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Section 1 : Simple substitution ciphers : 

Caser receive Encrypted message :
 prkdphg vwxbh fbehv vhfxulwb (3 letters shift )

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Original message: mohamed study cyber security
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Section 2 : Greatest common divisor (GCD ) : 

Algebra , number theory (int numbers ) Z

Add (a+b)  , subtract (a-b)  , multiple (a*b) 

Commutative law 

Associative law 

Distributive law  
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Def : let a and b be integers , b not equal zero 

We say  b divides a , or a is divisible by  b 

If there is an integer c such that a = b*c 

b | a  :  b divides a for example 7 | 21 

b |  a :  b is not dividing a for example 5 | 31

Remarks :

1 -  All integers are divisible by 1

2 - All integers are divisible by 2 are even 

3- All integers are not divisible by 2  are odd 
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Propositions :

1 -  If  a|b and b|c , then a|c

2 - If  a|b and b|a , then a = + b

3- If  a|b and a|c then a|(b+c) , a|(b-c)

Def : a common divisor of two integers a and b is positive 

integer d that divides both 

Def :The GCD of a and b is the greatest positive integer d 
d|a , d|b  for example 
18: 1,2,3,6,9,18           the GCD =6 

12 : 1,2,3,4,6,12 Uploaded By: Mohammad ElRimawiSTUDENTS-HUB.com
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What is the GCD of ( 748 , 2024 ):

a= b *q +r 

Solution : 

2024= 748 * 2 + 528     a=2024 , b = 748

748 = 528 * 1 + 220       a=748 , b=528

528 = 220 * 2 + 88         a=528 , b=220

220 = 88 * 2 + 44           a= 220 , b =88

88 = 44 * 2 + 0  ( when r = 0 STOP  , GCD =b)  

GCD = 44
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Def : let a and b be positive integers then we say that a|b 

has quotient q and reminder r if a= b*q+r where 0 < r < b 

 

Suppose we need to get GCD (a,b) then at first divides a 

by b  to get a= b*q+r  0<r<b

If d is any common divisor of a and b then it  is clear 

form equation that d is also the  divisor of r .
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What is the GCD of ( 72 , 120 ) ?

What is the GCD of ( 81, 144 )  ?

What is the GCD of ( 105 , 252 ) ?

What is the GCD of ( 56 , 98 ) ?
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Theorem : (The Euclidean algorithm ):
Let A and B be positive integers with a greater than or 
equal B the following algorithm computes gcd (a,b) in 
finite number of steps :

1- let r0 =a , r1=b

2- set i =1

3 - divide r i-1 by ri to get q
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 GCD( 748 , 2024 )

2024= 748 * 2 + 528     

748 = 528 * 1 + 220       

528 = 220 * 2 + 88  

220 = 88 * 2 + 44           

88 = 44 * 2 + 0  

GCD = 44

au +bv = gcd (a,b)
a= b*2 +528

a-2b = 528

b= (a-2b) * 1 +220

3b-a= 220

a-2b = 2(3b-a) +88

3a - 8b =88

3b-a = (3a -8b) *2 +44

19b – 7a = 44

19 (748) – 7 (2024) =44

u =- 7 , v = 19
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Set up box :  

                                                                                   q1                  q2                    q3 q4

         In first two columns  write  0 & 1 and 1 & 0, then starting from column 3

       use formulas :

          p1 = q1          ,  p2 = q2 * p1+1       ,      p3 = q3 *p2 +p1    ,  p4= q4 *p3 +p2 

            Q1= q1 *0 +1     ,     Q2 = q2 * Q1+0        ,      Q3 =q3 *Q2 + Q1    ,     Q4 = q4 *Q3+ Q2

    u = Q3 * (-1)^t     v = p3 * (-1)^t+1      t : is the number of quotients  C1*u + C2*v =1  

0 1 p1 p2 p3 p4

1 0 Q1 Q2 Q3 Q4
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A= 73 ,  b =25                                         

73= 25* 2 +23 

25 = 23 * 1 +2

23 = 2 * 11 +1 

2= 1 * 2 +0

GCD = 1

a= b*2 +23 

a -2b = 23

B = (a-2b) * 1 +2

-a +3b =2

a-2b = (-a +3b) * 11 +1

12a -35b =1

12(73) – 35(25) = 1

u =12    v= -35 
We will use 
these numbers 
in set up table 
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Set up box :  

                                                         2                  1                    11                  2

      2*1+0 =2       ,  1 *2 +1 =3      ,      11 *3 +2 =35   ,     2*35 +3 =73 

              

     2 *0 +1 =1    ,      1 *1 +0 =1      ,     11*1 + 1 =12    ,     2*12 +1 =25

      C1 = 73    C2 =25      73 * (12) + 25 * (-35) = 1 

0 1 2 3 35 73

1 0 1 1 12 25

-V
u

b

a

Uploaded By: Mohammad ElRimawiSTUDENTS-HUB.com

https://students-hub.com


a = 291 , b=252

 1 – find the gcd (291,252) using Ecalcidene algorithm ??

