Chapter 4: Trees

41 (@A.
bG,H,I,L,M,and K.
4.2 FornodeB:
@A.
(b) D andE.
(c) C.
(d) 1.
(e) 3.
43 4.

4.4 There are N nodes. Each node has two pointers, so there are 2N pointers. Each node but
the root has one incoming pointer from its parent, which accounts for N—1 pointers. The
rest are NULL.

45 Proof is by induction. Thetheoremistrivialy trueforH =0. AssumetrueforH =1, 2, ...,
k. A treeof height k+1 can have two subtrees of height at most k. These can have at most
2%*1-1 nodes each by the induction hypothesis. These 2¢*?-2 nodes plus the root prove the
theorem for height k+1 and hence for al heights.

4.6 This can be shown by induction. Alternatively, let N = number of nodes, F = number of
full nodes, L = number of leaves, and H = number of half nodes (nodes with one child).
Clearly, N=F +H +L. Further, 2F +H =N -1 (see Exercise 4.4). Subtracting yields
L-F=1

4.7 This can be shown by induction. In atree with no nodes, the sum is zero, and in a one-node
tree, theroot is aleaf at depth zero, so the claim is true. Suppose the theorem is true for all
trees with at most k nodes. Consider any tree with k+1 nodes. Such atree consists of an i
node left subtree and a k —i node right subtree. By the inductive hypothesis, the sum for
the left subtree leavesis at most one with respect to the left tree root. Because all leaves are
one deeper with respect to the original tree than with respect to the subtree, the sum is at
most 7> with respect to the root. Similar logic implies that the sum for leaves in the right
subtree is at most 7, proving the theorem. The equality is true if and only if there are no
nodes with one child. If there is a node with one child, the equality cannot be true because
adding the second child would increase the sum to higher than 1. If no nodes have one
child, then we can find and remove two sibling leaves, creating a new tree. It is easy to see
that this new tree has the same sum asthe old. Applying this step repeatedly, we arrive at a
single node, whose sumis 1. Thusthe origina tree had sum 1.

48 (@-**ab+cde.
(b)((a*b)* (c+d))-e
(c)ab*cd+*e-.

-14-

STUDENTS-HUB.com Uploaded By: anonymous

4.9

4.11 This problem is not much different from the linked list cursor implementation. We maintain
an array of records consisting of an element field, and two integers, left and right. The free
list can be maintained by linking through the left field. It is easy to write the CursorNew
and CursorDispose routines, and substitute them for malloc and free.

412 (a) Keepabitarray B. If i isinthetree, then B[i] istrue; otherwise, it isfalse. Repeatedly
generate random integers until an unused one is found. If there are N elements aready in
the tree, then M — N are not, and the probability of finding one of theseis (M —N) /M.
Thus the expected number of trialsisM /(M-N) =a / (a — 1).

(b) To find an element that is in the tree, repeatedly generate random integers until an
already-used integer is found. The probability of finding one is N /M, so the expected
number of trialsisM /N =a.

(c) Thetotal cost for oneinsert and one deleteisa/(a-1)+a=1+a+1/(a—-1). Set-
ting a = 2 minimizes this cost.

415 @ N@Q)=1,N(1)=2,N(H)=N(H-1) +N(H-2) + 1.
(b) The heights are one less than the Fibonacci numbers.

4.16

4.17 It is easy to verify by hand that the claim istruefor 1<k < 3. Supposeit istruefor k =1,
2,3, ... H. Then after thefirst 2 - 1 insertions, 2" ~* is at the root, and the right subtree is
a balanced tree containing 27 ' + 1 through 2" — 1. Each of the next 2" insertions,
namely, 2" through 2 + 2771 -1, insert a new maximum and get placed in the right

