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Exception Handling

❖ Exception handling technique enables a 

method to throw an exception to its caller. 

❖Without this capability, a method must 
handle the exception or terminate the 
program.
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System Errors

System errors are thrown by JVM and represented in the 
Error class. The Error class describes internal system errors.
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Exceptions

❖ Exception describes errors caused by your program and 
external circumstances. 

❖ These errors can be caught and handled by your program. 
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Runtime Exceptions

❖ RuntimeException is caused by programming errors, 
such as bad casting, accessing an out-of-bounds array, and 
numeric errors.
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Checked Exceptions vs. 
Unchecked Exceptions

❖ RuntimeException, Error and their 

subclasses are known as unchecked 
exceptions. 

❖ All other exceptions are known as checked 
exceptions, meaning that the compiler forces 
the programmer to check and deal with the 
exceptions. 
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Declaring, Throwing, and 
Catching Exceptions
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Declaring Exceptions

❖ Every method must state the types of 
checked exceptions it might throw. 

❖ This is known as declaring exceptions.

public void x()  throws IOException

public void y()  throws IOException, OtherException
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Throwing Exceptions
❖When the program detects an error, the 
program can create an instance of an appropriate 
exception type and throw it. 

❖ This is known as throwing an exception. 

throw new IOException();

IOException ex = new IOException();
throw ex;
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Throwing Exceptions Example

public void setRadius(double newRadius) 
throws IllegalArgumentException {

if (newRadius >= 0)
radius =  newRadius;

else
throw new IllegalArgumentException(

"Radius cannot be negative");
}
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Catching Exceptions
try {

statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {

handler for exception1;
}
catch (Exception2 exVar2) {

handler for exception2;
}
...
catch (ExceptionN exVar3) {

handler for exceptionN;
}

The order in which exceptions are specified in catch blocks is important.
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JDK 7 multicatch

try {
statements; // Statements that may throw exceptions

}
catch (Exception1 | Exception2 |ExceptionN ex) {

// handler exception;
}

You can use the new JDK 7 multicatch 
feature to simplify coding for the exceptions 
with the same handling code. The syntax is:
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Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

 
void p2() throws IOException { 

  if (a file does not exist) { 

     throw new IOException("File does not exist"); 

  } 

   

  ... 

} 
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Catch or Declare Checked Exceptions
❖ Java forces you to deal with checked exceptions. 

▪ You must invoke it in a try-catch block or

▪ declare to throw the exception in the calling method. 

❖ For example, suppose that method p1 invokes method 
p2, you have to write the code as follow:
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Rethrowing Exceptions

try {  
statements;

}
catch(TheException ex) { 

perform operations before exits;

throw ex;
}
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The finally Clause

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Note: The catch block may be omitted when the finally clause is used
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Trace a Program Execution
try {  

statements;
}
catch(TheException ex) { 

handling ex; 
}
finally { 

finalStatements; 
}

Next statement;

Suppose no 
exceptions in 

the statements
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try {  
statements;

}
catch(TheException ex) { 

handling ex; 
}
finally { 

finalStatements;
}

Next statement;
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Trace a Program Execution

The final block 
is always 
executed

STUDENTS-HUB.com

https://students-hub.com


try {  
statements;

}
catch(TheException ex) { 

handling ex; 
}
finally { 

finalStatements; 
}

Next statement;
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Trace a Program Execution

Next statement 
in the method 

is executed
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Trace a Program Execution
try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
finally { 
finalStatements; 

}

Next statement;

Suppose an 
exception of 

type Exception1 
is thrown in 
statement2
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try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
finally { 
finalStatements; 

}

Next statement;
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Trace a Program Execution

The exception is 
handled.
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try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
finally { 
finalStatements; 

}

Next statement;
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Trace a Program Execution

The final block 
is always 
executed.
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try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
finally { 
finalStatements; 

}

Next statement;
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Trace a Program Execution

The next 
statement in the 
method is now 

executed.
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try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
catch(Exception2 ex) { 
handling ex; 
throw ex;

}
finally { 
finalStatements; 

}

Next statement;
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Trace a Program Execution

statement2 
throws an 

exception of 
type Exception2.
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try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
catch(Exception2 ex) { 
handling ex; 
throw ex;

}
finally { 
finalStatements; 

}

Next statement;
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Trace a Program Execution

Handling 
exception
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try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
catch(Exception2 ex) { 
handling ex; 
throw ex;

}
finally { 
finalStatements; 

}

Next statement;
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Trace a Program Execution

Execute the 
final block
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try {  
statement1;
statement2;
statement3;

}
catch(Exception1 ex) { 
handling ex; 

}
catch(Exception2 ex) { 
handling ex; 
throw ex;

}
finally { 
finalStatements; 

}

Next statement;
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Trace a Program Execution

Rethrow the 
exception and 

control is 
transferred to the 

caller
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Cautions When Using Exceptions

❖ The key benefit of exception handling is separating the 
detection of an error (done in a called method) from the 
handling of an error (done in the calling method).