291 = 252 *1+39 

252 = 39 *6 + 18

39 = 18 *2 +3 

18 = 3*6 +0 

Gcd = 3 

2- use extended Euclidean algorithm to find u &v ??
a =b*1 +39 

a-b = 39 

b= (a-b) *6+18

7b – 6a= 18 

a-b = (7b-6a)*2 + 3       a-b = 14b-12a +3         13a- 15b =3          u= 13 , v= -15Uploaded By: Mohammad ElRimawiSTUDENTS-HUB.com
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3- find u and v using set up box : 

                                          1          6          2          6

              t = 4

              u = 13*(-1)^4 =13

              v= 15*(-1)^4+1=-15

              c1= 97     c2 = 84

              97 * (13) + 84(-15) = 1

0 1 1 7 15 97

1 0 1 6 13 84
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- Clock Arithmetic

Def : let m>1 be an integers we say that the integers a & b 

are congruent module m if their difference (a-b) is 

divisible by m we write a = b (mod m) 

To indicate a & b are congruent module m . The number m 

is called the modulus 

m=12 

6 + 9 = 3              15 – 3 =12                15 = 3 (mod 12)
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Propositions :

- let m>1 , b be an integers numbers 

1- if a1 = a2 (mod m) & b1=  b2 (mod m)

Then a1 + b1 = a2 + b2 ( mod m) 

- Let a be an integers , then  a*b = 1 (mod m) for some 

integers b if and only if gcd(a , m) = 1

further , if   a1*b1 = a2 *b2 = 1 (mod m) 

Then b1 = b2 (mod m) we call b the inverse of Modula mUploaded By: Mohammad ElRimawiSTUDENTS-HUB.com
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Q1 . m=5 , a=2 and GCD(2,5) =1 , find the inverse :

 2*b= 1 (mod 5)

 2b-1= 5
 b =3      2-1 =3 (mod 5) 

Q2 . Find the inverse of 3 modulo 11:
a= 3 , m=11

3 * b = 1(mod 11)

3 * 4 mod 11 =1 ,  so b =4    3-1 = 4 (mod 11)
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Q3. Compute 5/7 (mod 11)

5 * 7-1 = 1 (mod 11)

7 * b = 1 (mod 11)

We to try b= 1,2,….. Until (7*b mod 11 =1 

b =8

7 * 8 = 1 (mod 11)  ,  ( 7*8 mod 11 = 1

7-1 = 8 

5 * 8 = 40  , 40 = 7 (mod 11 )
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-Def : Z / mZ = { 0,1,2,……,m-1}

Call Z / mZ  the ring of integers Modula m (add or multiple)

Then divide b m to be in the range 

Ex : Z / 5 Z  (Addition , multiplication )

 

 

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

x 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1
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a has inverse of Modula m if and only if gcd(a,m) = 1

- numbers that have inverse are called units

- We denote the set of all units by ( Z / mZ)*

(Z / mZ)* = { a belong to Z / mZ : gcd(a,m) =1}

a has an inverse modula m 

The set ( Z / mZ)* is called the group of units modula m

Ex : the group units of modula 24 

( Z / 24Z)* ={1,5,7,11,13,17,19,23}
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( Z / 7 Z)* ={1,2,3,4,5,6}

Note : The multiplication tables for (Z / 7Z)*  and (Z/ 24Z)* 

are units but addition table doesn't produce a unite

 

* 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1
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Multiple inverse using EEA : 

Ex : a= 2 , b= 5

A>B , always a must be greater than b

So, a =5 , b =2 

T = T1 – T2* Q

 Q                    A                        B                       R T1                    T2                       T

2 5 2 1 0 1 -2

2 2 1 0 1 -2 6

X 1 0 X -2 6 X
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Euler Phi function: 
Def : O (m) = number of (Z / mZ)* = { 0 < a <m : gcd(a,m) = 1}

Ex : O (24) = ??

