
Exception Handling
and I/O

By: Mamoun Nawahdah (Ph.D.)

2022/2023

Liang, Introduction to Java Programming and Data Structures,

Twelfth Edition, (c) 2020 Pearson Education, Inc. All rights reserved.

STUDENTS-HUB.com

https://students-hub.com

2

Exception Handling

❖ Exception handling technique enables a

method to throw an exception to its caller.

❖Without this capability, a method must
handle the exception or terminate the
program.

STUDENTS-HUB.com

https://students-hub.com

3

System Errors

System errors are thrown by JVM and represented in the
Error class. The Error class describes internal system errors.

STUDENTS-HUB.com

https://students-hub.com

4

Exceptions

❖ Exception describes errors caused by your program and
external circumstances.

❖ These errors can be caught and handled by your program.
STUDENTS-HUB.com

https://students-hub.com

5

Runtime Exceptions

❖ RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

STUDENTS-HUB.com

https://students-hub.com

6

Checked Exceptions vs.
Unchecked Exceptions

❖ RuntimeException, Error and their

subclasses are known as unchecked
exceptions.

❖ All other exceptions are known as checked
exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

STUDENTS-HUB.com

https://students-hub.com

7

Declaring, Throwing, and
Catching Exceptions

STUDENTS-HUB.com

https://students-hub.com

8

Declaring Exceptions

❖ Every method must state the types of
checked exceptions it might throw.

❖ This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

STUDENTS-HUB.com

https://students-hub.com

9

Throwing Exceptions
❖When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.

❖ This is known as throwing an exception.

throw new IOException();

IOException ex = new IOException();
throw ex;

STUDENTS-HUB.com

https://students-hub.com

10

Throwing Exceptions Example

public void setRadius(double newRadius)
throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException(

"Radius cannot be negative");
}

STUDENTS-HUB.com

https://students-hub.com

11

Catching Exceptions
try {

statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {

handler for exception1;
}
catch (Exception2 exVar2) {

handler for exception2;
}
...
catch (ExceptionN exVar3) {

handler for exceptionN;
}

The order in which exceptions are specified in catch blocks is important.
STUDENTS-HUB.com

https://students-hub.com

12

JDK 7 multicatch

try {
statements; // Statements that may throw exceptions

}
catch (Exception1 | Exception2 |ExceptionN ex) {

// handler exception;
}

You can use the new JDK 7 multicatch
feature to simplify coding for the exceptions
with the same handling code. The syntax is:

STUDENTS-HUB.com

https://students-hub.com

Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

void p2() throws IOException {

 if (a file does not exist) {

 throw new IOException("File does not exist");

 }

 ...

}

STUDENTS-HUB.com

https://students-hub.com

14

Catch or Declare Checked Exceptions
❖ Java forces you to deal with checked exceptions.

▪ You must invoke it in a try-catch block or

▪ declare to throw the exception in the calling method.

❖ For example, suppose that method p1 invokes method
p2, you have to write the code as follow:

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

18

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {

perform operations before exits;

throw ex;
}

STUDENTS-HUB.com

https://students-hub.com

19

The finally Clause

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Note: The catch block may be omitted when the finally clause is used
STUDENTS-HUB.com

https://students-hub.com

20

Trace a Program Execution
try {

statements;
}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

Suppose no
exceptions in

the statements

STUDENTS-HUB.com

https://students-hub.com

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

21

Trace a Program Execution

The final block
is always
executed

STUDENTS-HUB.com

https://students-hub.com

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

22

Trace a Program Execution

Next statement
in the method

is executed

STUDENTS-HUB.com

https://students-hub.com

23

Trace a Program Execution
try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

Suppose an
exception of

type Exception1
is thrown in
statement2

STUDENTS-HUB.com

https://students-hub.com

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

24

Trace a Program Execution

The exception is
handled.

STUDENTS-HUB.com

https://students-hub.com

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

25

Trace a Program Execution

The final block
is always
executed.

STUDENTS-HUB.com

https://students-hub.com

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

26

Trace a Program Execution

The next
statement in the
method is now

executed.

STUDENTS-HUB.com

https://students-hub.com

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
catch(Exception2 ex) {
handling ex;
throw ex;

}
finally {
finalStatements;

}

Next statement;

27

Trace a Program Execution

statement2
throws an

exception of
type Exception2.

