
Engineering statistics "ENEE2307" Chapter 3

By : Jibreel Bornat

Notes, questions and forms

STUDENTS-HUB.com

Chapter 3 Two or more Random Variables

STLEDENTS16UB.com

Uploaded By: WhoreeDBorthy att

(3) $P(x \leq 0 / y \leq 1)$ $P(x \le 0/9 \le 1) = \frac{P(x \le 0, 9 \le 1)}{P(y \le 1)} = \frac{9/16}{10/16} = \frac{9}{10}$ - الترتيب "Fx,y (0,1) "O for X , 1 for y" (1,0) $F_{x,y}(0,1) = P(x \le 0, y \le 1) = 9/16$ (5) Forx (0,1) Fy,x (0,1) = P(y < 0, X < 1) = 8/16 (6) Fx,y (- 00, - 00) $F_{x,y}(-\infty, -\infty) = P(x \leq -\infty, y \leq -\infty) = 0$ - Rules * 7 Fx, y (~, ~) $F_{x,y}(\infty,\infty) = P(x \leq \infty, y \leq \infty) = 1$ (8) $F_{x,y}(\infty, -\infty)$ Fx,y (20, -20) = P(X < 20, y < -20) = 0 (9) $P(x > 0, y \leqslant 0)$

 $P(x > 0, y \leq 0) \neq P(x \leq 0, y \leq 0)$

X Y O $P(x > 0, y \le 0) = \frac{1}{16}$ 2 1 -1 1/16 2/16 2116 0 6/16 6 0 Uploaded By: Jibreef Bothat STUDENTS-HUB.com

A~ *

(1) P(x=1) this means find P when X=1 on all y "P(x=1, y=y)

$$P(X=1) = \frac{1}{16} + \frac{0}{16} + \frac{4}{16} = \frac{5}{16}$$

$$= \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{5}{16}$$

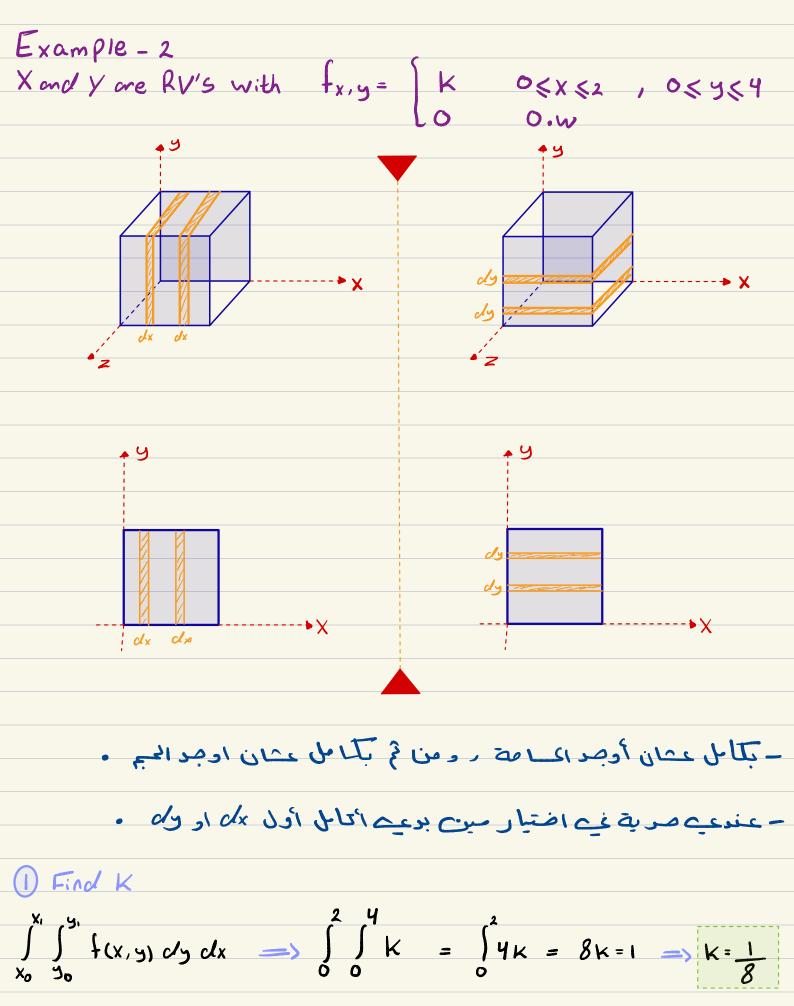
$$= \frac{1}{16} + \frac{1}{16$$

0

I P(y≤ 1)

$P(y \in I) = 1$ 2 1 6 10	XY	0	1	2
$P(y \le 1) = \frac{1}{16} + \frac{2}{16} + \frac{1}{16} + \frac{6}{16} = \frac{10}{16}$	-1	1/16	2/16	2116
16 16 16 16	0	0110		
	1	1/16	0	4/16