(Z / 24Z)* = { 1, 5 ,7,11,13,17, 19, 23} 

Euler Tolient function: 
 
- if m is a prime 
- if m is multiplication of two prime numbers

- if m = a*b both or either a and b are composite
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Ex: Find O (45)

Sol : m= 45 , 45= 9*5   , 9=32 45(1 – 1/3) (1 – 1/5)= 24

Ex : O (35) 

Sol : m=35  , 35 = 7*5 , 7 & 5 are prime numbers so we will 

use this formula (q-1) * ( p-1) ,   (7-1)(5-1) = 24 
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Ex : O (1000)

1000( 1 - 1/2 )( 1 – 1/5 )

 = 400

fast powering algorithm

Ex :  233 (mod 30) 

233 mod 30 = -73 mod 30 

49 * -7 mod 30 = -343 mod 30 = -13

To find positive number add m  -13 + 30 = 17
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Ex : Find  31500 (mod 30) 

31500 mod 30 = 1500 mod 30 = 1

Ex  : Find (242)329 mod (243)

242329 mod 243 = -1329  mod 243 = -1 

= -1 + 243 = 242 

Ex : Find 3218 ( mod 1000) 

Sol : use FPA

218 = 128 + 64 + 16 + 8 + 2   

 (3128 * 364 * 316 * 38 * 32 ) mod(1000) Uploaded By: Mohammad ElRimawiSTUDENTS-HUB.com
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Solve 887  (mod 187 )     big  difference 

88 ( mod 187 ) = 88

882 (mod 187 ) = 88 * 88 (mod 187) =77

884(mod 187 ) = 77 * 77 = 132 

887(mod 187) = 884 * 882 * 88 (mod 187 )

= 132 * 77 * 88 ( mod 187 ) = 11 
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Ex : Find  the last two digits of 295

295 (mod 100)

291 (mod 100) =29

292 (mod 100) =41

294 (mod 100) = 41*41(mod 100) = 81  or -19 

295 (mod 100) = 294 * 29 (mod 100 ) = -19 * 29 (mod100)

= -551(mod 100) = -51   ,  -51+100 = 49
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Ex : 3^100 (mod 29) 

3^1 (mod 29) ≡ 3 , or 26 

3^2 (mod 29) ≡ 9 (mod 29) ≡ 9 

3^4 (mod 29) ≡ 3^2 × 3^2 (mod 29) ≡ 9 × 9 (mod 29) ≡ 23 or -6

 3^8 (mod 29) ≡ 3^4 × 3^4 (mod 29) ≡ 7 

3^16 (mod 29) ≡ 3^8 × 3^8 (mod 29) ≡ 7 × 7 (mod 29) ≡

 49 (mod 29) ≡ 20

 3^32 (mod 29) ≡ 3^16 × 3^16 (mod 29) ≡ -9 × -9 (mod 29) ≡ 81 mod 29 ≡ 23 or -

6 3^64 ≡ 3^32 × 3^32 (mod 29) ≡ 23 × 23 (mod 29) ≡ 36 (mod 29) ≡ 7 

3^100 ≡ 3^64 × 3^32 × 3^4 (mod 29) ≡ 7 × -6 × -6 (mod 29) ≡ 49 (mod 29) ≡ 20
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Ex : 2316 (mod 30)

⇒ 23 (mod 30) = 23 or -7

⇒ ( ( ( (-7)² )² )²)2 mod 30

⇒ ( ( (49)² )² )² mod 30 ⇒ 19 or -11

⇒ ( ((-11) ²)² )2 mod 30 ⇒ (121)2 mod 30 = 1
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Prime numbers unique factorization and finite fields 

def  : an integer p is called a prime if p>2  and if only positive integers 
dividing p  are 1 and p 

Proposition :  let p is prime number and suppose that p divides the product  

of  integers a and b (a*b) more generally if p  divide a product of integers 

say

  P | a1,a2 …..  an
 then P divides at least one at the individual ai

Theorem : the fundamental theorem of  arithmetic
let a greater than or equal 2 be an integer , then a can be factered as 
product of prime numbers

a= P1 e1 * P2 e2  * P3e3  ….. Pr er
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Ex : 125 

Ex : 187 
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Ex : 187
First, we use this  formula n= p2 - q2 to find the value of p & q

187 = p2 – q2 

p2 = 187+ q2 

p =
p =                   p= 14 , q= 3 

After we find p & q ,use this formula n = ( p – q ) ( p +q )  to the get the numbers 
whose product is 187.  
n = (14-3) ( 14 +3) = 17 * 11
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Ex : Factorize 3233

