## Cybersecurity Mathematics

**Chapter 1** 





#### **Section 1 : Simple substitution ciphers :**

Caser receive Encrypted message : prkdphg vwxbh fbehv vhfxulwb (3 letters shift )

## D E F G H I J K L M N O P Q R S T U V W X Y Z A B C A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Original message: mohamed study cyber security



Section 2 : Greatest common divisor (GCD) :

Algebra , number theory (int numbers ) Z

Add (a+b), subtract (a-b), multiple (a\*b)

**Commutative law** 

Associative law

**Distributive law** 



<u>Def :</u> let a and b be integers , b not equal zero We say b divides a , or a is divisible by b If there is an integer c such that a = b\*c

b | a : <u>b</u> divides <u>a</u> for example 7 21

 $b \ge a : \underline{b}$  is not dividing  $\underline{a}$  for example **5 31** 

#### Remarks :

TUDENTS-HUB.com

- 1 All integers are divisible by 1
- 2 All integers are divisible by 2 are even
- 3- All integers are not divisible by 2 are <u>odd</u>

#### **Propositions :**

- 1 If a|b and b|c, then a|c
- 2 If a |b and b |a, then a = + b
- 3- If a b and a c then a (b+c), a (b-c)
- <u>Def :</u> a common divisor of two integers a and b is positive integer d that divides both
- Def :The GCD of a and b is the greatest positive integer dd|a , d|b for example18: 1,2,3,6,9,18the GCD = 612: 1,2,3,4,6,12

| What is the GCD of (7 | 48,2024):             |
|-----------------------|-----------------------|
| a= b *q +r            |                       |
| Solution :            |                       |
| 2024= 748 * 2 + 528   | a=2024 , b = 748      |
| 748 = 528 * 1 + 220   | a=748,b=528           |
| 528 = 220 * 2 + 88    | a=528,b=220           |
| 220 = 88 * 2 + 44     | a= 220 , b =88        |
| 88 = 44 * 2 + 0 ( whe | n r = 0 STOP ,GCD =b) |
| $\mathbf{GCD} = 44$   |                       |



Def: let a and b be positive integers then we say that a|b has quotient q and reminder r if  $a = b^*q+r$  where  $0 \le r < b$ 

- Suppose we need to get GCD (a,b) then at first divides <u>a</u> by <u>b</u> to get  $a = b^*q + r \quad 0 \le r \le b$ If <u>d</u> is any common divisor of <u>a</u> and <u>b</u> then it is clear
- form equation that d is also the divisor of r.

#### What is the GCD of (72, 120)?

#### What is the GCD of (81,144)?

#### What is the GCD of (105,252)?

What is the GCD of (56,98)?



Theorem : (The Euclidean algorithm ): Let A and B be positive integers with a greater than or equal B the following algorithm computes gcd (a,b) in finite number of steps :

- 1- let r0 =a , r1=b
- 2- set i =1
- 3 divide r i-1 by ri to get q

| au +bv = gcd (a,b)      | <u>GCD(748,2024)</u>   |
|-------------------------|------------------------|
| a= b*2 +528             | 2024= 748 * 2 + 528    |
| a-2b = 528              | 748 = 528 * 1 + 220    |
| b= (a-2b) * 1 +220      |                        |
| 3b-a= 220               | 528 = 220 * 2 + 88     |
| a-2b = 2(3b-a) +88      | 220 = 88 * 2 + 44      |
| 3a - 8b =88             | <b>88 = 44 * 2 + 0</b> |
| 3b-a = (3a -8b) *2 +44  | <u>GCD = 44</u>        |
| 19b – 7a = 44           |                        |
| 19 (748) – 7 (2024) =44 |                        |
| u =- 7 , v = 19         |                        |
| TUDENTS-HUB.com         |                        |

 $S^{-}$ 

#### Set up box :

UDENTS-HUB.com

|   |   | q1 | q2 | <b>q</b> 3 | q4 |
|---|---|----|----|------------|----|
| 0 | 1 | p1 | p2 | р3         | р4 |
| 1 | 0 | Q1 | Q2 | Q3         | Q4 |

In first two columns write 0 & 1 and 1 & 0, then starting from column 3 use formulas :