-15-

STUDENTS-HUB.com Uploaded By: anonymous

subtree, eventually forming a perfectly balanced right subtree of height H-1. This follows
by the induction hypothesis because the right subtree may be viewed as being formed from
the successive insertion of 2771 + 1 through 27 + 2H"1 - 1. The next insertion forces an
imbalance at the root, and thus a single rotation. It is easy to check that this brings 2" to
the root and creates a perfectly balanced left subtree of height H-1. The new key is
attached to a perfectly balanced right subtree of height H-2 as the last node in the right
path. Thus the right subtree is exactly as if the nodes 27 +1 through 27 + 2171 were
inserted in order. By the inductive hypothesis, the subsequent successive insertion of
21 + 2171+ 1 through 2"*1 -1 will create a perfectly balanced right subtree of height
H-1. Thus after the last insertion, both the left and the right subtrees are perfectly bal-
anced, and of the same height, so the entire tree of 27 ** - 1 nodes is perfectly balanced (and
has height H).

4.18 The two remaining functions are mirror images of the text procedures. Just switch Right
and Left everywhere.

4.20 After applying the standard binary search tree deletion algorithm, nodes on the deletion path
need to have their balance changed, and rotations may need to be performed. Unlike inser-
tion, more than one node may need rotation.

4.21 (a) O(loglog N).
(b) The minimum AVL tree of height 255 (a huge tree).

4.22

Position
DoubleRotateWithL eft(Position K3)

{
Position K1, K2;

K1 = K3->L€ft;
K2 =K1->Right;

K1->Right = K2->L eft;

K3->Left = K2->Right;

K2->Left = K1;

K2->Right = K3;

K1->Height = Max(Height(K 1->L eft), Height(K1->Right)) + 1,
K3->Height = Max(Height(K3->Left), Height(K3->Right)) + 1,
K2->Height = Max(K1->Height, K3->Height) + 1;

return K3;

-16-

STUDENTS-HUB.com Uploaded By: anonymous

4.23 After accessing 3,

After accessing 9,

-17-

STUDENTS-HUB.com Uploaded By: anonymous

After accessing 1,

After accessing 5,

-18-

STUDENTS-HUB.com Uploaded By: anonymous

4.24

4.25 (&) 523776.
(b) 262166, 133114, 68216, 36836, 21181, 13873.
(c) After Find (9).

4.26 (a) An easy proof by induction.

4.28 (ac) All theseroutines take linear time.

/* These functions use the type BinaryTree, which is the same */
[* asTreeNode*, in Fig 4.16. */

int

CountNodes(BinaryTree T)

{
if(T==NULL)
return O;
return 1 + CountNodes(T->L eft) + CountNodes(T->Right);
}
int
CountLeaves(BinaryTree T)
{
if(T==NULL)
return O;
elseif(T->Left == NULL && T->Right == NULL)
return 1;
return CountL eaves(T->Left) + CountLeaves(T->Right);
}

-19-

STUDENTS-HUB.com Uploaded By: anonymous

/* An dternative method is to use the results of Exercise 4.6. */

int
CountFull(BinaryTree T)
{

if(T==NULL)

return O;
return (T->Left '= NULL && T->Right |I=NULL) +
CountFull(T->Left) + CountFull(T->Right);

}

4.29 We assume the existence of a function Randlint(Lower,Upper), which generates a uniform
random integer in the appropriate closed interval. MakeRandomTree returns NULL if N is
not positive, or if N is so large that memory is exhausted.

SearchTree
MakeRandomTreel(int Lower, int Upper)

{
SearchTreeT;

int RandomValue;

T =NULL;
if(Lower <= Upper)
{
T = malloc(sizeof (struct TreeNode));
if(T!=NULL)
{
T->Element = RandomVa ue = Randint(Lower, Upper);
T->Left = MakeRandomTreel(Lower, RandomValue- 1);
T->Right = MakeRandomTreel(RandomValue + 1, Upper);

FatalError("Out of space!");

SearchTree
MakeRandomTree(int N)

{
}

return MakeRandomTreel(1, N);

-20-

STUDENTS-HUB.com Uploaded By: anonymous

4.30

/* LastNode is the address containing last value that was assigned to a node */

SearchTree
GenTree(int Height, int *LastNode)
{
SearchTreeT,
if(Height >=0)
{
T =malloc(sizeof(*T)); /* Error checks omitted; see Exercise 4.29. */
T->Left = GenTree(Height - 1, LastNode);
T->Element = ++*LastNode;
T->Right = GenTree(Height - 2, LastNode);
return T;
}
else
return NULL;
}
SearchTree
MinAviTree(intH)
{
int LastNodeAssigned = 0;
return GenTree(H, & LastNodeAssigned);
}