STUDENTS-HUB.com

https://students-hub.com

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
catch(Exception2 ex) {
handling ex;
throw ex;

}
finally {
finalStatements;

}

Next statement;

28

Trace a Program Execution

Handling
exception

STUDENTS-HUB.com

https://students-hub.com

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
catch(Exception2 ex) {
handling ex;
throw ex;

}
finally {
finalStatements;

}

Next statement;

29

Trace a Program Execution

Execute the
final block

STUDENTS-HUB.com

https://students-hub.com

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
catch(Exception2 ex) {
handling ex;
throw ex;

}
finally {
finalStatements;

}

Next statement;

30

Trace a Program Execution

Rethrow the
exception and

control is
transferred to the

caller

STUDENTS-HUB.com

https://students-hub.com

31

Cautions When Using Exceptions

❖ The key benefit of exception handling is separating the
detection of an error (done in a called method) from the
handling of an error (done in the calling method).

❖ Exception handling separates error-handling code from

normal programming tasks, thus making programs easier
to read and to modify.

❖ Be aware, however, that exception handling usually

requires more time and resources because it requires
instantiating a new exception object, rolling back the call
stack, and broadcasting the errors to the calling methods.

STUDENTS-HUB.com

https://students-hub.com

32

When to Throw Exceptions
❖ An exception occurs in a method.

❖ If you want the exception to be processed by
its caller, you should create an exception object
and throw it.

❖ If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions
❖ You should use it to deal with unexpected
error conditions.

STUDENTS-HUB.com

https://students-hub.com

33

Caution!
❖ Do not use exception to deal with simple,
expected situations.
❖ For example, the following code:

try {
System.out.println(refVar.toString());

}
catch (NullPointerException ex) {

System.out.println("refVar is null");
}

❖ is better to be replaced by:
if (refVar != null)

System.out.println(refVar.toString());
else

System.out.println("refVar is null");
STUDENTS-HUB.com

https://students-hub.com

34

Defining Custom Exception

❖Use the exception classes in the API
whenever possible.

❖Define custom exception classes if the
predefined classes are not sufficient.

❖Define custom exception classes by
extending Exception or a subclass of
Exception class.

STUDENTS-HUB.com

https://students-hub.com

35

Custom Exception Class Example

STUDENTS-HUB.com

https://students-hub.com

36

The File Class

❖ The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

❖ The filename is a string.

❖ The File class is a wrapper class for
the file name and its directory path.

STUDENTS-HUB.com

https://students-hub.com

37

File class

The directory separator for Windows is a backslash (\). The backslash is
a special character in Java and should be written as \\ in a string literal

STUDENTS-HUB.com

https://students-hub.com

Explore File Properties
❖Write a program that demonstrates how to

create files and use the methods in the File
class to obtain their properties. The following
figures show a sample run of the program:

STUDENTS-HUB.com

https://students-hub.com

39

Text File Input and Output
❖ In order to perform I/O, you need to create

objects using appropriate Java I/O classes.

❖ There are two types of files: text and binary.

❖ Text files are essentially characters on disk.

❖ The objects contain the methods for

reading/writing text data from/to a file.

❖ This section introduces how to read/write

strings and numeric values from/to a text file

using the Scanner and PrintWriter classes.
STUDENTS-HUB.com

https://students-hub.com

40

PrintWriter class

The close() method must be used to close the file. If this method is
not invoked, the data may not be saved properly in the file. STUDENTS-HUB.com

https://students-hub.com

41

Scanner class

STUDENTS-HUB.com

https://students-hub.com

Try-with-resources

import java.io.*;
public class WriteDataWithAutoClose {

public static void main(String[] args) throws Exception {
File file = new File(“data.txt");
try (PrintWriter output = new PrintWriter(file);) {

output.println(“Mamoun Nawahdah");
output.println(“Birzeit University");

}
}

}

Programmers often forget to close the file.
JDK 7 provides the followings new try-with-resources
syntax that automatically closes the files.