Q1= q1 \*0 +1 , Q2 = q2 \* Q1+0 , Q3 = q3 \*Q2 + Q1 , Q4 = q4 \*Q3+ Q2

 $u = Q3 * (-1)^t$   $v = p3 * (-1)^t + 1$  t: is the number of quotients C1\*u + C2\*v = 1

A= 73, b = 25 73= 25\* 2 + 23 25 = 23 \* 1 + 2 23 = 2 \* 11 +1 2=1\*(2/+0 f = hGCD = 1We will use these numbers in set up table

a= b\*2 +23 a - 2b = 23B = (a-2b) \* 1 + 2-a +3b =2 a-2b = (-a + 3b) \* 11 + 112a -35b =1 12(73) - 35(25) = 1u = 12 v = -35



2\*1+0 = 2 , 1 \* 2 + 1 = 3 , 11 \* 3 + 2 = 35 , 2\*35 + 3 = 73

2 \*0 +1 =1 , 1 \*1 +0 =1 , 11\*1 + 1 =12 , 2\*12 +1 =25

C1 = 73 C2 = 25 73 \* (12) + 25 \* (-35) = 1

#### a = 291, b=252

1 – find the gcd (291,252) using Ecalcidene algorithm ??

291 = 252 \*1+39

252 = 39 \*6 + 18

**39 = 18 \*2 +3** 

**18 = 3\*6 +0** 

Gcd = 3

2- use extended Euclidean algorithm to find u &v ??

a =b\*1 +39

a-b = 39

b= (a-b) \*6+18

7b – 6a= 18

 $a-b = (7b-6a)^{+}2 - 3$  a-b = 14b-12a + 3 13a-15b = 3 u = 13, y = -15

t = 4  $u = 13^{*}(-1)^{4} = 13$  $v = 15*(-1)^{4}+1=-15$ 

c1= 97 c2 = 84

97 \* (13) + 84(-15) = 1

#### 3- find u and v using set up box :

- Clock Arithmetic
- Def: let m>1 be an integers we say that the integers a & b are congruent module m if their difference (a-b) is
- divisible by m we write a = b (mod m)
- To indicate a & b are congruent module m . The number m is called the modulus
- m=12

 $6 + 9 = 3 \longrightarrow 15 - 3 = 12 \longrightarrow 15 = 3 \pmod{12}$ 

#### **Propositions :**

# let m>1, b be an integers numbers 1- if a1 = a2 (mod m) & b1= b2 (mod m) Then a1 + b1 = a2 + b2 (mod m)

Let a be an integers, then a\*b = 1 (mod m) for some integers b if and only if gcd(a, m) = 1
further, if a1\*b1 = a2 \*b2 = 1 (mod m)
Then b1 = b2 (mod m) we call b the inverse of Modula m

- Q1. m=5, a=2 and GCD(2,5) =1, find the inverse:
- 2\*b= 1 (mod 5)
- 2b-1= 5
- **b** = 3 <u>2<sup>-1</sup></u> = 3 (mod 5)
- Q2. Find the inverse of 3 modulo 11:
- a= 3 , m=11
- 3 \* b = 1(mod 11)
- $3 * 4 \mod 11 = 1$ , so b = 4  $3^{-1} = 4 \pmod{11}$



#### Q3. Compute 5/7 (mod 11)

- 5 \* 7<sup>-1</sup> = 1 (mod 11)
- 7 \* b = 1 (mod <u>11</u>)
- We to try b= 1,2,.... Until (7\*b mod 11 =1
- **b** = 8
- 7 \* 8 = 1 (mod 11) , ( 7\*8 mod 11 = 1
- **7**<sup>-1</sup> = **8**
- 5 \* 8 = 40,  $40 = 7 \pmod{11}$

 $-Def: Z / mZ = \{ 0, 1, 2, ..., m-1 \}$ 

Call Z / mZ the ring of integers Modula m (add or multiple) Then divide b m to be in the range

#### **Ex:Z/5Z** (Addition, multiplication)

| + | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |

| X | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 |
| 2 | 0 | 2 | 4 | 1 | 3 |
| 3 | 0 | 3 | 1 | 4 | 2 |
| 4 | 0 | 4 | 3 | 2 | 1 |

<u>a has inverse of Modula m</u> if and only if gcd(a,m) = 1

- numbers that have inverse are called <u>units</u>
- We denote the set of all units by (Z / mZ)\*
- $(Z / mZ)^* = \{ a belong to Z / mZ : gcd(a,m) = 1 \}$
- a has an inverse modula m

