the specified file.
Writes a string.

Writes a character.

Writes an array of character.

Writes an int value.

Writes a long value.

Writes a float value.

Writes a double value.

Writes a boolean value.

A println method acts like a print method; additionall v 1t
prints a line separator. The line separator string 1s defined
by the system. It 1s \r'n on Windows and 'n on Unix.

The printf method was introduced 1n §3.6, “Formatting
Console Output and Strings.”

The close() method must be used to close the file. If this method is

not invoked, the data may not be saved properly in the file.

40

https://students-hub.com

Scanner class

java util Scanner

+Scanner source: File) Creates a Scanner object to read data from the specfied file.
+Scannersource: Stnang) Creates a Scanner object to read data from the specified string.
+dose() Closes this scanner.
+hasNext(): boolean Eeturns trueif this scanner has another token in its input.
+next(): String Eeturns next token as a stnng.
+nextB via): byvte Eeturns next token as abyte
+nextShort () short Eeturns next token as a short.
+nextlnt() int Eeturns next token as an int.
+nextLong() long Eeturns next token as a long.
+nextFloat () float Returns next token as a float.
+nextDouble(): doubl e Eeturns next token as adaubl e
+useDd imiter(pattern: Stnng): | Sets thi s scanner s delimiting pattern.

Scanner

* 41
STUDE -HUB.com

https://students-hub.com

Try-with-resources

Programmers often forget to close the file.
JDK 7 provides the followings new try-with-resources
syntax that automatically closes the files.

import java.io.*;
public class WriteDataWithAutoClose {
public static void main(String[] args) throws Exception {
File file = new File(“data.txt");
try (PrintWriter output = new PrintWriter(file);) {
output.printin(“Mamoun Nawahdah");
output.println(“Birzeit University");

https://students-hub.com

Problem: Replacing Text

*** Write a class named ReplaceText that
replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:

> java ReplaceText sourceFile
targetFile oldString newString

STUiEE!EBcom

43

https://students-hub.com

Reading Data from the Web

Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

Client Server
Web
Browser Web
Internet Server
Application Local files
Program

https://students-hub.com

Reading Data from the Web

URL url = new
URL("www.google.com/index.html");

»* After a URL object is created, you can use
the openStream() method defined in the
URL class to open an input stream and use
this stream to create a Scanner object as
follows:

Scanner input = new
Scanner(url.openStream());

* 45
STUDE -HUB.com

https://students-hub.com

How is I/O Handled in Java?

In order to perform 1/0O, you need to create objects using
appropriate Java /O classes.

Scanner input = new Scanner(new File("temp.txt"));
System.out.printin(input.nextLine());

Program
\\ Input stream

Input object 7
created from an - () 01011...1001 |) I E—
input class

el
e \

output class

/ Output stream

PrintWriter output = new PrintWriter("temp.txt");

output.printin(“Mamoun Nawahdah");
% output.close();

Output object .
/’ created from an > () 11001...1011 I) —_—

https://students-hub.com

Text File vs. Binary File

] Data stored in a text file are represented in
human-readable form.

] Data stored in a binary file are represented in
binary form.

 For example, the Java source programs are
stored in text files and can be read by a text
editor, but the Java classes are stored in binary
files and are read by the JVM.

1 The advantage of binary files is that they are
more efficient to process than text files.

https://students-hub.com

Text 1/0

» Text /0O requires encoding and decoding.

¢ The JVM converts a Unicode to a file specific
encoding when writing a character and coverts a
file specific encoding to a Unicode when reading

a character.

Text I/O program

The Unicode of
the character

Encoding/
Decoding

-———

e
\\-""‘—ﬂ—__

T
__;—'—'-'--_‘-’,

The encoding of the character
is stored in the file

e.g.. "1 9911 -

STUiEﬁ!EBcom

A

>=(00110001 00111001 00111001

0x31

|
0x39

#_//

0x39

48

BelalHamdeh
Underline
التشفير

BelalHamdeh
Underline
فك التشفير

BelalHamdeh
Underline
يتطلب

https://students-hub.com

Binary I/O

¢ Binary |/O does not require conversions.

** When you write a byte to a file, the original byte
is copied into the file.

*** When you read a byte from a file, the exact byte
in the file is returned.

B A / \
mary I/O program Sl e

A byte is read/written =~ —<—t+—> The same byte in the file

cig., 199 ~« \"‘ llOOAOlll
|

0xC7
49

https://students-hub.com

Binary 1/0O Classes

=
— InputStream M—

= FileInputStream |

— FilterInputStream N—

— QutputStream M—

— DatalnputStream |

—BufferedInputStreaml

ObjectInputStream |

F1leOutputStream |

DataOutputStreaml
FilterOutputStream Iq—l:

BufferedOutputStreaml

ObjectOutputStream |

50

BelalHamdeh
Sticky Note
Abstract

BelalHamdeh
Sticky Note
Abstract

https://students-hub.com

InputStream

tread(): int

tread (b: byte[]): int

tread (b: byte[],off:int,
len: int): int

tclose(): void
tskip(n: long): long

STU B.com

Reads the next byte of data from the input stream. The value byte is returned as
an int value in the range 0-255. If no byte is available because the end of
the stream has been reached, the value -1 is returned.