STUDENTS-HUB.com

https://students-hub.com

43

Problem: Replacing Text

❖Write a class named ReplaceText that
replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:

➢ java ReplaceText sourceFile
targetFile oldString newString

STUDENTS-HUB.com

https://students-hub.com

44

Reading Data from the Web
Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

STUDENTS-HUB.com

https://students-hub.com

45

Reading Data from the Web
URL url = new

URL("www.google.com/index.html");

❖ After a URL object is created, you can use
the openStream() method defined in the
URL class to open an input stream and use
this stream to create a Scanner object as
follows:

Scanner input = new
Scanner(url.openStream());

STUDENTS-HUB.com

https://students-hub.com

How is I/O Handled in Java?
In order to perform I/O, you need to create objects using
appropriate Java I/O classes.

PrintWriter output = new PrintWriter("temp.txt");

output.println(“Mamoun Nawahdah");

output.close();

Scanner input = new Scanner(new File("temp.txt"));

System.out.println(input.nextLine());

STUDENTS-HUB.com

https://students-hub.com

47

Text File vs. Binary File

❑ Data stored in a text file are represented in
human-readable form.

❑ Data stored in a binary file are represented in
binary form.

❑ For example, the Java source programs are
stored in text files and can be read by a text
editor, but the Java classes are stored in binary
files and are read by the JVM.

❑ The advantage of binary files is that they are

more efficient to process than text files.

STUDENTS-HUB.com

https://students-hub.com

48

Text I/O
❖ Text I/O requires encoding and decoding.

❖ The JVM converts a Unicode to a file specific
encoding when writing a character and coverts a
file specific encoding to a Unicode when reading
a character.

STUDENTS-HUB.com

BelalHamdeh
Underline
التشفير

BelalHamdeh
Underline
فك التشفير

BelalHamdeh
Underline
يتطلب

https://students-hub.com

49

Binary I/O
❖ Binary I/O does not require conversions.

❖When you write a byte to a file, the original byte
is copied into the file.

❖When you read a byte from a file, the exact byte
in the file is returned.

STUDENTS-HUB.com

https://students-hub.com

50

Binary I/O Classes

STUDENTS-HUB.com

BelalHamdeh
Sticky Note
Abstract

BelalHamdeh
Sticky Note
Abstract

https://students-hub.com

51

InputStream

STUDENTS-HUB.com

https://students-hub.com

52

OutputStream

STUDENTS-HUB.com

https://students-hub.com

53

FileInputStream/FileOutputStream

FileInputStream/FileOutputStream associates a binary input/output
stream with an external file.

All the methods in FileInputStream/FileOuptputStream are
inherited from its superclasses.

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

STUDENTS-HUB.com

https://students-hub.com

54

FileInputStream
❖ To construct a FileInputStream, use the

following constructors:

public FileInputStream(String filename)

public FileInputStream(File file)

❖ A java.io.FileNotFoundException would
occur if you attempt to create a
FileInputStream with a nonexistent file.

STUDENTS-HUB.com

https://students-hub.com

55

FileOutputStream
❖ To construct a FileOutputStream, use the

following constructors:
public FileOutputStream(String filename)

public FileOutputStream(File file)

public FileOutputStream(String filename, boolean append)

public FileOutputStream(File file, boolean append)

❖ If the file does not exist, a new file would be created.

❖ If the file already exists, the first two constructors would
delete the current contents in the file.

❖ To keep the current content and append new data into
the file, use the last two constructors by passing true to
the append parameter.

STUDENTS-HUB.com

https://students-hub.com

56

FilterInputStream/FilterOutputStream

❖ Using a filter class enables you to read integers,
doubles, and strings instead of bytes and characters.

❖ FilterInputStream and FilterOutputStream are the
base classes for filtering data.

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

STUDENTS-HUB.com

https://students-hub.com

57

DataInputStream/DataOutputStream

❖ DataInputStream reads bytes from the stream and converts
them into appropriate primitive type values or strings.

❖DataOutputStream converts primitive type values or strings
into bytes and output the bytes to the stream.

InputStream

OutputStream

Object

 ObjectOutputStream

 FilterOutputStream

 FileOutputStream

 BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

 PrintStream

ObjectInputStream

 FilterInputStream

FileInputStream

STUDENTS-HUB.com

https://students-hub.com

58

DataInputStream

STUDENTS-HUB.com

https://students-hub.com

59

DataOutputStream

STUDENTS-HUB.com

https://students-hub.com

60

Using DataInputStream/DataOutputStream

DataInputStream infile =

new DataInputStream(new FileInputStream("in.dat"));

DataOutputStream outfile =

new DataOutputStream(new FileOutputStream("out.dat"));

STUDENTS-HUB.com

https://students-hub.com

61

Checking End of File
❖ If you keep reading data at the end of a stream, an

EOFException would occur. So how do you check the end
of a file?