❖ Exception handling separates error-handling code from 

normal programming tasks, thus making programs easier
to read and to modify. 

❖ Be aware, however, that exception handling usually 

requires more time and resources because it requires 
instantiating a new exception object, rolling back the call 
stack, and broadcasting the errors to the calling methods.
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When to Throw Exceptions
❖ An exception occurs in a method. 

❖ If you want the exception to be processed by 
its caller, you should create an exception object 
and throw it. 

❖ If you can handle the exception in the method 
where it occurs, there is no need to throw it.

When to Use Exceptions
❖ You should use it to deal with unexpected
error conditions. 
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Caution!
❖ Do not use exception to deal with simple, 
expected situations. 
❖ For example, the following code: 

try {
System.out.println(refVar.toString());

}
catch (NullPointerException ex) {

System.out.println("refVar is null");
}

❖ is better to be replaced by: 
if (refVar != null)

System.out.println(refVar.toString());
else   

System.out.println("refVar is null");
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Defining Custom Exception

❖Use the exception classes in the API
whenever possible.

❖Define custom exception classes if the 
predefined classes are not sufficient.

❖Define custom exception classes by 
extending Exception or a subclass of 
Exception class.

STUDENTS-HUB.com

https://students-hub.com


35

Custom Exception Class Example
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The File Class

❖ The File class is intended to provide 
an abstraction that deals with most of 
the machine-dependent complexities 
of files and path names in a machine-
independent fashion. 

❖ The filename is a string. 

❖ The File class is a wrapper class for 
the file name and its directory path. 
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File class

The directory separator for Windows is a backslash (\). The backslash is 
a special character in Java and should be written as \\ in a string literal 
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Explore File Properties
❖Write a program that demonstrates how to 

create files and use the methods in the File 
class to obtain their properties. The following 
figures show a sample run of the program:
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Text File Input and Output
❖ In order to perform I/O, you need to create 

objects using appropriate Java I/O classes. 

❖ There are two types of files: text and binary. 

❖ Text files are essentially characters on disk. 

❖ The objects contain the methods for 

reading/writing text data from/to a file. 

❖ This section introduces how to read/write 

strings and numeric values from/to a text file 

using the Scanner and PrintWriter classes.
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PrintWriter class

The close() method must be used to close the file. If this method is 
not invoked, the data may not be saved properly in the file. STUDENTS-HUB.com
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Scanner class

STUDENTS-HUB.com

https://students-hub.com


Try-with-resources

import java.io.*;
public class WriteDataWithAutoClose { 

public static void main(String[] args) throws Exception { 
File file = new File(“data.txt"); 
try ( PrintWriter output = new PrintWriter(file); ) {

output.println(“Mamoun Nawahdah"); 
output.println(“Birzeit University");

} 
} 

}

Programmers often forget to close the file. 
JDK 7 provides the followings new try-with-resources 
syntax that automatically closes the files.
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Problem: Replacing Text

❖Write a class named ReplaceText that 
replaces a string in a text file with a 
new string. The filename and strings 
are passed as command-line 
arguments as follows:

➢ java ReplaceText sourceFile
targetFile oldString newString
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Reading Data from the Web
Just like you can read data from a file on your 
computer, you can read data from a file on 
the Web.

STUDENTS-HUB.com

https://students-hub.com


45

Reading Data from the Web
URL url = new 

URL("www.google.com/index.html");

❖ After a URL object is created, you can use 
the openStream() method defined in the 
URL class to open an input stream and use 
this stream to create a Scanner object as 
follows:

Scanner input = new
Scanner(url.openStream());
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How is I/O Handled in Java?
In order to perform I/O, you need to create objects using 
appropriate Java I/O classes. 

PrintWriter output = new PrintWriter("temp.txt");

output.println(“Mamoun Nawahdah");

output.close();

Scanner input = new Scanner(new File("temp.txt"));

System.out.println(input.nextLine());
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Text File vs. Binary File

❑ Data stored in a text file are represented in 
human-readable form. 

❑ Data stored in a binary file are represented in 
binary form. 