12 Find the marginal PMF Of X bac data

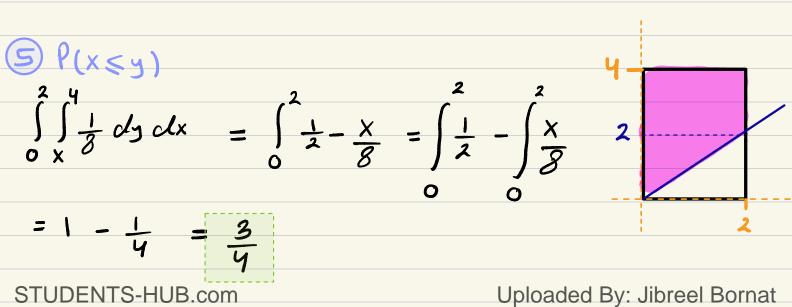

ρ(x = x) =	5116	X = - 1	XY	0	1	2
	1	N - - 1	-1	1/16	2/16	2/16
	6/16	χ= Ο	0	6/16	6	0
	5/16	X =		1/16	0	4/16
		Ow				

(13) Find the marginal PMF of y

P(Y=y) =	8116		X Y O	1	2
P (7-9) -	2116	y = 0	-1 1/1	6 2/16	2/16
	6/16	y=1			4/16
	-	y = 2			
	lΟ	$O.\omega$			

(14) Are X and Y Statically in dep	enchant?
	Note
$P(x=0, y=0) \stackrel{?}{=} P(x=0) P(y=0)$	X and Y are said to be
$6/16 \neq (6/16)(8/16)$	Statically indefendent if
	P(x = x, y = y) = P(x = x) P(y = y)
STUDGNTSCHUDLOG. I	fo-Uploaded BygJibreel Bornat

2 Continues



STUDENTS-HUB.com

 $2 P(X \leq 0.5)$ from the graph (X:0-0.5 | Y:0-4) $\int_{0}^{0.5} \frac{1}{18} dy dx = \int_{0}^{0.5} \frac{1}{2} dx = \frac{1}{4}$

 $3P(Xy \le 1)$ $X \le 1 = Y \le \frac{1}{X} (when X = 2 = Y = 0.5)$ y = 4 = Y = 0.25) $\frac{1}{Y} \int \frac{1}{3} dy dx + \int \int \frac{1}{5} dy dx = \frac{1}{8} (1 + \ln x) \int \frac{1}{4} dy dx = \frac{1}{8} (1 + \ln x) \int \frac{1}{4} dy dx = \frac{1}{4} \int \frac{1}{4} \int \frac{1}{4} \int \frac{1}{4} dy dx = \frac{1}{4} \int \frac$

 $\begin{array}{c} (Y) \quad P(0 \leq x \leq 0.5, 0 \leq y \leq 1) \\ 0.5 \quad 1 \\ \int \int \frac{1}{3} dy \, dx = \int \frac{1}{3} dx = \frac{1}{16} \\ 0 \quad 0 \quad 8 \quad 0 \quad 8 \quad 0 \quad 8 \quad 0 \quad 16 \end{array}$

6 find the marginal PDF of X

$$f(x) = \int_{y_0}^{y_1} f(x, y) \, dy \implies \int_{0}^{y_1} \frac{1}{8} \, dy = \frac{1}{2}$$

$$f(x=x) = \left(\frac{1}{2} \quad 0 \le x \le 2\right) \#$$

7 find the marginal PDF of y $f(y) = \int_{x_0}^{x_1} f(x, y) dx \implies \int_{0}^{2} \frac{1}{8} dx = \frac{1}{4}$

$$f(Y=y) = \begin{pmatrix} \frac{1}{4} & 0 \leq y \leq 4 \\ 0 & 0 & w \end{pmatrix} \#$$

$$\begin{bmatrix} \frac{1}{2} & 0 \leq X \leq 2 \\ 0 & 0 & W \end{bmatrix} \xrightarrow{?} \begin{bmatrix} \frac{1}{2} & 0 \leq X \leq 2 \\ 0 & 0 & W \end{bmatrix} \times \begin{bmatrix} \frac{1}{4} & 0 \leq X \leq 4 \\ 0 & 0 & W \end{bmatrix}$$

$$\frac{1}{8} \stackrel{?}{=} \frac{1}{2} \stackrel{*}{+} \frac{1}{4}$$
, Yes $\frac{1}{8} = \frac{1}{2} \stackrel{*}{+} \frac{1}{4}$

. They one S. I Note X and Y are said to be Statically indefendent if f(x,y) = f(x) f(y)for all X and y Uploaded By: Jibreel Bornat STUDENTS-HUB.com