❖ You can use input.available() to check it.

❖ input.available() == 0 indicates that it is the end of a file.

Order and Format
❖ CAUTION: You have to read the data in the same

order and same format in which they are stored.

❖ For example, since names are written in UTF-8 using
writeUTF, you must read names using readUTF.

STUDENTS-HUB.com

https://students-hub.com

62

Case Studies: Copy File
This case study develops a program that copies files. The
user needs to provide a source file and a target file as
command-line arguments using the following command:

java Copy source target

The program copies a source file to a target file and
displays the number of bytes in the file. If the source does
not exist, tell the user the file is not found. If the target file
already exists, tell the user the file already exists.

STUDENTS-HUB.com

https://students-hub.com

Self-Study

❖ BufferedInputStream/BufferedOutputStream
can be used to speed up input and output by
reducing the number of disk reads and writes.

STUDENTS-HUB.com

https://students-hub.com

Self-Study
❖ ObjectInputStream/ObjectOutputStream

enables you to perform I/O for objects in addition
to primitive-type values and strings.

try (FileOutputStream f = new
FileOutputStream("data.dat");
ObjectOutputStream output = new
ObjectOutputStream(f);) {

output.writeUTF("Mamoun");
output.writeDouble(55.5);
output.writeObject(new Date());

}

STUDENTS-HUB.com

https://students-hub.com

	Slide 1: Exception Handling and I/O
	Slide 2: Exception Handling
	Slide 3: System Errors
	Slide 4: Exceptions
	Slide 5: Runtime Exceptions
	Slide 6: Checked Exceptions vs. Unchecked Exceptions
	Slide 7: Declaring, Throwing, and Catching Exceptions
	Slide 8: Declaring Exceptions
	Slide 9: Throwing Exceptions
	Slide 10: Throwing Exceptions Example
	Slide 11: Catching Exceptions
	Slide 12: JDK 7 multicatch
	Slide 13: Catch or Declare Checked Exceptions
	Slide 14: Catch or Declare Checked Exceptions
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Rethrowing Exceptions
	Slide 19: The finally Clause
	Slide 20: Trace a Program Execution
	Slide 21: Trace a Program Execution
	Slide 22: Trace a Program Execution
	Slide 23: Trace a Program Execution
	Slide 24: Trace a Program Execution
	Slide 25: Trace a Program Execution
	Slide 26: Trace a Program Execution
	Slide 27: Trace a Program Execution
	Slide 28: Trace a Program Execution
	Slide 29: Trace a Program Execution
	Slide 30: Trace a Program Execution
	Slide 31: Cautions When Using Exceptions
	Slide 32: When to Throw Exceptions
	Slide 33: Caution!
	Slide 34: Defining Custom Exception
	Slide 35: Custom Exception Class Example
	Slide 36: The File Class
	Slide 37: File class
	Slide 38: Explore File Properties
	Slide 39: Text File Input and Output
	Slide 40: PrintWriter class
	Slide 41: Scanner class
	Slide 42: Try-with-resources
	Slide 43: Problem: Replacing Text
	Slide 44: Reading Data from the Web
	Slide 45: Reading Data from the Web
	Slide 46: How is I/O Handled in Java?
	Slide 47: Text File vs. Binary File
	Slide 48: Text I/O
	Slide 49: Binary I/O
	Slide 50: Binary I/O Classes
	Slide 51: InputStream
	Slide 52: OutputStream
	Slide 53: FileInputStream/FileOutputStream
	Slide 54: FileInputStream
	Slide 55: FileOutputStream
	Slide 56: FilterInputStream/FilterOutputStream
	Slide 57: DataInputStream/DataOutputStream
	Slide 58: DataInputStream
	Slide 59: DataOutputStream
	Slide 60: Using DataInputStream/DataOutputStream
	Slide 61: Checking End of File
	Slide 62: Case Studies: Copy File
	Slide 63: Self-Study
	Slide 64: Self-Study