Readsupto b. length bytes into array b from the input stream and returns the
actual number of bytes read. Returns -1 at the end of the stream.

Reads bytes from the input stream and stores them in b [0off], b[off+1], ...

b[off+len-1]. The actual number of bytes read is returned. Returns -1
at the end of the stream.

Closes this input stream and releases any system resources occupied by it.

Skips over and discards n bytes of data from this input stream. The actual
number of bytes skipped is returned.

o1

https://students-hub.com

OutputStream

twrite(int b): void Writes the specified byte to this output stream. The parameter b 1s an int value.
(byte) b is written to the output stream.

twrite(b: byte[]): void Writes all the bytes in array b to the output stream.

twrite(b: byte[], off: int, Writesb[off], b[off+1], ..., b[off+len-1] into the output stream.
len: int): void

tclose(): void Closes this output stream and releases any system resources occupied by it.

tflush() : void Flushes this output stream and forces any buffered output bytes to be written out.

52

STU B.com

https://students-hub.com

FileInputStream/FileOutputStream

! <]_ DatalnputStream

InputStream <} / FilterinputStream

ObjectInputStream

F BufferedOutputStream
Outpu}S{ream <]' FilterOutputStream < DataOutputStream

/ ObjectOutputStream PrintStream

BufferedInputStream

Object Q—

FileInputStream/FileOutputStream associates a binary input/output
stream with an external file.

All the methods in FilelnputStream/FileOuptputStream are
inherited from its superclasses.

53

STUDE -HUB.com

https://students-hub.com

FilelnputStream

+¢* To construct a FilelInputStream, use the
following constructors:

public FileInputStream(String filename)
public FileInputStream(File file)

¢ A java.io.FileNotFoundException would
occur if you attempt to create a
FileInputStream with a nonexistent file.

https://students-hub.com

FileOutputStream

¢ To construct a FileOutputStream, use the

following constructors:
public FileOutputStream(String filename)

public FileOutputStream(File file)
public FileOutputStream(String filename, boolean append)

public FileOutputStream(File file, boolean append)
*» If the file does not exist, a new file would be created.

» If the file already exists, the first two constructors would
delete the current contents in the file.

** To keep the current content and append new data into
the file, use the last two constructors by passing true to
the append parameter.

https://students-hub.com

FilterlnputStream/FilterOutputStream

FileInputStream

Ges G

ObjectInputStream

DatalnputStream

InputStream

BufferedInputStream

Object Q—
FileOutputStream BufferedOutputStream
OutputStream Q‘;_< DataOutputStream
ObjectOutputStream PrintStream

¢ Using a filter class enables you to read integers,
doubles, and strings instead of bytes and characters.

<* FilterlnputStream and FilterOutputStream are the
base classes for filtering data.

56

https://students-hub.com

DatalnputStream/DataOutputStream

FilelnputStream

InputStream

FilterInputStream

<]_

Object

ObjectinputStream

FileOutputStream

OutputStream

BufferedInputStream

BufferedOutputStream

FilterOutputStream

ObjectOutputStream

PrintStream

<* DatalnputStream reads bytes from the stream and converts
them into appropriate primitive type values or strings.

«* DataOutputStream converts primitive type values or strings
into bytes and output the bytes to the stream.

57

https://students-hub.com

DatalnputStream

InputStream |

|

FilterInputStream |

=

DatalnputStream

+DataInputStream(
in: InputStream)

STU -HUB.com

«interface»
java.io.Datalnput

+readBoolean(): boolean
+readByte(): byte
+readChar(): char
+readFloat(): float
+readDouble(): double
+readInt(): 1int
+readlong(): Tong
+readShort(): short
+readline(): String
+readUTF(): String

Reads a Boolean from the input stream.
Reads a byte from the input stream.
Reads a character from the input stream.
Reads a Tloat from the input stream.
Reads a double from the input stream.
Reads an 1nt from the input stream.
Reads a Tong from the input stream.
Reads a short from the input stream.
Reads a 11ne of characters from input.

Reads a string in UTF format.

58

https://students-hub.com

DataOutputStream

OutputStream

«interface»
Jjava.io.DataQutput

FilterOutputStream I

-
T

DataOutputStream

+DatalutputStream
(out: QutputStream)

STU -HUB.com

+writeBoolean(b: boolean): void
+writeByte(v: int): void

+writeBytes(s: String): void
+writeChar(c: char): void
+writeChars(s: String): void

+writeFloat(v: float): void
+writeDouble(v: double): void
+writeInt(v: int): void
+writeLong(v: long): void
+writeShort(v: short): void
+writeUTF(s: String): void

Writes a Boolean to the output stream.

Writes the eight low-order bits of the argument v to
the output stream.

Writes the lower byte of the characters in a string to
the output stream.

Writes a character (composed of 2 bytes) to the
output stream.

Writes every character in the string s to the output
stream, in order, 2 bytes per character.