The set ( Z / mZ)<sup>\*</sup> is called <u>the group of units modula m</u> Ex : the group units of modula 24 ( Z / 24Z)<sup>\*</sup> = {1,5,7,11,13,17,19,23}

#### $(Z / 7 Z)^* = \{1, 2, 3, 4, 5, 6\}$

| * | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 6 | 5 | 4 | 3 | 2 | 1 |

Note : The multiplication tables for (Z / 7Z)\* and (Z/ 24Z)\* are units but addition table doesn't produce a unite



Multiple inverse using EEA :

Ex:a=2,b=5

A>B, always a must be greater than b

So, a =5 , b =2

T = T1 - T2\*Q

| Q         | Α | В | R | T1    | T2       | Т  |
|-----------|---|---|---|-------|----------|----|
| 2         | 5 | 2 | 1 | 0     | 1        | -2 |
| 2         | 2 | 1 | 0 | 1     | -2       | 6  |
| X         | 1 | 0 | X | -2    | 6        | X  |
|           |   |   |   | V     |          |    |
| S-HUB.com |   |   |   | M.I.C | 2 mod 5) |    |

#### **Euler Phi function:**

Def:  $\emptyset$  (m) = number of (Z / mZ)\* = { 0 < a < m : gcd(a,m) = 1} Ex:  $\emptyset$  (24) = ??  $\longrightarrow$  0(Z / 24Z)\* = { 1, 5, 7, 11, 13, 17, 19, 23}

#### **Euler Tolient function:**

- if m is a prime  $\longrightarrow \%$  [m] = m 1
- if m is multiplication of two prime numbers  $\rightarrow \phi$  (m)=(P-1)(4-1)



## Sol: m= 45, 45= 9\*5, 9=3<sup>2</sup> 45(1 - 1/3) (1 - 1/5)= 24

#### **Ex : O (35)**

## Sol : m=35 , 35 = 7\*5 , 7 & 5 are prime numbers so we will use this formula (q-1) \* (p-1) , (7-1)(5-1) = 24



Ex : O (1000) 1000(1 - 1/2)(1 - 1/5) = 400

fast powering algorithm

Ex: 23<sup>3</sup> (mod 30)

STUDENTS-HUB.com

 $23^3 \mod 30 = -7^3 \mod 30$ 

49 \* -7 mod 30 = -343 mod 30 = -13

To find positive number add m -13 + 30 = 17



#### **Ex : Find 31<sup>500</sup> (mod 30)**

 $31^{500} \mod 30 = 1^{500} \mod 30 = 1$ 

 $\frac{\text{Ex} : \text{Find} (242)^{329} \mod (243)}{242^{329} \mod 243} = -1^{329} \mod 243 = -1$ = -1 + 243 = 242

Ex : Find 3<sup>218</sup> (mod 1000)

Sol: use FPA

218 = 128 + 64 + 16 + 8 + 2

st3328mts-264.ctm316 \* 38 \* 32) mod(1000)

#### Solve 88<sup>7</sup> (mod 187) big difference

```
88 ( mod 187 ) = 88
```

```
88<sup>2</sup> (mod 187) = 88 * 88 (mod 187) =77
```

```
88<sup>4</sup>(mod 187) = 77 * 77 = 132
```

```
887 \pmod{187} = 88^4 * 88^2 * 88 \pmod{187}
```

```
= 132 * 77 * 88 ( mod 187 ) = 11
```

#### **Ex : Find the last two digits of 29**<sup>5</sup>

- 29<sup>5</sup> (mod 100)
- $29^1 \pmod{100} = 29$
- $29^2 \pmod{100} = 41$
- $29^4 \pmod{100} = 41*41 \pmod{100} = 81 \text{ or } -19$
- 29<sup>5</sup> (mod 100) = 29<sup>4</sup> \* 29 (mod 100) = -19 \* 29 (mod100)
- $= -551 \pmod{100} = -51$  , -51+100 = 49