9 Plosxeos, 08481/482) $= \frac{P(0 \leq x \leq 0.5, 0 \leq y \leq 1)}{P(y \leq 2)} = \frac{\int_{0}^{1} \frac{1}{8} dy du}{\int_{0}^{1} \frac{1}{4} dy} = \frac{1}{8}$ (10) $P(y \leq 1, X = 0.5)$ • Conditional PDF of X : $f_{y/X=x} = \frac{f(x, y)}{f(x)} \Big|_{X=x}$ • Conditional PDF of Y: $f_{x/y=y} = \frac{f(x, y)}{f(y)} \Big|_{y=y}$ $P(y \le 1, x=0.5) = fy_{1/x=0.5} = \frac{1/8}{1/2} = \frac{1}{4}$ $\implies fy_{1/x=0.5} = \frac{1}{4} \quad \text{then we integrate on y interval}$ $\int f_{y/x=0.s} \implies \int \frac{1}{4} dy = \frac{1}{4}$ الحال:- حو الفرق بين ٩ د٥١ رليماكل داحدة بطريقة ؟ الأوى : مطح ي اقل من عيد" كا وفي هذه الحالة نمل عادي بلد أية ستروط و قوا نين . المانية : مطح و ترميم عيد "="وفي عده المراية على STUDEN مطح و نير محمد من عوانين من الم STUDEN والمعاد المانية المعاد الم

Important Rules: $I = \{ax + by\} = aE\{x\} + bE\{y\}$ (2) E { axy} = a E { x} E { y} iff they are statically indep. **Correlation Coefficient** Rules - Covariance: alxy = E{(x-nex)(y-nex)} - Variance $6_x^2 = u l_{xx} = E \left\{ \left(x - u l_x \right)^2 \right\}$ - Correlation Coefficient: $P_{Xy} = \frac{\alpha P_{Xy}}{6x 6y}$, $-1 \le P_{Xy} \le 1$ if Pxy = 0 => X and Y are uncorrelated لد يوجد بينهم علدقت if Pxy = 1 => X and Y are fully Correlated بوجد بينهم علامة توية "لترميل الحفظ: هو شبيه بالمعادية التربيعية" R = a, X + a, Y " $\hat{G_R} = a_1^2 \hat{G_x}^2 + a_2^2 \hat{G_y}^2 + 2a_1 a_2 \hat{G_x} \hat{G_y} \hat{P_{xy}}$ Notes if X and y are Statically indep. then they are uncorrelated But if x and y are uncorrelated this obesn't mean they are S. I aillian Un Correlated Statically independent alog or alog not مشی حصوط

Example - 5		
let X and Y be two Ru's with this PMF	XX	-1 1
1) Find the Cornelation Coefficient Pxy	-1	1 1
First: we find fx and fy		40
$P(x = x) = \{3/4 \ x = -1\} P(y = y) = \{$	1/2	y=-17
	1/2	y=1
	0	0.~

Second: find any thing we need to find Pry $c_{1}x = -1/2$, $c_{1}y = 0$, $6_{x} = [E\{x^{2}3 - alx] = \sqrt{3}/2$

 $6y = \sqrt{E\{y^2\}} - \alpha ky^2 = 1$, $\alpha ky = E\{(x + \frac{1}{2})(y) = -\frac{1}{2}$ $P = \frac{-1/2}{\sqrt{3}/2 \times 1} \implies P = -0.577$

Example-6 let X and Y two RV's with clx=1, $6_x^2 = 4$, cly=-1, $6_y^2 = 9$ R= 2x-y , Pxy = 1/2 , Find:

() ulk $E\{k\} = E\{2x - y\} = 2E\{x\} - E\{y\} = 2 + 1 = 3$

2 Var R $6_R^2 = \alpha_1^2 6_x^2 + \alpha_2^2 6_y^2 + 2\alpha_1 \alpha_2 6_x 6_y P_{xy}$ $= 4 + 4 + 1 + 9 + 2 + 2 + -1 + 2 + 3 + \frac{1}{2} = 13$

Functions of Random Variables

Example-7			~					_
			xY	1	2	3	Ч	
with the foro			1	0.1	0	0.	0	
			2	0.3	0	0.1	0.2	
1) Find the	PMFO	fz	3	0	0.2	0	0	
P(z=z)=	0.1	Z=2		X X	1 3	Z	P(z=z	Z)
	0.3	Z=3				2	0.1	
	0.1	Z=4		1 2	2	3	0	
	0.3	Z=5		2	ς ι	1	0.1	
	0.2	Z=6		4		s	0	
1 Contraction	0	0.00		2 1		3	0.3	
	v	0 00 0		2 2		ч	0	
# USE Just	use the	2 non-zero ter	<u>n</u> 6	2 3	3	5 (5.1	
				2 4		6 (J.2	
H when we	have Z	udue two time	۹.	3		4	0	
# when we have Z volve two times we add them together "like Z=5"					2	5 (0.2	
				~	3 6	5	0	
				3 0		7	0	
					•		_	