Writes a f1oat value to the output stream.
Writes a doub1e value to the output stream.
Writes an 1nt value to the output stream.
Writes a Tong value to the output stream.
Writes a short value to the output stream.

Writes s string in UTF format.

59

https://students-hub.com

Using DatalnputStream/DataOutputStream

-« DatalnputStream |<_ FileInputStream I-q:— External File |

int, double, Stl'iﬂg / 01000110011 ...
DatalnputStream infile =

new DatalnputStream(new FilelnputStream("in.dat"));

—» DataOutputStream I—» FileOutputS treaml—» External File |

int, double, string ... / 01000110011 ..
DataOutputStream outfile =
new DataOutputStream(new FileOutputStream("out.dat"));

https://students-hub.com

Order and Format

< CAUTION: You have to read the data in the same
order and same format in which they are stored.

< For example, since names are written in UTF-8 using
writeUTF, you must read names using readUTF.

Checking End of File

** If you keep reading data at the end of a stream, an

EOFException would occur. So how do you check the end
of a file?

¢ You can use input.available() to check it.
¢ input.available() == 0 indicates that it is the end of a file.

% 61
STUDE -HUB.com

https://students-hub.com

Case Studies: Copy File

This case study develops a program that copies files. The
user needs to provide a source file and a target file as
command-line arguments using the following command:

& |Command Prompt - 10| x|
tshook>java Copy Welcome.java Temp.jaua :J
arget file Temp.java already exists
tshook>del Temp.java ==
. tvhook>java Copy Welcome.java Temp. java
he file Yelcome.java has 119 hytes
java Copy source target he £ile M

tshook>java Copy TTT Temp. java
ource file TIT not exist

tsnhookx bl
< I v 4

The program copies a source file to a target file and
displays the number of bytes in the file. If the source does
not exist, tell the user the file is not found. If the target file
already exists, tell the user the file already exists.

STUDE -HUB.com 62

https://students-hub.com

Self-Study

+** BufferedinputStream/BufferedOutputStream
can be used to speed up input and output by
reducing the number of disk reads and writes.

https://students-hub.com

Self-Study

** ObjectinputStream/ObjectOutputStream
enables you to perform 1/0O for objects in addition
to primitive-type values and strings.

try (FileOutputStream f = new
FileOutputStream("data.dat");
ObjectOutputStream output = new
ObjectOutputStream(f);) {
output.writeUTF("Mamoun");
output.writeDouble(55.5);
output.writeObject(new Date());

}

STUiEﬁ!EBcom

https://students-hub.com

	Slide 1: Exception Handling and I/O
	Slide 2: Exception Handling
	Slide 3: System Errors
	Slide 4: Exceptions
	Slide 5: Runtime Exceptions
	Slide 6: Checked Exceptions vs. Unchecked Exceptions
	Slide 7: Declaring, Throwing, and Catching Exceptions
	Slide 8: Declaring Exceptions
	Slide 9: Throwing Exceptions
	Slide 10: Throwing Exceptions Example
	Slide 11: Catching Exceptions
	Slide 12: JDK 7 multicatch
	Slide 13: Catch or Declare Checked Exceptions
	Slide 14: Catch or Declare Checked Exceptions
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Rethrowing Exceptions
	Slide 19: The finally Clause
	Slide 20: Trace a Program Execution
	Slide 21: Trace a Program Execution
	Slide 22: Trace a Program Execution
	Slide 23: Trace a Program Execution
	Slide 24: Trace a Program Execution
	Slide 25: Trace a Program Execution
	Slide 26: Trace a Program Execution
	Slide 27: Trace a Program Execution
	Slide 28: Trace a Program Execution
	Slide 29: Trace a Program Execution
	Slide 30: Trace a Program Execution
	Slide 31: Cautions When Using Exceptions
	Slide 32: When to Throw Exceptions
	Slide 33: Caution!
	Slide 34: Defining Custom Exception
	Slide 35: Custom Exception Class Example
	Slide 36: The File Class
	Slide 37: File class
	Slide 38: Explore File Properties
	Slide 39: Text File Input and Output
	Slide 40: PrintWriter class
	Slide 41: Scanner class
	Slide 42: Try-with-resources
	Slide 43: Problem: Replacing Text
	Slide 44: Reading Data from the Web
	Slide 45: Reading Data from the Web
	Slide 46: How is I/O Handled in Java?
	Slide 47: Text File vs. Binary File
	Slide 48: Text I/O
	Slide 49: Binary I/O
	Slide 50: Binary I/O Classes
	Slide 51: InputStream
	Slide 52: OutputStream
	Slide 53: FileInputStream/FileOutputStream
	Slide 54: FileInputStream
	Slide 55: FileOutputStream
	Slide 56: FilterInputStream/FilterOutputStream
	Slide 57: DataInputStream/DataOutputStream
	Slide 58: DataInputStream
	Slide 59: DataOutputStream
	Slide 60: Using DataInputStream/DataOutputStream
	Slide 61: Checking End of File
	Slide 62: Case Studies: Copy File
	Slide 63: Self-Study
	Slide 64: Self-Study

