Definition: A function f is
continuous at left endpoint x=a of its
domain if lim f(x) = f(a)
x = a⁺
continuous at right endpoint x=b of its
domain if lim f(x) = f(b)
x = b
continuous at right endpoint x=b of its
domain if lim f(x) = f(b)
x = b
continuous at -2 because lim
$$\sqrt{1+x^2} = 160$$

 $x = 20$
 x

Example
$$f(x) = |x|$$
 is continuous
 $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ (-x & \text{if } x < 0 \end{cases}$

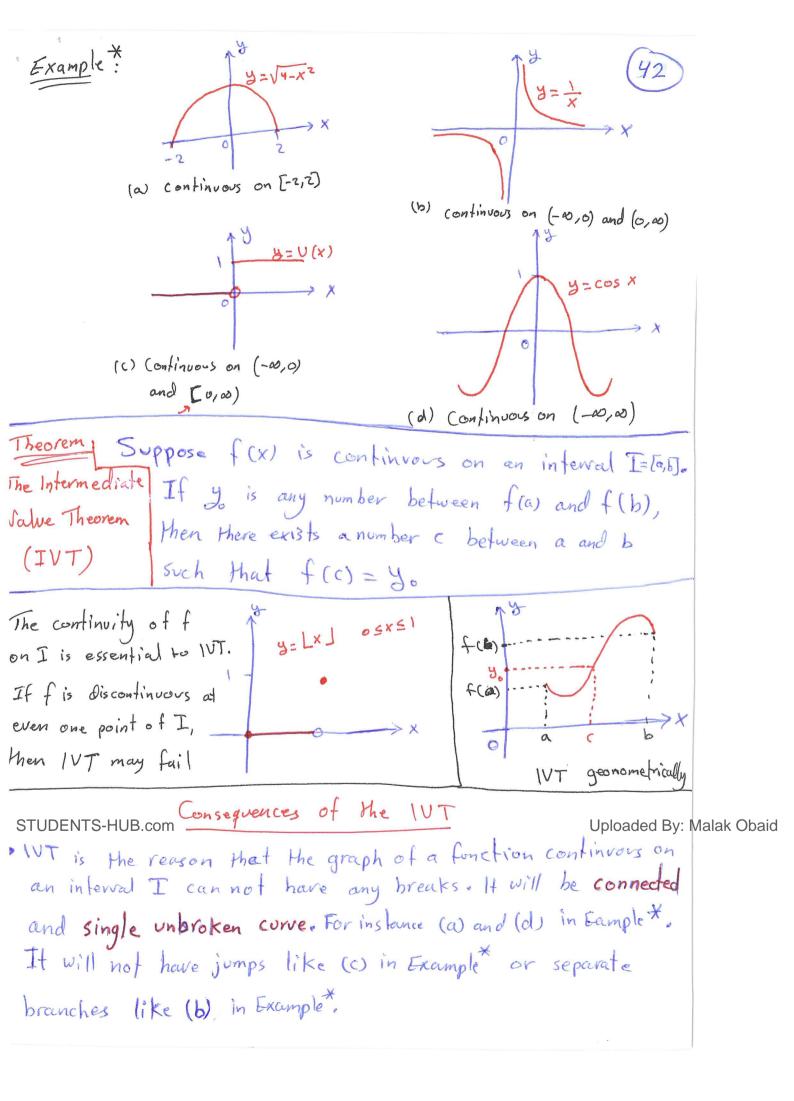
if $x \ge 0$ then $f(x) \ge x$ polynomial which is continuous
if $x < 0$ then $f(x) \ge x$ polynomial which is continuous
if $x < 0$ then $f(x) \ge x$ polynomial which is continuous
if $x = 0$ then $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} |x| = f(0) = 0$