#### Ex: 3^100 (mod 29)

- $3^1 \pmod{29} \equiv 3$ , or 26
- $3^2 \pmod{29} \equiv 9 \pmod{29} \equiv 9$
- $3^{4} \pmod{29} \equiv 3^{2} \times 3^{2} \pmod{29} \equiv 9 \times 9 \pmod{29} \equiv 23 \text{ or } -6$
- $3^8 \pmod{29} \equiv 3^4 \times 3^4 \pmod{29} \equiv 7$
- |3^16 (mod 29) ≡ 3^8 × 3^8 (mod 29) ≡ 7 × 7 (mod 29) ≡

```
49 (mod 29) ≡ 20
```

- $3^{32} \pmod{29} \equiv 3^{16} \times 3^{16} \pmod{29} \equiv -9 \times -9 \pmod{29} \equiv 81 \mod 29 \equiv 23 \text{ or } -100 \text{ or } -100$
- $63^{64} \equiv 3^{32} \times 3^{32} \pmod{29} \equiv 23 \times 23 \pmod{29} \equiv 36 \pmod{29} \equiv 7$
- $3^{100} \equiv 3^{64} \times 3^{32} \times 3^{4} \pmod{29} \equiv 7 \times -6 \times -6 \pmod{29} \equiv 49 \pmod{29} \equiv 20$



## Ex: 23<sup>16</sup> (mod 30)

## ⇒ 23 (mod 30) = 23 or -7

## $\Rightarrow$ ( ( ( (-7)<sup>2</sup>)<sup>2</sup>)<sup>2</sup>)<sup>2</sup> mod 30

## $\Rightarrow (((49)^2)^2)^2 \mod 30 \Rightarrow 19 \text{ or } -11$

## $\Rightarrow$ (((-11)<sup>2</sup>)<sup>2</sup>)<sup>2</sup>)<sup>2</sup> mod 30 $\Rightarrow$ (121)<sup>2</sup> mod 30 = 1

#### Prime numbers unique factorization and finite fields

<u>def</u> : an integer **p** is called a prime if  $p \ge 2$  and if only positive integers dividing p are 1 and p

<u>Proposition :</u> let **p** is prime number and suppose that **p** divides the product of integers **a** and **b** (a\*b) more generally if **p** divide **a** product of integers say

P | a1,a2 ..... an then P divides at least one at the individual ai

<u>Theorem :</u> the fundamental theorem of arithmetic let a greater than or equal 2 be an integer , then a can be factered as product of prime numbers

 $a = P_1 e^1 * P_2 e^2 * P_3 e^3 \dots P_r e^r$ 

## **Ex : 125**

12525 $5^{2} = 125$ 

### Ex:187

DENTS-HUB com





## Ex:187

First, we use this formula  $n = p^2 - q^2$  to find the value of p & q

187 =  $p^2 - q^2$   $p^2 = 187 + q^2$   $p = \sqrt{187 + 3^2}$   $p = \sqrt{187 + 3^2}$ p = 14, q = 3

After we find p & q, use this formula n = (p - q) (p + q) to the get the numbers whose product is 187.

n = (14-3) (14 + 3) = 17 \* 11



## **Ex : Factorize 3233**

 $P = \sqrt{3233} + (1)^2 \Rightarrow False$  $P = \sqrt{3233} + (2)^2 \Rightarrow False$  $P = \sqrt{3233} + (3)^2 \Rightarrow False$  $P = \sqrt{3233} + (4)^2 \Rightarrow \text{True} \Rightarrow 57$ n = (57 - 4)(57 + 4) = (61)(53) Def : The fundamental theorem of arithmetic says that in factoring a positive integer *a* into primes, each prime p appears to a particular power. We denote this power by Ordp(a) and call it the order (or exponent) of p in *a*. For convenience, we define Ordp(1)=0 for all prime numbers

Ex: 1728 = 2<sup>6</sup> \* 3<sup>3</sup> Ord2 (1728) = 6 Ord3 (1728) = 3



Ordp: [1,2,3,....]

Q = TT ( primes)

## If p is prime , then every nonzero number Modula p has multiplicative inverse (M.I) Modula P

# Proposition : let p be a prime then every non-zero element in Z/pZ has MI that is number B satisfying

- a\*b = 1 (mod p)
- $b = a^{-1} \pmod{p}$

Remark : The EA give us an effient computation method for computing  $a^{-1} \mod p$ , we simply solve the equation au + pv = 1 and  $u = a^{-1} \mod p$ , if p is prime then the  $(Z/pZ)^* = \{1,2,3,...,p\}$ 

In otherwards, when remove zero element from Z/pZ, the remaining elements are units and closed under multiplication.