4.31 There are two obvious ways of solving this problem. One way mimics Exercise 4.29 by
replacing Randint(Lower,Upper) with (Lower+Upper) / 2. This requires computing
2H+1-1 which is not that difficult. The other mimics the previous exercise by noting that
the heights of the subtrees are both H—1. The solution follows:

-21-

STUDENTS-HUB.com Uploaded By: anonymous

/* LastNode is the address containing last value that was assigned to anode. */

SearchTree
GenTree(int Height, int *LastNode)

{
SearchTree T = NULL;

if(Height >=0)

{
T =malloc(sizeof(*T)); /* Error checks omitted; see Exercise 4.29. */
T->Left = GenTree(Height - 1, LastNode);
T->Element = ++*LastNode;
T->Right = GenTree(Height - 1, LastNode);
}
return T;
}
SearchTree
PerfectTree(int H)
{
int LastNodeAssigned = 0;
return GenTree(H, & LastNodeAssigned);
}

4.32 This is known as one-dimensional range searching. The time is O(K) to perform the
inorder traversal, if a significant number of nodes are found, and also proportional to the
depth of the tree, if we get to some leaves (for instance, if no nodes are found). Since the
averagedepthis O (log N), thisgivesan O (K +log N) average bound.

void
PrintRange(ElementType Lower, ElementType Upper, SearchTreeT)
{
if(T!=NULL)
{
if(Lower <= T->Element)
PrintRange(Lower, Upper, T->Left);
if(Lower <= T->Element & & T->Element <= Upper)
PrintLine(T->Element);
if(T->Element <= Upper)
PrintRange(Lower, Upper, T->Right);
}
}

-22-

STUDENTS-HUB.com Uploaded By: anonymous

4.33 This exercise and Exercise 4.34 are likely programming assignments, so we do not provide
code here.

4.35 Put the root on an empty queue. Then repeatedly Dequeue a node and Enqueue its left and
right children (if any) until the queueis empty. Thisis O (N) because each queue operation
is constant time and there are N Enqueue and N Dequeue operations.

4.36 (9
0,1 2,3 4,5 6,7 8,9

(b)
123 4,5 6,7,8

23

STUDENTS-HUB.com Uploaded By: anonymous

4.39

5
o

J oo

4.41 The function shown hereis clearly alinear time routine because in the worst case it does a
traversal onboth T1and T 2.

int
Similar(BinaryTree T1, BinaryTree T2)
{
if(T1==NULL || T2==NULL)
return T1 == NULL && T2 == NULL;
return Similar(T1->Left, T2->Left) && Similar(T1->Right, T2->Right);
}

4.43 The easiest solution is to compute, in linear time, the inorder numbers of the nodes in both
trees. If the inorder number of the root of T2 is X, thenfind x in T1 and rotate it to the root.
Recursively apply this strategy to the left and right subtrees of T1 (by looking at the values
in the root of T2's left and right subtrees). If dy is the depth of x, then the running time
satisfiesT(N) =T(i) + T(N-i —-1) + dy, wherei isthe size of the left subtree. Inthe worst
case, dy isaways O(N), and i is aways 0O, so the worst-case running time is quadratic.
Under the plausible assumption that all values of i are equally likely, then even if dy is
aways O(N), the average value of T(N) isO(Nlog N). Thisisacommon recurrence that
was aready formulated in the chapter and is solved in Chapter 7. Under the more reason-
able assumption that dy istypically logarithmic, then the running timeis O (N).

4.44 Add afield to each node indicating the size of the tree it roots. This alows computation of
its inorder traversal number.

4.45 (@) You need an extrabit for each thread.

(c) You can do tree traversals somewhat easier and without recursion. The disadvantage is
that it reeks of old-style hacking.

-24-

STUDENTS-HUB.com Uploaded By: anonymous