Continuity of trigonometric fractions
 x The functions $\tan x = \sin x$ and $\cos x$ are continuous at every value x .
 x The functions $\tan x = \frac{\sin x}{\cos x}$, $\cot = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$ sec $x = \frac{1}{\tan x}$ and $\csc x = \frac{1}{\sin x}$
 $\operatorname{core} \operatorname{continuous} \operatorname{at} \operatorname{every} \operatorname{point} \operatorname{except}$ where they are not defined.
Theorem (continuous at every point except where they are not defined.
Theorem (continuous at c .
 $g = f$ is continuous at c .
 $g = f$ is continuous at c .
 $f(x) = (\operatorname{continuous} \operatorname{at} x = 4)$
 $f(x) = (\operatorname{continuous} \operatorname{at} x = 4)$ because
 $\lim_{x \to 2} |x| = 2$ and
 $g(x) = x = 1$.
 $f(x) = (\operatorname{continuous} \operatorname{at} x = f(4) = 2$ because
 $\lim_{x \to 2} (x \to 2) = 3$.
 $x \to 2$
Those by Theorem above $g = f(x) = g((x)) = (x)^{2} - 1 = x - 1$.
This is polynomial and continuous at $x = 4$.
This is polynomial and continuous at $x = 4$.
This is polynomial and continuous at $x = 4$.
 $f(x) = g(f(x)) = g(f(x)) = g((x)) = (x)^{2} - 1 = x - 1$.
This is polynomial and continuous at $x = 4$.

Continuous Extension to point
* A rational function fracy have a limit Lad point x=c even
if f(c) is not defined (the denominator is zero).
Example:
$$f(x) = \frac{x^2 - y}{x - 2}$$

*If $x=2 \Rightarrow f(2)$ is not defined but
*If $x \neq 2 \Rightarrow f(2)$ is not defined but
*If $x \neq 2 \Rightarrow f(x) = \frac{x^2 - y}{x - 2} = \frac{(x - 2)(x + 2)}{(x - 2)} = x + 2$
The function $F(x) = x + 2$ is the same as $f(x) = \frac{x^2 + y}{x - 2}$ for all $x \neq 2$
The only difference is that F(x) is continuous at $x=2$ becase
 $\lim_{x \to 2} F(x) = \lim_{x \to 2} (x + 2) = y = F(x)$
but $f(x)$ is not continuous at $x = 2$ becase
 $\lim_{x \to 2} F(x) = \frac{y}{x + 2} = \int_{-\infty}^{\infty} F(x) = \frac{x + 2}{x - 2}$
Thus, $F(x)$ is called the continuous extension of $f(x)$ at $x = c$,
and we write
 $F(x) = \int_{-\infty}^{\infty} f(x) = \int_{-\infty}^{\infty} f(x) = \frac{x^2 + x - 6}{x^2 - y}$ has a continuous extension.

=> But F(x) is continuous at x=2 because $\lim_{x \to 2} F(x) = \lim_{x \to 2} \frac{x+3}{x+2} = \frac{5}{4} = F(2)$ and f(x) is not continuous at x=2 becase $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to 2} \frac{x + 3}{x + 2} = \frac{5}{4} \neq f(2)$ Thus, F is the continuous extension of $f_{10}x=2$. $F(x) = \begin{cases} \frac{x+x-6}{x^2-4}, & x\neq 2 \end{cases}$ $y = f(x) = \frac{x^2 + x - 6}{x^2 - 4}$ $\frac{2}{5} = F(x) = \frac{x+3}{x+2}$ Continuity on Intervals · Let P(f) be the domain of the function f: at -> A function of is continuous if it is continuous Tevery where in D(F) -> A function of is continuous on an interval ICD(A) if f is continuous at every _ point in: I. Uploaded By: Malak Obaid STUDENTS-HUB.com X >> If the function f is continuous on an interval I, then fi is continuous on any interval JCI. :xample: > Polynomials, are continuous on every interval. > Rational functions are continuous on every interval on which they are defined.



Theorem: (limits of continues functions)
If g is continuous at the point i b, and
lim f(x) = b, then lim
$$g(f(x)) = g(b)$$

 $x = g(\lim_{x \to c} f(x))$
Example: $\lim_{x \to T_{2}} \cos\left(2x + \sin\left(\frac{sT}{2} + x\right)\right) = \cos\left(\lim_{x \to T_{2}} 2x + \lim_{x \to T_{2}} \sin\left(\frac{sT}{2} + x\right)\right)$
 $= \cos\left(T + \sin zT\right)$
 $= \cos T = -1$
Example: Show that 3 a root of the equation $x^{3} - x - 1 = 0$
between 1 and 2.
lef $f(x) = x^{3} - x - 1$
 $f(1) = 1 - 1 - 1 = -1 \le 0$
 $f(2) = 8 - 2 - 1 = 5 > 0$
Since $o = y_{0}$ is between $f(1)$ and $f(2)$
Since f is continuous (polynomial). Thus, by IVT, 3
a (zero) of f between 1 and 2.
 $(x = 1.32)$

STUDENTS-HUB.com

Uploaded By: Malak Obaid