 P = √3233 + (1)² ⇒ False 

 P = √3233 + (2)² ⇒ False 

 P = √3233 + (3)² ⇒ False

 P = √3233 + (4)² ⇒ True ⇒ 57 

 n =  (57 - 4)(57 + 4) = (61)(53)
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Def : The fundamental theorem of arithmetic says that in 
factoring a positive integer 𝑎 into primes, each prime p 
appears to a particular power. We denote this power by 
Ord𝑝(𝑎) and call it the order (or exponent) of p in 𝑎 . For 
convenience, we define Ord𝑝(1)=0 for all prime numbers

Ex : 1728 = 26 * 33

Ord2 (1728)= 6
Ord3 (1728) = 3
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If p is prime , then every nonzero number Modula p  
has multiplicative inverse (M.I) Modula P

Proposition : let p be a prime then every non-zero 
element  in Z/pZ  has MI that is  number B satisfying

a*b = 1 (mod p)

b = a-1 (mod p)
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Remark : The EA give us an effient computation 
method for computing 
a-1 mod p , we simply solve the equation 
au + pv = 1 and u= a-1 mod p , if p is prime then the 
(Z/pZ)* = { 1,2,3,……,p}

In otherwards , when remove zero element from 
Z/pZ , the remaining elements are units and 
closed under multiplication .
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Powers and Prime have roots in finite fields 
finite fields a several name for a (commutative)ring in 
which every non-zero element has MI 
Ex :
 R :  real numbers 
Q : fraction 
C : complex 
Z/pZ : for Ex   (Z/5Z) :   F5         { 0,1,2,3,4}

(Z/24Z)* : F24 *          {1,3,5,…..}
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Ex : p =7 
 
11 mod 7 =1 , 12 mod7 = 1  ………… 16 mod 7 =1
21 mod 7 = 2 , 22 mod 7 = 4 ………  26 mod 7 = 1 
31 mod 7 = 3 , 32 mod 7 = 2 ………. 36 mod 7 = 1
41 mod 7 = 4 , 32 mod 7 = 2 ………. 46 mod 7 = 1
51 mod 7 = 5 , 52 mod 7 = 4 ………. 56 mod 7 = 1
6 mod 7 = 3 , 62 mod 7 = 2 ………. 66 mod 7 = 1

a6 = 1 (mod 7) , a =1,2,3,4,5,6
a6 = { 1(mod7) if 7   a } ,  { zero (mod7) if 7  a } 
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If p is a prime number and a is a positive integer not 
divisible by P then ap-1 = 1 mod p

Ex : Does Fermat's theorem hold  true for p = 5 and
 a =2 ??
 24 = 1 mod 5
16 = 1 (mod 5)
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Ex : prove that Fermat's theorem holds true for p =13 , 
a= 11

ap-1 = 1 mod p

1112= 1 ( mod 13)

(-2)12 = 1 ( mod 13)

(-2)4*3 = 1 ( mod 13)

((-2)4)3 = 1 ( mod 13)

(16)3 = 1 ( mod 13)

33 = 1 ( mod 13)

27 = 1 ( mod 13) Uploaded By: Mohammad ElRimawiSTUDENTS-HUB.com
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Remark:  Fermat's theorem and fast power algorithm 
provide us with reasonably efficient method for 
computing inverse Modula p namely 
a-1 = ap-2 (mod p)

Ex : find inverse of (7814 modula 17449)
a-1 = ap-2 (modula P) 
7814-1 = 781417447 (mod 17449)
            = 1284 (mod 17449) 
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2 - EEA 
au + bv =1 

7814u + 17449 v = 1

( u , v ) = ( 1284 , -575)

7784 -1 = 1284 mod 17449 

Theorem : Primitive root theorem let p be a prime 
number there exists an element g belong to Fp*
Where powers give every element of Fp*
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Fp* = {1 ,  g , g2 , g3 ……, gp-2 } 
Element with this property are called primitive roots 
of Fp* or  generate of Fp* they are the elements of   
Fp* having order P – 1

Ex : the filed F11 has 2 as primitive root ??

20 mod 11 = 1 ,  21 mod 11 = 2  ,  22 mod 11 = 4 , 
………  29 mod 11 = 6

Yes , because there is no similarity in the result 
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Is 2 a primitive root for F17 ??
 20 =1 mod 17 =1
 21 =2 mod 17 =2

28 = 256 mod 17 = 1
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Is 2 a primitive root of prime number 5 ??

 20 mod 5 = 1
 21 mod 5 = 2
 22 Mod 5 =4
 23 mod 5 = 3

Yes , because there is no similarity in the result 
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