Powers and Prime have roots in finite fields finite fields a several name for a (commutative)ring in which every non-zero element has MI

- **Ex:**
- **R**: real numbers
- **Q**: fraction
- **C** : complex
- Z/pZ: for Ex (Z/5Z): F5 ----- { 0,1,2,3,4}
- (Z/24Z)\* : F24 \* → {1,3,5,....}



**Ex : p = 7** 

1<sup>1</sup> mod 7 =1, 1<sup>2</sup> mod7 = 1 ...... 1<sup>6</sup> mod 7 =1 2<sup>1</sup> mod 7 = 2, 2<sup>2</sup> mod 7 = 4 ...... 2<sup>6</sup> mod 7 = 1 3<sup>1</sup> mod 7 = 3, 3<sup>2</sup> mod 7 = 2 ...... 3<sup>6</sup> mod 7 = 1 4<sup>1</sup> mod 7 = 4, 3<sup>2</sup> mod 7 = 2 ...... 4<sup>6</sup> mod 7 = 1 5<sup>1</sup> mod 7 = 5, 5<sup>2</sup> mod 7 = 4 ...... 5<sup>6</sup> mod 7 = 1 6 mod 7 = 3, 6<sup>2</sup> mod 7 = 2 ...... 6<sup>6</sup> mod 7 = 1

a<sup>6</sup> = 1 (mod 7), a =1,2,3,4,5,6 a<sup>6</sup> = { 1(mod 7) if 7 / a }, { zero (mod 7) if 7 a } If p is a prime number and a is a positive integer not divisible by P then  $a^{p-1} = 1 \mod p$ 

Ex: Does Fermat's theorem hold true for p = 5 and a =2 ??  $2^4 = 1 \mod 5$ 16 = 1 (mod 5)



Ex: prove that Fermat's theorem holds true for p = 13, a= 11  $\sqrt{3 \times 11}$ 

- a<sup>p-1</sup> = 1 mod p
- $11^{12} = 1 \pmod{13}$
- $(-2)^{12} = 1 \pmod{13}$
- $(-2)^{4*3} = 1 \pmod{13}$
- $((-2)^4)^3 = 1 \pmod{13}$
- (16)<sup>3</sup> = 1 ( mod 13)
- 3<sup>3</sup> = 1 ( mod 13)
- 27upen (Strugdoff3)

Remark: Fermat's theorem and fast power algorithm provide us with reasonably efficient method for computing inverse Modula p namely  $a^{-1} = a^{p-2} \pmod{p}$ 

Ex : find inverse of (7814 modula 17449)  $a^{-1} = a^{p-2}$  (modula P) 7814<sup>-1</sup> = 7814<sup>17447</sup> (mod 17449) = 1284 (mod 17449)



#### <u>2 -</u> EEA

- au + bv =1
- 7814u + 17449 v = 1
- (u, v) = (1284, -575) $\sqrt[\alpha]{7784}^{-1} = 1284 \mod 17449$

<u>Theorem :</u> Primitive root theorem let p be a prime number there exists an element g belong to Fp\* Where powers give every element of Fp\*  $Fp^* = \{1, g, g^2, g^3, ..., g^{p-2}\}$ Element with this property are called primitive roots of Fp\* or generate of Fp\* they are the elements of Fp\* having order P - 1

- **Ex : the filed F11** has **2** as primitive root ??
- $2^{0} \mod 11 = 1$ ,  $2^{1} \mod 11 = 2$ ,  $2^{2} \mod 11 = 4$ , .....  $2^{9} \mod 11 = 6$
- Yes, because there is no similarity in the result



Is 2 a primitive root for F17??  $2^0 = 1 \mod 17 = 1$  $2^1 = 2 \mod 17 = 2$ some, so the answer is No Otherwords, It's not 1 to 1 so 2 isn't primitive root  $2^8 = 256 \mod 17 = 1$ ()-

STUDENTS-HUB.com

#### Is 2 a primitive root of prime number 5 ??

2<sup>0</sup> mod 5 = 1 2<sup>1</sup> mod 5 = 2 2<sup>2</sup> Mod 5 = 4 2<sup>3</sup> mod 5 = 3



#### Yes, because there is no similarity in the result