E{z} $E(z) = E(x+y) \implies \tilde{\xi} \tilde{\xi}(x+y) f_{x,y} \text{ OR } \tilde{\xi} z f_z$

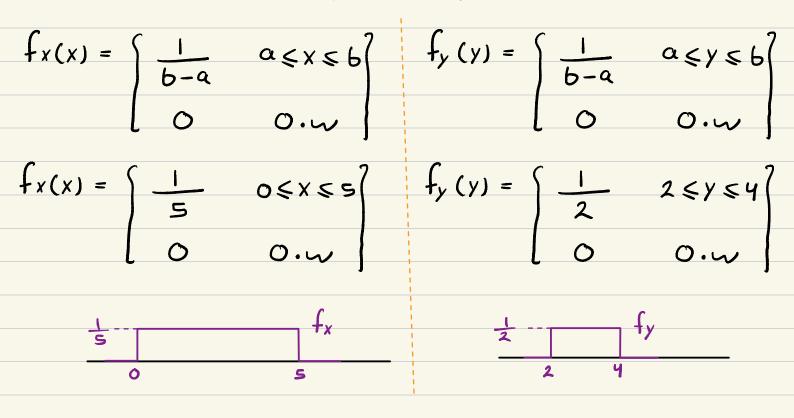
3) Find the PDF of Z

this is called Convolutional integral See the next Page ¥

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat

في بطن المور - حكان صالع - أمل


ا عذر إصباطدى ٢ وتوَكَّرُعَلَى ٱلْعَزِيزِ الرَّحِيمِ

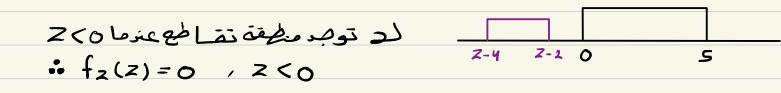
Convolutional Integral

$$f_z(z) = \int_{-\infty}^{\infty} f_x(x) f_y(z-x) dx$$
 if X and Y are S.I

Example-8
X is a R.V with a Uniform distribution over
$$[0,5]$$
, and Y
is a R.V with a Uniform distribution over $[2,4]$, Z is a
New R.V such that $Z = X + Y$, Find

PDF of Z at Z=4 First: We find fx(x) and fy(y) and Plot them

then: We use the low above to find the PDF


to ----

0

2

STUDENTS-HUB.com

2 Find the PDF of Z

$$f_{z(z)} = \int_{0}^{z-2} f_{x(x)} f(z-x) = \int_{0}^{1} \frac{1}{5} x \frac{1}{2} dx$$

$$f_{z(z)} = \frac{1}{6} (z-2) , 2 \leq z \leq 4$$

$$f_{z(z)} = \frac{1}{10} (z-2) , 2 \leq z \leq 4$$

$$z-4 \langle 0 \rangle = 272$$

$$z-4 \langle 0 \rangle = 272$$

$$z-2 = \int \frac{1}{10} dx = \frac{1}{5} = \frac{1}{02-4} = \frac{1}{2-2} = \frac{1}{5} = \frac{1}{02-4} = \frac{1}{2-2} = \frac{1}{5} = \frac{1}{2-2} = \frac{1}{5} = \frac{1}{2-2} = \frac{1}{5} = \frac{1}{5}$$

$$f_{2}(z) = \int_{z-4}^{5} \frac{1}{5} \times \frac{1}{2} dx = \frac{5}{10} - \frac{1}{10}(z-4)$$

$$0$$

$$z-4 = \frac{1}{10}(z-4), \quad 7 \leq z \leq 4$$

$$z-4 \leq z = 2 \leq 4$$

$$z-4 \leq z = 2 \leq 4$$

$$z-4 \leq z = 2 \leq 4$$

$$z-2 \geq z \leq 4$$

$$f_{2}(2) = \begin{cases} 0 & Z < 0 \text{ or } Z > 9 \\ 1/10(Z-2) & 2 < Z < 4 \\ 1/5 & 4 < Z < 7 \\ 1/5 & 4 < Z < 7 \\ 1/6(Z-9) & 7 < Z < 9 \end{cases}$$

$$\begin{aligned} & -60 \text{ by i Choose } Z-2 \text{ and} \\ & Z < 0 \text{ or } Z > 9 \\ & Because \text{ we are dealing with} \\ & P_{y(Y)} \text{ interval which is } [2, 4] \\ & P_{y(Y)} \text{ interval which is } [2, 4] \\ & Uploaded By: \text{ Jibreel Bornat} \end{aligned}$$