❑ For example, the Java source programs are 
stored in text files and can be read by a text 
editor, but the Java classes are stored in binary 
files and are read by the JVM. 

❑ The advantage of binary files is that they are 

more efficient to process than text files.
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Text I/O
❖ Text I/O requires encoding and decoding. 

❖ The JVM converts a Unicode to a file specific 
encoding when writing a character and coverts a 
file specific encoding to a Unicode when reading 
a character. 
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Binary I/O
❖ Binary I/O does not require conversions. 

❖When you write a byte to a file, the original byte 
is copied into the file. 

❖When you read a byte from a file, the exact byte 
in the file is returned.
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Binary I/O Classes
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InputStream
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OutputStream
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FileInputStream/FileOutputStream

FileInputStream/FileOutputStream associates a binary input/output 
stream with an external file. 

All the methods in FileInputStream/FileOuptputStream are 
inherited from its superclasses. 

 

InputStream 

OutputStream 

Object 

  ObjectOutputStream 

 FilterOutputStream 

  FileOutputStream 

  BufferedInputStream 

DataInputStream 

BufferedOutputStream 

DataOutputStream 

   PrintStream 

ObjectInputStream 

  FilterInputStream 

FileInputStream 
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FileInputStream
❖ To construct a FileInputStream, use the 

following constructors:

public FileInputStream(String filename)

public FileInputStream(File file)

❖ A java.io.FileNotFoundException would 
occur if you attempt to create a 
FileInputStream with a nonexistent file. 
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FileOutputStream
❖ To construct a FileOutputStream, use the 

following constructors:
public FileOutputStream(String filename)

public FileOutputStream(File file)

public FileOutputStream(String filename, boolean append)

public FileOutputStream(File file, boolean append)

❖ If the file does not exist, a new file would be created. 

❖ If the file already exists, the first two constructors would 
delete the current contents in the file. 

❖ To keep the current content and append new data into 
the file, use the last two constructors by passing true to 
the append parameter. 
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FilterInputStream/FilterOutputStream

❖ Using a filter class enables you to read integers, 
doubles, and strings instead of bytes and characters. 

❖ FilterInputStream and FilterOutputStream are the 
base classes for filtering data. 

 

InputStream 

OutputStream 

Object 

  ObjectOutputStream 

 FilterOutputStream 

  FileOutputStream 

  BufferedInputStream 

DataInputStream 

BufferedOutputStream 

DataOutputStream 

   PrintStream 

ObjectInputStream 

  FilterInputStream 

FileInputStream 
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DataInputStream/DataOutputStream

❖ DataInputStream reads bytes from the stream and converts 
them into appropriate primitive type values or strings. 

❖DataOutputStream converts primitive type values or strings 
into bytes and output the bytes to the stream.

 

InputStream 

OutputStream 

Object 

  ObjectOutputStream 

 FilterOutputStream 

  FileOutputStream 

  BufferedInputStream 

DataInputStream 

BufferedOutputStream 

DataOutputStream 

   PrintStream 

ObjectInputStream 

  FilterInputStream 

FileInputStream 
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DataInputStream
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DataOutputStream
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Using DataInputStream/DataOutputStream

DataInputStream infile =

new DataInputStream(new FileInputStream("in.dat"));

DataOutputStream outfile =

new DataOutputStream(new FileOutputStream("out.dat"));
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Checking End of File
❖ If you keep reading data at the end of a stream, an 

EOFException would occur.  So how do you check the end 
of a file? 

❖ You can use input.available() to check it. 

❖ input.available() == 0 indicates that it is the end of a file.

Order and Format
❖ CAUTION: You have to read the data in the same 

order and same format in which they are stored. 

❖ For example, since names are written in UTF-8 using 
writeUTF, you must read names using readUTF. 
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Case Studies: Copy File 
This case study develops a program that copies files. The 
user needs to provide a source file and a target file as 
command-line arguments using the following command:

java Copy source target

The program copies a source file to a target file and 
displays the number of bytes in the file. If the source does 
not exist, tell the user the file is not found. If the target file 
already exists, tell the user the file already exists. 
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Self-Study

❖ BufferedInputStream/BufferedOutputStream
can be used to speed up input and output by
reducing the number of disk reads and writes. 
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Self-Study
❖ ObjectInputStream/ObjectOutputStream

enables you to perform I/O for objects in addition 
to primitive-type values and strings. 

try (FileOutputStream f = new
FileOutputStream("data.dat");
ObjectOutputStream output = new
ObjectOutputStream(f);) {

output.writeUTF("Mamoun");
output.writeDouble(55.5);
output.writeObject(new Date());

}
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